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Abstract

A high-throughput low-latency digitdinite impulse re-
sponse(FIR) filter has been designed for use partial-
response maximume-likelihooPRML) read channels of
modern disk drives. The filter is a hybrid synchronous-
asynchronous design. The speed critical portion of the filter

is designed as a high-performance asynchronous pipeline,

sandwiched between synchronous input and output por-
tions, making it possible for the entire filter to be dropped
into a clocked environment. A novel feature of the filter is
that the degree of pipelining is dynamically variable, de-
pending upon the input data rate. This feature is critical in
obtaining a very low filter latency throughout the range of
operating frequencies.

The filter was fabricated in a 0.18CMOS process. Re-
sulting chips were fully functional over a wide range of sup-
ply voltages, and exhibited throughputs of over 1.3 Giga
items/second, and latencies as low as four clock cycles. Th
internal asynchronous pipeline was estimated to be capa-
ble of significantly higher throughputs, around 1.8 Giga
items/second. With these performance metrics, the filter ha
better performance than that reported for existing digital
read channel filters.

1. Introduction

e

At the lowest input rates, the asynchronous pipeline behaves
similar to a block of flow-through combinational logic, with

a latency of only a single clock cycle. As the input rate
is increased, the behavior progressively changes to that of
a pipeline that is one, two or more stages deep, with a
corresponding latency of one, two or more clock cycles.
This behavior is intrinsic to the asynchronous nature of the
pipeline; no architectural modifications are needed. The
advantage of this “adaptive pipelining” feature is that the
chip naturally handles slow synchronous environments with
a low latency penalty (in terms of number of clock cy-
cles), yet can still accommodate fast synchronous environ-
ments as a highly-pipelined design. This adaptive nature
was the main motivation for pursuing a mixed synchronous-
asynchronous approach for the design of the filter. In con-
trast, a comparable fully clocked pipeline would be limited
to a fixed pipelining depth, with a latency of nine clock cy-
cles, irrespective of the input rate.

The filter is a real-world design intended for use in disk
drive read channels [15]. The magnetic data that is picked
up by the read head suffers from intersymbol interference,
.e., adjacent bits of data overlap each other due to disper-
sion of the read pulses. This interference can be partially re-
moved by passing the input stream through the filter, a pro-
cess known as equalization. The filter output is then passed
through a partial-response maximum-likelihood (PRML)

This paper presents the design of a high-speed pipelineddetector [5, 2], which looks at a finite history of inputs to

digital filter chip. The chip is partly asynchronous and
partly clocked. The speed-critical portion of the filter is im-

compute the likelihood of the currentinput being a “1” or a
“0.” Thefilter itself belongs to a larger category called finite

plemented as an asynchronous pipeline, and the remainderimpulse response (FIR) filters [7].

which is clocked, acts as the pipeline’s environment.
A novel feature of the filter is that the degree of pipelin-

The design of the filter chip is an interesting case study
for several reasons. First, the chip has two distinct timing

ing is dynamically variabledepending upon the rate of ar-  domains, one clocked and the other asynchronous. Second,
rival of input data. In particular, from the viewpoint of the filter pipeline uses a mix of static and dynamic logic
the synchronous input and output environments, the asyn-function blocks: the asynchronous domain uses dynamic
chronous pipelined portion, which consists of nine pipeline blocks, and the clocked one uses static logic. Also, as a real-
stages, can naturally provide varying depths of pipelining world case study, the design exhibits a highly-varied datap-
by varying the number of data items present in the pipeline. ath, ranging from 30 to 216 wires in width at varying points
in the pipeline. Finally, as mentioned above, the depth of
pipelining dynamically adapts to the input data rate.

The pipeline style used for the asynchronous portion of
the filter is the high-capacity pipelinei€) style introduced
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in [12]. This style is for dynamic logic implementations, 2.1.1. Theory

and provides the benefits of high throughput, low latency, A read channel filter belongs to the category of finite im-
and a 100% storage capacitye(, each stage can hold a pylse response (FIR) filters [7]. In a digital FIR filter, the
distinct data item). Several other high-speed asynchronousyytput at any given timey (k), is a weighted sum of the

pipeline styles have been proposed recently [10, 14, 13], most recent inputsX (k), X (k — 1), X (k — 2) ... X (k —
but each of these has disadvantages comparext.tdhe p+1):

pipelines of [10, 14] have the drawback of more complex
timing constraints, requiring aggressive circuit techniques
and much designer effortic pipelines, on the other hand,
have much simpler implementation and less stringent tim- where wg, w1, w2 ... w,—1 are the constant weights by
ing requirements. The pipelines of [13], although compara- which the inputs are weighted. Such a filter, wittveights,
ble toHc in performance and ease of design, have only half is said to be ap-tap” filter. Each of the termsy; - X (k—1),
the storage capacity. is called a “partial sum.”

