
In Proceedings of the International Symposium on Advanced Research in
Asynchronous Circuits and Systems (“Async2000”), April 2–6, 2000, Eilat, Israel.

c2000 IEEE. Published in the Proceedings of the IEEE Computer Society International Symposium on Advanced Research in Asynchronous Circuits and Systems (“Async2000”), April 2–6, 2000, Eilat, Israel. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966. IEEE.

High-Throughput Asynchronous Pipelines for Fine-Grain Dynamic Datapaths�

Montek Singh and Steven M. Nowick

Department of Computer Science
Columbia University
New York, NY 10027

fmontek,nowickg@cs.columbia.edu

Abstract

This paper introduces several new asynchronous
pipeline designs which offer high throughput as well as low
latency. The designs target dynamic datapaths, both dual-
rail as well as single-rail. The new pipelines are latch-
free and therefore are particularly well-suited for fine-grain
pipelining, i.e., where each pipeline stage is only a single
gate deep. The pipelines employ new control structures
and protocols aimed at reducing the handshaking delay, the
principal impediment to achieving high throughput in asyn-
chronous pipelines.

As a test vehicle, a 4-bit FIFO was designed using 0.6
micron technology. The results of careful HSPICE simula-
tions of the FIFO designs are very encouraging. The dual-
rail designs deliver a throughput of up to 860 million data
items per second. This performance represents an improve-
ment by a factor of 2 over a widely-used comparable ap-
proach by Williams [16]. The new single-rail designs de-
liver a throughput of up to 1208 million data items per sec-
ond.

1. Introduction
In this paper, several new asynchronous pipeline designs
are introduced for dynamic datapaths. Both dual-rail and
single-rail designs are presented. All of these designs are
targeted towards achieving very high throughput, without
degrading latency. The high performance is brought about
using novel protocols which reduce the impact of handshak-
ing overhead.

We focus on dynamic datapaths for a variety of reasons.
Dynamic logic is increasingly being used in industry due to
its potential for high speed and small area. Also, dynamic
pipelines can be designed without the need for latches be-
tween pipeline stages; with clever control sequencing, the
gates themselves can function as implicit latches. In spite
of these advantages, however, there is a lack of pipeline

�This work was supported by NSF Award No. CCR-97-34803.

designs which are tailored for, and take full advantage of,
dynamic logic. This paper attempts to fill this void.

A particular focus of this work is on fine-grain pipelin-
ing, even though the designs presented are also well
suited for coarser granularity datapaths such as processor
pipelines. For very high throughput, the datapath needs
to be sectioned into fine stages. In the limit, the highest
throughputs are achieved when each pipeline stage consists
only of a single gate, i.e., pipelining is at the gate-level.
At this granularity, latch-free datapaths are especially desir-
able, therefore dynamic logic is a good match. So far, there
has been a lack of approaches that really push throughput to
this granularity.

Our pipeline designs are based on a set of novel protocols
that reduce the impact of handshaking overhead. The key
strategy is one of anticipation: anticipating the arrival of
certain critical events based on a richer class of observations
of the state of the pipeline. Consequently, they are named
Lookahead Pipelines (abbreviated LP).

This paper contributes five new pipeline designs. Of
these, three designs are for dual-rail datapaths with com-
pletion detection, and two are for single-rail bundled-
datapaths. Williams’ PS0 pipeline is used as a starting point
for the dual-rail designs, and several throughput-oriented
protocol optimizations are then applied. These include: (i)
early evaluation, (ii) early done and (iii) a combination of
both. The optimizations are then adapted to single-rail. An
additional contribution of this paper is a technique for in-
terfacing the new pipeline designs, as well as Williams’ PS0

design, with arbitrary speed environments; to this extent it
fixes a major shortcoming of PS0.

Simulation of a 4-bit FIFO design provided an effec-
tive means of quantifying the throughput. The three new
dual-rail pipelines have throughputs of 590, 760 and 860
million data items per second respectively, which represent
40%, 79% and 102% improvements over the throughput of
Williams’ PS0 [16]. The two new single-rail pipelines have
throughputs of 1050 and 1208 million per second. Not only
are these throughputs competitive with the best reported in

the literature [10], but our pipelines also have significant
area and latency benefits.

The paper is organized as follows. After providing back-
ground on Williams’ PS0 pipelines, Section 2 introduces the
new dual-rail designs, including their operation and timing
constraints. Section 3 then introduces the new single-rail
designs. Section 4 provides a detailed comparison of one
of the dual-rail designs (LP3/1) with a related design by
Williams, and highlights the new contribution. Section 5
discusses the issue of interfacing our pipelines with the en-
vironment. Section 6 discusses some issues in the design
of gate-level pipelines, and Section 7 discusses how the
pipelines are initialized. Section 8 presents detailed sim-
ulation results, and finally, Section 9 gives conclusions.