The filter was fabr!cated in IBM's O'J.‘BCMOS'7SF 2.1.2. Implementation: Distributed Arithmetic Style
process. Resulting chips were fully functional over a range i ) i )
of supply voltages, and had throughputs of up to 1.32 Giga Several implementations of a read channel fllter_ar_e possi-
items/second. Interestingly, the filter throughput was lim- ble. For example, one could use one or more multiplier units
ited by the synchronous portion of the chip; the asyn- t0 compute each of the prodgct terms, and then use one or
chronous pipeline was actually capable of around 1.8 Giga more adders to produce the final result. _
items/second throughput. The fastest existing digital read A particular approach that is very well-suited for a high
channel filter, by Rylov et al. [9], has a peak throughput of Performance implementation is tistributed arithmetic
2.3 Giga items/second, in the same silicon process. How-architecture[8]. This approach does not use multiplier
ever, the filter of [9] is a “half-rate” desigig., it consists units. Instead_, partial sums are precomputed and stored in a
of two pipelines in parallel, each having a peak throughput l00kup table, indexed by the input data values. As a result,
of 1.15 Giga items/second. Therefore, the filter chip of this €ach multiplication can be performed quite fast, frequently
paper is effectively 15% faster than the fastest existing filter in @ single clock cycle.
reported. However, the main novelty of the new filter is the ~ Several techniques are used to keep the size of the lookup
dynamically variable pipeline depth, and, hence, a variable table manageable. First, the entire multiplication operation
|atency (as measured in clock Cyc|es), which can adapt toiS bit-sliced. Second, within each bit Slice, the input val-
varying input data rates. ues are separated into two groups, one containing only the

The remainder of this paper is organized as follows. Sec- €ven-indexed values and the other only odd-indexed values,

tion 2 gives background on read channelfilters, and on high- With €ach group having its own distinct lookup table. Fi-
capacity pipelines. Section 3 gives an overview of the filter Nally, a particular data representation style is used which
architecture, and then Section 4 presents the detailed implentroduces symmetry into the lookup table, further reducing
mentation. Section 5 discusses the operation of the filter,th€ amount of storage needed. Each of these techniques is
focusing on the adaptive pipelining feature. Performance NOW discussed in detail. _ _

analysis is provided in Section 6, and measurements of chip ~ Bit Slicing. Suppose each input value Halsits. The ex-
performance are given in Section 7. Finally, Section 8 gives Pression of Equation 1 can be evaluated separately for each

Y(k) = Y wi-X(k—1) (1)

0<i<p—1

conclusions. bit position in the input stream, and then théndividual
results can be appropriately aligned and added together, to
2. Background produce the same result as would be obtained if the compu-

tation of Equation 1 were performed directly with thbit

This section first provides background on read channelinputs.
FIR filters, and then reviews the high-capacit) asyn- As a further optimization, the result of this entire expres-
chronous pipeline style. sion can be precomputed and stored in a lookup table. The

. p most recent input values for that particular bit position
2.1. Read Channel FIR Filters form ap-bit word that is used as the address to access the
Read channelfilters are used in all magnetic and optical disktable. Each lookup table will therefore ha® entries. For
drives. The function of a read channel filter is to take the a 10-tap filter, this corresponds to a table with 1024 entries.
noisy data picked up by the read head, and turn it into a  Partitioning. The size of the lookup table can be sig-
clean stream of “0” and “1” symbols. With ever-increasing nificantly reduced by partitioning the inputs into even- and
data rates available from magnetic and optical media, high- odd-indexed groups. That is, starting with the current in-
speed read channel filters have become key to the desigrput, every other input belongs to the “even group,” and the
of modern disk drives. This subsection reviews the theory remaining inputs belong to the “odd group.” The even and
and implementation of commonly-used digital read channel odd groups have their own lookup tables. Therefore, for
filters. a 10-tap filter, there are two lookup tables, each having a
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Figure 1. Block diagram of an HC pipeline

5-bit address word and only 32 entries. This represents aits output is protected from further input changes. As a re-
dramatic reduction in the size of memory required, from sult, every pipeline stage can store a distinct data item, pro-
one 1024 entry table, to two 32 entry tables. However, there viding the capability of supporting 100% storage capacity.
is a slight tradeoff: twice the number of partial sums are In addition, the decoupled control leads to increased over-
generated, requiring an additional adder stage to combineall pipeline concurrency which in turn directly results in a
them. significantly increased throughput.

Exploiting SymmetryTo further reduce the table size in 221 Structure
half, a data representation scheme is used that makes theta=. ™

ble symmetric. In particular, theigned-digit offset binary ~ Figure 1 shows a simple block diagram of ian pipeline.
notation[8] is used, in which the symbols “0” and “1” stand Each stage consists of three componentanation blocka

for negative and positive exponents of 2. For example, in COMPletion generatoand astage controllerin steady-state
this notation, the 4-bit number “1001” stands for the value OPeration, the function block alternately produces data to-
8 — 4 — 2+ 1 = 3. The advantage of this representation is kens and rgse_t spacers for the next stage, and its com_pletlon
that arithmetic negation is simply achieved by complement- generator |nd|cate_s completion of the stage’s evaluation or
ing each bit: “0110” stands for the value3. An interesting ~ Précharge. The third component, the stage controller, gen-
feature of the filter equation (Equation 1) is that, if all the €rates the decoupled control signalse-andeval—which
inputs are negated, the filter output is also negated. Con-¢ontrol the function block and the completion generator.
sequently, when this representation is used, if two address HC Pipelines use a single-rail bundled datapath [11, 1].
words for the lookup table are bit-wise complements of each A €ontrol signal,Req indicates arrival of new inputs to a
other, then the corresponding table entries will also be bit- St2g€. A high value dredindicates the arrival of new data:
wise complements of each other. Exploiting this symmetry, the previous stage has completed evaluation. ARBgin-

half of the table can be discarded. dicates the arrival of a spacer: the previous stage has com-
pleted precharge. For correct operation, a simple timing
2.2. High-Capacity Asynchronous Pipelines constraint must be satisfie®egmust arrive after the data

inputs to the stage are stable and valid. This requirement is
met by inserting a “matched delay” which is greater than or
equal to the worst-case delay through the function block.
Function Block. Figure 2 shows one gate of a dynamic

function block in a pipeline stage. In general, for a multiple
output function block, there will be one such dynamic gate
for each output. Thepcinput controls the pull-up network
and theevalinput controls the “foot” of the pull-down net-
-work. Precharge occurs whe is asserted low andval

is de-asserted low. Evaluation occurs wigsnalis asserted
The key idea in thesc approach is one oflecou- high and_pc is de-asserted high. Inc pipelines, the two

control signalspcandeval are separately generated and are

pled control: the pull-up and pull-down of the dynamic .
gates are made separately controllable. Therefore, thedecoupled. Therefore, when both signals are de-asserted,

precharge and evaluate controls can both be simultaneousl)}he gate output is effectively isolated from the gate inputs;
de-asserted, allowing the _gate to enter a SpeCI(_:ll “'S(?'ate 1For complex logic, where a single dynamic gate would be too large
phase’—between “evaluation” and “precharge”—in which and slow, decomposition into a multi-level monotonic network is used.

This subsection reviews the pipelining approach adapted
for the asynchronous portion of the filter chip. A class
of pipelines, callechigh-capacity(HC), is used, which are
targeted to dynamic logic implementations [12]. They are
based on a novel protocol that maximizes the pipeline stor-
age capacity by allowing every dynamic stage to hold a
distinct data item. In contrast, in traditional latch-free
asynchronous dynamic pipelines.d.,[18, 13]), alternat-
ing stages usually must contain “spacers,” or “reset tokens,
limiting the pipeline capacity to 50%.
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Figure 3. HC pipelines: Operation of, and syn-
chronization between, adjacent stages
Figure 2. Details of a gate within an HC stage’s
function block chronization poinbetween stages. Once a stager 1 has
completed its evaluate phase, it enables the previous stage
thUS, it enters the “isolate phase." To avoid a short Circuit, N to perform itsentire next Cyc'e:precharge7 is('_)|ate7 and

pcandevalare never simultaneously asserted. evaluate new data item. In contrast, the dynamic pipelines
Completion Generator. An asymmetric C-element,  of[18, 13] use two explicit synchronization points between
aC [3], is used as a completion generator. Ta@s out- adjacent stages: one to enable the start of evaluation, and

put, Done is set when the stage haegun to evaluate, i.e.,  another to enable the start of precharge. As usual, there
when two conditions occur: the stage has entered its evalu-is also one implicit synchronization point: the dependence
ate phasedvalis high), and the previous stage has supplied of stage’sV + 1's evaluation on its predecessdis eval-
valid data input (completion sign&ecjof previous stage is  yation. That is, a stage cannot produce new data until it
high). Doneis reset simply when the stage is enabled to has received valid inputs from its predecessor. Both of the
prechargeffc asserted low). synchronization points are shown by the causality arcs in
The aC element output is fed through the matched de- Figure 3.
lay, which (when combined with the completion genera-  The introduction of the isolate phase is the key to the
tor) matches the worst-case path through the function block. new protocoL Once a Stage finishes e\/a|uati0n7 it imme-
Note that, for extremely fine-grain or “gate-level” pipelines, diately isolates itself from its inputs by a self-resetting op-
the matched delay is oftamnecessarytheaC delay itself erationregardlessof whether this stage is allowed to enter
often already matches the function block delay, so no addi- its precharge phase. As a result, the previous stage can not
tional matched delay is required. only precharge, but even safely evaluate the next data token,
Finally, the completion signal in turn is fed to three since the current stage will remain isolated.
components: (i) the previous stage’s controller, indicating  There are two benefits of this protocol: (a) higher
the current stage’s state, (ii) the current stage’s controller throughput, since a stagé can evaluate the next data item
(through the matched delay), and (iii) the next stage’s com- even before stag® + 1 has begun to precharge; and (b)
pletion generator (also through the matched delay). higher capacity for the same reason, since adjacent pipeline
Stage Controller.The stage controller produces the con- stages are now capable of simultaneously holding distinct

trol signals for the function block and the completion gen- data tokens, without requiring separation by spacers.
erator. It receives two inputs—the delayedneof the cur-

rent stages, and theDoneof the next stageT—and pro-  2-2-3. Stage Controller Implementation
duces the two decoupled control signgds,andeval De- Figure 4 shows a complete implementation of the stage con-
tails of the stage controller’s implementation will be dis- troller. The implementation is very simple, with the two
cussed shortly, after presenting the desired protocol. outputs—pcandeval—and an internal state variabtek2p¢

each implemented using a single gate. Figure 5 shows one
2.2.2. Protocol complete pipeline stage along with its stage controller.