2. Dual-Rail Pipelines
2.1. Previous Work
The classic work on dual-rail pipelines with completion de-
tection is by Williams [16], which proposed a number of
alternative implementation styles. Several of these designs
have the advantage of very low forward latency. However,
they are all throughput-limited.

Recently, several variants of Williams’ dual-rail schemes
have been proposed [13, 9, 8].

Renaudin et al. [13] introduce a scheme aimed at im-
proving the storage capability of the pipeline. These
pipelines use novel latch structures to enable data tokens to
be packed more closely, and are hence more compact area-
wise. However, the throughput of this scheme appears to be
even worse than Williams’ PS0, though it is an improvement
over the more conservative PC0 scheme.

Matsubara and Ide [9] propose a scheme targeted at re-
ducing power consumption and chip area. The savings are
brought about by combining single-rail static circuits with
dual-rail dynamic pipelines. However, since the underlying
protocol is essentially that of Williams’ PS0, the throughput
is not improved.

Finally, Martin et al. [8] present the design of a com-
plete microprocessor using very fine-grain pipelining tech-
niques similar to Williams’. The pipeline circuits are based
on the very conservative and robust QDI model, yet have
high performance. Their best cycle time is approximately 8
times the delay through a single stage. In contrast, the new
pipeline schemes introduced in this paper have even higher
performance, with much shorter cycle times: between 4.4
and 7 stage delays.

2.2. Background: Williams’ PS0 Pipeline
We now give background on Williams’ PS0 dual-rail
pipeline, which is the starting point for our new designs.
The next subsections give details on our new dual-rail
pipelines, LP3/1, LP2/2 and LP2/1.

PS0 Pipeline Structure. Figure 1 shows Williams’ PS0

pipeline. Each pipeline stage is composed of a dual-rail

PCPC PC

F1
D1

F2 F3
D2 D3

Figure 1. Block diagram of a PS0 pipeline

inverter
buffer

PC

f0

f1

b0a0

a1

b1

f=AND(a,b)

n-stack

n-stack

(a)

C
Done

Dual-rail
data

(b)

Figure 2. (a) A dual-rail AND gate in precharge
logic, and (b) a dual-rail completion detector

function block and a completion detector. The completion
detectors indicate validity or absence of data at the outputs
of the associated function block.

Each function block is implemented using dynamic
logic. The precharge/evaluate control input, PC, of each
stage is tied to the output of the next stage’s completion
detector. Since a precharge logic block can hold its data
outputs even when its inputs are reset, it also provides the
functionality of an implicit latch. Therefore, a PS0 stage has
no explicit latch. Figure 2(a) shows how a dual-rail AND
gate, for example, would be implemented in dynamic logic;
the dual-rail pair, f1 and f0, implements the AND of the
dual-rail inputs a1a0 and b1b0.

Each completion detector verifies the completion of ev-
ery computation and precharge of its associated function
block. Validity, or non-validity, of data outputs is checked
by OR’ing the two rails for each individual bit, and then us-
ing a C-element to combine all the results (see Figure 2(b)).

PS0 Pipeline Protocol. The sequencing of pipeline con-
trol is quite simple. Stage N is precharged when stage N+1

finishes evaluation. Stage N evaluates when stage N+1 fin-
ishes reset. (Of course, the actual evaluation will commence
only after valid data inputs have also been received from
stage N �1.) This protocol ensures that consecutive data
tokens are always separated by reset tokens (or “spacers”).

The complete cycle of events for a pipeline stage is de-
rived by observing how a single data token flows through
an initially empty pipeline. The sequence of events from
one evaluation by stage 1, to the next is: (i) Stage 1 eval-
uates, then (ii) stage 2 evaluates, then (iii) stage 2’s com-
pletion detector detects completion of evaluation, and then
(iv) stage 1 precharges. At the same time, after completing
step (ii), (iii)’ stage 3 evaluates, then (iv)’ stage 3’s comple-
tion detector detects completion of evaluation and initiates
the precharge of stage 2, then (v) stage 2 precharges, and fi-
nally, (vi) stage 2’s completion detector detects completion
of precharge, thereby releasing the precharge of stage 1 and
enabling stage 1 to evaluate once again. Thus, there are six
events in the complete cycle for a stage from one evaluation
to the next.