An Hc pipeline stage simply cycles through three phases, as  Note that the generation of tlk2pcsignal is designed
shown in Figure 3. After it completes its evaluate phase, it to be off of the critical path. While in Figure #k2pcap-
then enters its isolate phase and subsequently its prechargpears to add an extra gate delay to the control patbcto
phase. As soon as precharge is complete, it re-enters thehis is not the case: the protocol allowk2pcto be set in
evaluate phase again, completing the cycle. “background mode,” so thatk2pcis typically set befora

The novelty of the approach is seen in the protocol which gets asserted. As a result, the critical patpadds only one
governs the interaction between stages. Unlike nearly all gate delay: from input through the 3-inpuNAND gate,
other pipeline approachesiC hasonly one explicit syn-  NAND3, to the outpupc.
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2.2.4. Analytical Cycle Time and Latency

A complete cycle of events for stag€é can be traced in
Figure 1. From one evaluation by to the next, the cycle Datay, -’ll_’ Datay,;
consists of three operations: (i) stalyeevaluates, (ii) stage

N + 1 evaluates, which in turn enables stagis controller _ L .

to assert the precharge inpyictlow) of N, (iii) stage N Figure 5. An HC pipeline stage: the function

precharges, the completion of which, passing through stage  Plock along with its stage controller
N's controller, enablegV to evaluate once agaieval as-

serted high). For a general stag¥, the constraint can be written as:
Let the evaluation and precharge times for a stage be de-
noted byt a1 andpren, and the delay through the comple- tPrechy < Prechy i1 T laCyyz +INANDS (6)

tion generator by,c. Then, the delay of step (i) ig:ya1, the
delay of step (ii) igac + tnanD3, and the delay of step (iii)
IS tprech + tinv. Here,tnanps andtny are the delays
through theNaAND3 and the inverter, respectively, of Fig-

ure 4. Thus, the analytical pipeline cycle time is: 3. Overview of Filter Architecture

T = tEval + tPrech + tac + INAND3 + tINV (2) Figure 6 shows the top-level architecture of the digital fil-
ter. The filter is a 10-tap 6-bit FIR filter using the distributed
arithmetic architecture [8]. The figure gives a detailed view
of one bit slice; as indicated, there are actually six such bit
Ly =tgval 3) slices, stacked on top of each other. Data inputs enter from
2.2.5. Timing Constraints the left, and are processed by the filter as they flow to the

L . . I . right. The filter can be divided into three portions, from
HC pipelines require several one-sided timing constraints for left to right. The leftmost portion is clocked, from the in-
correct operation. : '

State Variable The state variablek2pcaets set once put side to the domino latches. The middle portion, from
) pcy the XOR gates to the end of the carry lookahead adder, is

the current stage has evaluated, and the next stage hags nchronous. Finally, the rightmost portion, consisting of

prechargedg1=10). Subsequently; goes high as a result Y X Y, g P ' 9

of evaluation by the next stage. For correct operat@pc an output atch, is again clocked.
ythe n ge. per . P The architecture of the filter is best understood by fol-
must complete its rising transition beforeyoes high:

lowing the flow of data from left to right. As the stream of
tok2pg < tac + tNV 4) data enters the filter, it first passes through a shift register,
which stores the most recent input values that are needed
to compute the filter output. In particular, fopaap filter,

for each bit, there is a-place shift register that stores the
arpost recent history for that bit. These stored input values
are then multiplied by their respective filter weights. The
multiplication is accomplished very efficiently by fetching
precomputed results from a lookup table. In the figure, the
lookup table is composed of two banks of registers contain-
ing the precomputed results—called even and odd partial
sums—and two output multiplexors. The entire multipli-
cation process is bit-sliced, with one slice for each bit of
the input data. The result of the multiplications is a set of
INAND3+tPrech; < tdelay, +lac; FEINAND3Ftac, +INAND3 partial sums which are fed to the asynchronous portion of
(5) the filter pipeline for addition. The asynchronous portion

Note that this timing constraint also gets exported to the left
environment, requiring it to precharge reasonably fast. In
practice, this constraint is easily satisfied as well.

The forward latency through a stadey, is simply the eval-
uation delay of the stage:

In practice, this constraint is easily satisfied.

Precharge Width. For correct operation, an adequate
precharge width must be enforcad., once precharge is
asserted for a stage, it should not be de-asserted before th
stage’s precharge is complete. Suppogst went high for
stage 1. At this point, stage I8\ND3 is triggered, thereby
starting the precharge of stage 1 (in Figure 1). Concurrently,
T will be reset after a path through stage 2’s matched de-
lay, stage 3'aC element, stage 28AND3 andaC, thereby
de-asserting the output of stage disND3. Therefore, for
correct precharge, the following must hold:
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Figure 6. Top-level filter architecture

is a nine-stage pipeline that adds all of the partial sums to-a partitioned lookup table, consider a simulation of partial
gether, and produces the result. Finally, this result is latchedsum lookup. The 10-bit pattern (after passing through the

by a clocked latch and output to the right environment. decoder unit) is used to generate separate groups of even-
. . and odd-indexed bits. In particular, only the five even bits
4. Filter Implementation are used; they are forked to the even multiplexor as its select

The FIR filter implementation is now considered in more bits, and also to a clocked register where, after one clock
detail. The synchronous and asynchronous portions of thecycle delay, they become the odd-index select bits to the
chip are discussed separately, followed by a discussion ofbottom multiplexor, for the next clock cycle. Appropriate
the interface between the two domains. entries in the even and odd lookup tables are then selected
4.1. The Synchronous Portion and sentto the domino.lat_che.s. . . .

_ i ) Finally, a second optimization is usedsigned-digit off-
The synchronous portion of the filter consists of two parts, set pinary notatiorig] is used to represent table entries and
one at the input side of the filter, and the other at the output addresses, which enables the separation of the sign-bit from
side. each address, further shortening the addresses to 4-bit words
4.1.1. The Synchronous I nput Portion (see Section 2.1). As a result, the table size is dramatically

. ; 4 ;
This part receives the input to the filter. The input stream reduced: two tables with only 16<( 2%) entries each are

. A )
consists of data values which are six bits wide. A 10-slot nee(aedl, askoppos:ed to one talble with 192‘.“ ) en.tnes.

shift register at the input side of the filter stores the 10 most T_ € lookup tables are imp emented using registers and
recent data values. These stored input values are needed tBUItIPIExors, as shown in Figure 6. Each table has 16 reg-

compute the current filter output, which is a weighted sum 'Stérs. each of which can store an 8-bit entry, per bit slice.
of these values. Each of the tables has a 16:1 multiplexor at its output, con-

The multiplication of inputs by their respective filter trollgc_i by the 4-b(;tfaddrehss wo?d._T ge odg(-jindex ad?jrgssd
weights is accomplished very efficiently by precomputing WOrd IS generated from the even-index address word by de-

all possible products and storing them into a lookup table. laying it by one clock cypl(_a. L
The entire multiplication is bit-sliced, with one slice for _Theresultofthe multiplicationis a set of products, called

each of the six bits in the input data. Therefore, within each Partial sums, that is sent to the asynchronous pipeline for
bit slice, there are 10 input bits which together form a 10-bit @ddition, through the synchronous-asynchronous interface.

address for accessing the lookup table. 4.1.2. The Synchronous Output Portion

The size of the lookup table is reduced by employing ) . . .
two techniques, as discussed in Section 2.1. First, partition- 1 1€ "ght synchronous portion simply consists of a master-
ing is used: the 10-bit address is divided into two 5-bit ad- S'ave latch that receives the final result from the asyn-
dresses, one composed of only the even-index bits, and thechronous pipeline and makes it available as the filter output.
other Composed Of_ the odd-index bits. Each of the,se ,tWO 2For faster decoding, the 4-bit address word was actually encoded using
addresses has a distinct lookup table associated with it, a$ wires: 8 wires represented the one-hot code [16] for three address bits,
shown in Figure 6. To understand the filter operation with and the ninth wire represented the remaining fourth address bit.
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4.2. The Asynchronous Portion Two different versions of the control were designed, one

The asynchronous portion of the filter consists of a pipeline More robust and the other faster, as shown in Figure 8.
that lies between the synchronous input and output portions, The two versions differ in the placement of the amplifying
as shown in detail in Figure 7. The function of this asyn- buffers. In the first version, Figure 8(a), the buffers amplify
chronous pipeline is to take the partial sums generated bythe control signalssc andeval—for boththe datapath as
the synchronous input portion, add them up to produce the Well as the completlon generator. This version is very robl_Jst
final filter result, and send it to the synchronous output por- {0 Variations in buffer delays because the completion sig-
tion. The pipeline was designed using the high-capacity nals are delayed by the same amount as the (_jatapat_h. How-
pipeline style [12]. eyer,_the buﬁer; are on the critical path', thus_lncreasmg the
The asynchronous datapath uses dynamic logic, and Cc,np|pel|ne_cycle time. In the second version, Figure 8(b), the
sists of nine stages. The first stage is a layer of XOR completion generators use control signals that are tapped
gates that restores the correct sign to the partial sumsff from before the buffers. As a result, the buffer delays
The next five stages correspond to five layers of carry- '€ t_aken off of the critical path, result|_ng in a shorter cy-
save adders [4]. The last three stages implement a carryCle time. However, each stage’s function block now lags
lookahead adder [4]. Since both true and complement val- Pehind its completion generator by an amount equal to the
ues of the data bits are needed to compute the XOR andouffer delay. Consequently, for the plpellne to funcuop cor-
addition functions, the entire datapath was implemented rectly, all the stages throughout the pipeline are required to
in dual-rail. The datapath is quite wide at the input to have comparable buffer delays.
the first stage: 216 wires=( (8 data bits+ 1 sign bit) -
2 (even and oddy (bit slices) 2 (wires/bit)). The output of
the last stage is a 15-bit result represented using 30 wires. The interface between the asynchronous and the syn-
Interestingly, since the filter has a very fine-grain datap- chronous portions of the chip must mediate certain differ-
ath, no explicit matched delays are required. The delay of ences in data representation and control sequencing. In
each function block is matched by the completion genera- particular, the asynchronous datapath uses dual-rail dy-
tor's aC element itself, through appropriate device sizing. namic logic, whereas the synchronous portions of the chip
The self-timed control of a high-capacity pipeline, use single-rail static logic. Moreover, the asynchronous
shown in Figure 5, needs a slight modification to handle pipeline communicates by means of local handshakes (us-
the wide datapath of the filter. In particular, buffers must ing regs andacks) at each end, whereas the synchronous
be inserted in order to amplify the control signals which are portion uses global clocking.
broadcast to the entire width of the datapath. Figure 7 shows the interfaces at either end of the asyn-

4.3. The Synchronous-Asynchronous| nterface
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Figure 8. Pipeline stage controls: two versions

chronous pipeline. At each interface, special latches arelay line is greater than the latency through the asynchronous
used to perform data conversion (from single-rail to dual- pipeline; this constraint is easily met by making the delay
rail, and vice versa), and pulse generators are used to mimidine have programmable latency. An advantage of this ap-
the handshaking protocol use by the asynchronous pipeline.proach is that the output of the asynchronous pipeline is re-
At the input end of the pipeline, a special master-slave synchronized to the clock without any issues of metastabil-

latch, referred to here as siatic-dynamic latchjs used. V-

T.he mas'te':r portion is a standard transpare_nt D-latch with 5. Filter Operation
single-rail inputs and complementary dual-rail outputs. The 51 Performance Goals Discussion
D-latch is controlled by the clockClk. The slave portion = ) ) )

consists of a pair of dynamic buffers, one for each rail of The filter is designed to work over a wide range of clock
the data, controlled by a pulse generator. The pulse gen_frequenmes, because the input Qata rate to a read channel
low. As a result, on every downward clock transition, a new the innermost track to the outermost track, the data rate can
data item is launched into the asynchronous pipeline, alongVary by a factor of as much as 1:5. A separate analog circuit
with the associated requeReq The request is also forked (“.cl_ock _recovery” unit) is used to generate the clock for t_he
off to a programmable synchronous delay line, shown in d|g|tal fllyer, whose frequency and phase are synchronized
Figure 7, for use at the output end of the pipeline. The ac- With the input data stream.

knowledgment from the first stage of the pipelidek is While high throughput is an important requirement, an
simply ignored. additional key design goal is also to have as low a latency

as possible. The filter, along with the clock recovery unit, is
part of a closed feedback loop that monitors the clock fre-
guency and phase, and corrects any misalignment of clock
with respect to input data. In order to ensure that the clock
closely tracks the input data stream, this feedback loop must
have a fast response time. Consequently, the filter, which is
a critical part of the loop, must have a very low latency.
This goal of low latency is achieved in the new FIR filter by
a novel feature: adaptive pipelining.

At the output end of the pipeline, a master-slave pair
of synchronous D-latches is used to receive the computed
result. Only the true value of the dual-rail output data is
used; the complements are simply ignored. In addition, an-
other pulse generator is used to produce the acknowledg
ment, Ack for the last stage of the pipeline. The request
from the pipeline is ignored. Instead, arrival of new valid
data at the output of the pipeline is inferred from a delayed
version of theRegassociated with that data item. In partic- ) o ]
ular, the inpuReqto the first stage of the pipeline is simply 5.2. Adaptive Pipelining: Operation
delayed by an integer number of clock cycles, and used in Adaptive pipelining is a characteristic of certain mixed
place of the outpuReqat the right end of the pipeline. It  synchronous-asynchronous systems, where the degree of
must be ensured, however, that the latency through the de-pipelining is dynamically varied, depending upon the rate



of arrival of input data. In particular, in the asynchronous time between two latches, thus allowing a variable num-
portion, at low input rates, the data items will be widely ber of data items. However, this approach requires much
separated, while at higher rates, they will be spaced closerdesigner effort, from the architectural level down to the lay-
together. As a result, from the viewpoint of the composite out level, for accurate balancing of path delays (including
synchronous-asynchronous system, at slower clock ratesdata-dependent delays), and remains vulnerable to process,
the latency(measured in terms of clock cycles) from the temperature and voltage variations. In contrast, the asyn-
clocked input side to the clocked output side can be very chronous implementation is significantly more robust, us-
few clock cycles. In contrast, at higher clock rates, the ing instead a handshake protocol to maintain the integrity
latency (again, measured in terms of clock cycles) can beof data.

much higher. Thus, while the asynchronous pipeline has a .

fixed number of stages (nine) and has roughly a fixed over- 6. Performance Analysis

all latencyin nanosecondshe effective latencys seen by ~ This subsection presents a theoretical analysis of the per-
the clocked output interface (now measured in clock cycles) formance of the filter. Equations relating the maximum fil-

can be highly varied. ter operating frequency to the number of data items in the
In particular, at the lowest input rates, the asynchronous pipeline are derived. _ _ _
pipeline behaves similar to a block of flow-through combi- ~ The filter performance is determined by two metrics: the

national logic, with a latency of at most a single clock cycle. maximum allowable throughput of the synchronous portion
On every clock cycle, one data item is introduced into the Of the filter, and the maximum allowable throughput of the
asynchronous pipeline by the synchronous input portion of asynchronous pipelined portion of the filter. The observed
the filter. In the next clock cycle, that data item is removed performance will be limited by the lower of the two met-
from the output of the asynchronous pipeline by the syn- rics. For a given voltage supply, the maximum throughput
chronous output portion. of the synchronous portion is fairly fixed. Thus, to simplify
As the input rate is increased, the behavior of the asyn- discussion, the synchronous portion and the synchronous-
chronous portion progressively changes to that of a pipeline @synchronous interfaces are initially ignored from the anal-
that is one, two or more stages deep. At these clock ratesysis; their impact on throughput is discussed at the end of
the latency through the asynchronous datapath is longerthis section. The throughput of the asynchronous pipeline,
than one clock period, and, therefore, multiple data items however, can vary greatly, as explained below.
will be present in the datapath at any given time. Accord- ~ The throughput of the asynchronous pipeline is a func-
ingly, the programmable delay line, which helps interface tion of the number of data items present in the pipeline.
the right end of the asynchronous pipeline with the syn- When the number of data items is small, the throughput
chronous portion of the chip, is set to one, two or more clock iS low, and the pipeline is said to be “data limited.” On
period delays. the other hand, when nearly every stage of the pipeline is
In conclusion, from the viewpoint of the synchronous filled with data items, the throughput is once again lim-
portion of the filter, the latency of the asynchronous portion ited because empty stages, or “holes,” are needed to allow
(measured in terms of clock cycles) is dynamically vari- data items to flow through the pipeline; in this scenario, the
able, and this feature is taken advantage of to reduce thePipeline is said to be congested, or “hole limited.”
overall filter latency. This variable-latency behavior is in-  Each of the two scenarios, data limited as well as hole
trinsic to the asynchronous nature of the pipeline, and can-limited, is analyzed in detail to derive the expressions for
not be easily achieved in fully synchronous implementa- the throughput of the asynchronous pipeline.
tions. As an example, consider a fully synchronous version ~ Data Limited Operation.Suppose there is only one data
of our nine-stage pipeline. This synchronous implementa- item in the asynchronous pipeline at any given time. On
tion will have a fixed latency of nine clock cycles (for a every clock cycle, this data item is removed by the syn-
single-phase clock), or 4.5 cycles (for a two-phase clock). chronous portion on the right side, and, simultaneously, a
Unfortunately, the result can be a serious penalty: at low New data item is introduced into the pipeline by the syn-
clock rates, these latencies can be inordinately large, thuschronous left side. Clearly, for correct operation, the clock
degrading the performance of the clock recovery loop. In Period,T’, must be longer than or equal to the time it takes
contrast, our asynchronous implementation has roughly aone data item to flow through the pipeline from left to right:
constant latency as measured in nanoseconds, thus enabling T>09.1 7)
a fast response time at all clock frequencies. = !

5.3. Adaptive Pipelining; Comparison to Syn- where L is the forward latency through one stage of the
e : nine-stage pipeline.

chronous Approaches > ; . :
i PP Similarly, if there aren data items in the asynchronous
There is one synchronous approach, however, that can propineline, then the latency of clock cycles must be at least

vide an adaptively-pipelined operation similar to that of the equal to the forward latency through the entire pipeline:
asynchronous implementatiomave pipeline§19, 6]. In

this approach, multiple waves of data are allowed at any nT > 9-Ly (8)



Hole Limited Operation.Suppose all of the nine stages
of the asynchronous pipeline are holding distinct data items. 2 | Maxsync
At the next rising clock edge, the synchronous portion on e | througput AN Max async
the right side will consume the data item at the output of = \ A througput
the pipeline, effectively injecting a hole at that end. This 2 -4 2
hole will percolate through the pipeline, from right to left, E 7 \\ o
and arrive at the first stage of the pipeline after nine “hole = @’V,’ \(?o@
latencies;” at this point, the pipeline is ready to accept a § /,Q,' NAVS
new data item. A hole latency, also callelerse latency, g o ’/D Hol \\@(,J
is denoted byL,., and is equal to the time it takes for a g A Iir%itged Iincw)it6ed \\
hole to move from one stage to its immediately preceding // region region N
stage. More formally, the reverse latency is defined as the ! N
time from the completion of precharge in a stage (arrival of I
a hole in that stage), to the completion of the subsequent 01 2 3 45 6 7 8 9

precharge in the previous stage (movement of hole into the
previous stagej.

For correct operation, the hole must arrive at the input
end of the pipeline before the synchronous portion on the

9.5

Number of data items in pipeline

Figure 9. The upper bounds on the maximum

left side de-asserts the new data item (the domino latches
precharge). Clearly, the de-assertion of the new data item

filter frequency: shaded area represents op-
erating region

occurs exactly a half clock cycle after the hole is injected at

the right side of the pipeline. Therefore, speed of the slowest stage in the asynchronous pipeline, or
1 the maximum operating rate of the filter's synchronous por-
9- L, ) tion or the synchronous-asynchronous interfaces. The over-
all filter operation will always be constrained to lie under
A similar equation can be derived for the case when there the canopy formed by the three curves.
are less than nine data items in the pipeline.n Ifs the In our particular filter design, the latencies through all of
number of items in the pipeline, then the pipeline hasn the asynchronous pipeline stages were fairly uniform. As a
holes in it. Each of theseé— n holes can be filled with new  result, the local cycle times of all of the asynchronous stages
input data before a new hole injected into the right end of were nearly the same. In this case, the maximum throughput
the pipeline is required to reach the left end of the pipeline. potential of the asynchronous pipeline is given by the inter-
Therefore, Equation 9 can be generalized for the case of section of the rising and falling curves in Figure 9 [18]. The
data items: horizontal line, however, represents the maximum operating
rate that can be sustained by the synchronous portion and
the synchronous-asynchronous interfaces. This rate limits
the overall filter throughput to a level lower than the maxi-
mum asynchronous throughput.

1
O—n) TH5-T 29 L (10)

Overall Upper-Bound on Filter ThroughpuEquations 8
and 10 provide upper-bounds on the operating frequency of
the filter, ", as a function of the number of data items in the

asynchronous pipeline,
T < Min (1 92
/T < Min 9-L;" 9-L, interconnect gnd_1.8V nominal vpltage supply. _Figure 11
_ ) ) shows the chip micrograph. The filter core occupies an area
Figure 9 shows a plot of the maximum filter frequency of 1.3x0.35mn3.
versus the number of data items in the asynchronous The |ayout of the chip was part standard-cell and part
pipeline. The rising portion of the curve represents the fy|_custom. The entire synchronous portion was design us-
data limited region, where throughputrises linearly with the jng standard cells from the IBM ASIC SA-27E cell library.
number of data items. The falling portion, similarly, repre- i the asynchronous portion, the datapath was implemented
sents the hole limited region, where throughput drops lin- yth fyll-custom dynamic gates. The asynchronous control
early with a decrease in the number of holes. The figure alsoseq a mixture of standard cells (for basic gates) and full-
shows a horizontal line, which corresponds to the longest cystom cells (for C- and asymmetric C-elements). The in-
local cycle time within the entire system [18]. In gen- terface between the synchronous and the asynchronous por-
eral, this horizontal line may either represent the maximum tjons was designed mostly using standard cells.
Placement and routing were automated using the Silicon
Ensemble tool. To simplify the task, the filter was divided

7. Experimental Results

Layout and Fabrication.The chip was laid out and fabri-

P cated using the IBM 0.18CMOS-7SF process with copper

(11)

3From the analysis of Section 2.2, the reverse latency is easily calcu-
lated asL, = tiNv + tac + ENAND3 + tPrech-
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Figure 10. Filter throughput and power consumption as a function of the number of tokens
pseudo-NMOS combinational circuit; both precharge and
evaluate controls were de-asserted, and a weak pull-up was

SRRRRRREEEENEEEEE
ANANIn ' asserted. The chip was initialized, loaded with test data, and

tested for correctness at a low clock speed. Subsequently,
} i the clock speed was gradually increased until a failure was
detected in the output data.

Measured PerformanceFigure 10 shows plots of the
measured maximum throughput, and the corresponding
power dissipation. The graphs show the variation in
throughput and power as the number of data items in the
asynchronous portion of the filter pipeline is varied. The fig-
ure shows plots for a few representative voltages, although
the chips were fully functional from around 1V to over 2.1V.

The performance measurements demonstrate the bene-
fits of adaptive pipelining. At the lowest filter frequencies,
the asynchronous portion appears externally as a block of
into eight parts: the self-timed control block, the XOR flow-through combinational logic, with a single clock cycle
block, the carry-save adder, the carry-lookahead adder,latency. As the frequency is increased, the latency of the
the synchronous input and output portions, and the two programmable delay line is increased to two, three or four
synchronous-asynchronous interfaces. Next, each part waglock cycles, increasing the depth of pipelining provided by
placed and routed individually using the automated tool. Fi- the asynchronous portion.
nally, the tool was used for top-level place and route, to as-  In order to confirm the hypothesis of Section 6, the fil-
semble all of the parts together. No resizing of gates waster was also operated with more than four data items in
performed after place and route. the asynchronous datapath. Under normal circumstances,

Two versions of the filter were designed, differing in the however, this mode of operation will not be used since
pipeline control circuits used. One version used the control it provides poorer latency for the same throughput as for
circuit of Figure 8(a) which has fewer timing assumptions, four or fewer tokens. The observed performance exactly
at the cost of some throughput. The second used the circuitmatches the behavior predicted by our theoretical model.
of Figure 8(b) which is faster, but has stronger timing as- As the number of tokens is increased from one, the pipeline
sumptions. Both versions were fabricated side-by-side onthroughput increases. However, beyond four tokens, the
the same chip. This section gives performance measure-maximum throughput decreases because the pipeline be-
ments only for the latter version. The performance of the comes congested. Between two and four tokens, the per-
conservative version was around 20% lower, as expected. formance levels off: in this region, the filter throughput is

Testing. A level-sensitive scan design (LSSD) [17] ap- limited by the speed of the synchronous portions of the chip
proach was used to test the filter chip at low speed. A which cannot operate as fast as the native throughput of the
scannable shift register was built onto the chip to provide asynchronous pipeline.
input data to the filter. An output multiplexor was placed on The best observed performance for the filter chip was
the chip to select one of the high-speed outputs of the filter, around 1.1 Giga items/second, with three or four tokens
for observation on an oscilloscope. For testing the asyn- and 2.1V power supply. The asynchronous pipeline, how-
chronous datapath, an additional input (labeled “burn-in”in ever, is capable of somewhat higher performance. The na-
Figure 7) was used to convert the dynamic datapath into ative throughput of the asynchronous portion is estimated by

Figure 11. Micrograph of the fabricated chip
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Figure 12. Oscilloscope waveforms showing
filter operation at 1.32 Giga items/second
[71
extrapolating the left and right ends of the curves of Fig-
ure 10(a), and noting their intersection (See Section 6). Us-
ing this technique, the maximum asynchronous throughput
is estimated to be 1.5 Giga items/second at 2.1V. Several
chip samples were thus tested. The fastest sample had anl®!
overall filter throughput of 1.32 Giga items/second at 2.1V,
with the asynchronous portion estimated to be capable of
throughputs up to 1.8 Giga items/second. Figure 12 shows(10]
the filter outputs as seen on an oscilloscope, along with a
“sync” signal at 1/16th of the clock frequency.

(8]

. [11]
8. Conclusions
This paper presented the design of an experimental digi-
tal FIR filter for use in the read channels of modern high-
performance disk drives. The filter design was an interest-
ing case study in hybrid synchronous-asynchronous design.
The speed-critical portion of the filter was implemented as (13
an asynchronous pipeline, obtaining a high throughput, yet
very low latency. The synchronous portion formed a wrap-
per around the asynchronous pipeline, making it possible
for the filter to be used in a clocked environment.

The recent high-capacity pipeline style [12] was used
for the asynchronous pipeline portion of the filter chip.
This style uses easy-to-satisfy one-sided timing constraints!*®!
to achieve high throughput. Compared with other asyn-
chronous techniques [10, 14], this approach required sig-
nificantly less designer effort, as evidenced by the fact that [16]
there was little need for any post-layout gate resizing, even
though placement and routing were totally automated. Fur- [17]
ther, the design exhibits a highly-varied datapath, ranging
from 30 to 216 wires in width at varying points in the
pipeline, thus demonstrating the scalability of the approach.
Measured performance of fabricated chips easily met or ex- 19]
ceeded design specifications.

[12]

[14]

(18]

] Montek Singh and Steven M. Nowick.
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