PS0 Pipeline Cycle Time and Latency. The complete cy-
cle for a pipeline stage, traced above, consists of 3 evalua-
tions, 2 completion detections and 1 precharge. The analyt-
ical pipeline cycle time, TPS0, therefore is:

TPS0 = 3 � tEval + 2 � tCD + tPrech

where, tEval and tPrech are the evaluation and precharge times
for each stage, and tCD is the delay through each completion
detector.1

The per-stage forward latency, L, is defined as the time
it takes the first data token, in an initially empty pipeline, to
travel from the output of one stage to the output of the next
stage. For PS0, the forward latency is simply the evaluation
delay of a stage:

LPS0 = tEval

2.3. Overview of New Designs
Before introducing the new dual-rail pipeline designs, we
give a brief overview of our approach. The new pipeline
designs use Williams’ PS0 as the starting point, and apply
certain optimizations to its protocol, targeted towards re-
ducing the overall cycle time.

The basic strategy is one of anticipation: anticipating the
arrival of certain critical events based on a richer set of ob-
servations of the state of the pipeline. In particular, such
a strategy has been widely used recently in many different
contexts: from timing-optimal variants of Sutherland’s ba-
sic micropipeline [2], to more aggressive timing optimiza-
tions based on kiting [10] and relative timing [14, 1].

In this paper, two specific optimizations are used:
(i) early evaluation, and (ii) early done. In “early evalu-
ation,” a pipeline stage uses control information not only
from the subsequent stage, but also from stages further
down the pipeline. This information is used to give the stage

1To simplify the presentation, this paper will sometimes assume that all
the pipeline stages have the same evaluation delay and the same precharge
delay, and that all the completion detectors are equally fast. More realistic
HSPICE simulations are presented in the Results section.

a headstart on its evaluation phase. In the second optimiza-
tion, “early done,” a stage signals to its previous stage when
it is about to precharge or evaluate, instead of after it has
completed those actions. This information is used to give
a pipeline stage a headstart both on its evaluation phase as
well as its precharge phase.

The net result of applying these two optimizations is
a significant reduction in pipeline cycle time, and conse-
quently a dramatic increase in throughput, with no net in-
crease in latency.

The remainder of this section presents the three new
pipeline designs, LP3/1, LP2/2 and LP2/1 in detail. The LP3/1

pipeline uses early evaluation, the LP2/2 pipeline uses early
done, and the LP2/1 is a hybrid which combines both opti-
mizations.

2.4. The LP3/1 Pipeline
LP3/1 is the first of our dual-rail high-throughput pipelines.
In this design style, an early evaluation protocol is used,
in which a pipeline stage receives control information not
only from the subsequent stage, but also from its succes-
sor. As a result, LP3/1 pipelines have shorter cycles than
Williams’ PS0 pipelines: a complete cycle for a stage of an
LP3/1 pipeline consists of 4 events, as opposed to 6 events
for a stage of a PS0 pipeline.

PC EvalPC EvalPC Eval

F1 F2 F3

D1 D2 D3

Figure 3. Block diagram of an LP3/1 pipeline

The new pipeline derives its name from the fact that 3
out of the 4 events in every stage’s cycle fall in its evaluation
phase, and 1 event falls in its precharge phase. Using this
terminology, Williams’ PS0 would be 3/3.

It is pointed out later that in [16], Williams briefly in-
troduces a PA0 pipeline design that, in essence, has a sim-
ilar underlying protocol as our LP3/1 pipeline. However,
PA0 uses a different implementation of the control which is
not able to fully take advantage of the new protocol. A de-
tailed presentation of the LP3/1 design is given in this sec-
tion, while the key differences between PA0 and LP3/1 are
discussed in Section 4.

Pipeline Structure. Figure 3 shows the block diagram of
an LP3/1 pipeline. The key difference is that, unlike PS0

stages, an LP3/1 stage has two control inputs. The first con-
trol input, PC, comes from the next stage, as in PS0. The
second control input, EVAL, comes from the completion de-
tector two stages ahead. This second input is the key to
achieving a shorter cycle time.

Pipeline Protocol and Implementation. The key idea of
the new protocol is that stage N can evaluate as soon as
stage N+1 has started precharging, instead of waiting until
stage N + 1 has completed precharging. This idea can be
used because a dynamic logic stage undergoing precharge
is insensitive to changes on its inputs.2 Therefore, as soon
as stage N + 1 begins to precharge, stage N can proceed
with its next evaluation. Now, since stage N + 1 begins
precharging when stage N + 2 completes evaluation, the
new condition for evaluation is: Evaluate N when N + 2

completes evaluation. The condition for precharge remains
unchanged: Precharge N whenN+1 completes evaluation.
Therefore, stage N needs inputs from both the completion
detector of N + 1 as well as from that of N + 2.

Figure 4 shows the implementation of one output of an
LP3/1 stage. The figure shows how the two control inputs
are combined inside the implementation of one stage. Eval-
uation is enabled when either EVAL is asserted high, or PC is
de-asserted low, or both. The former condition, EVAL=high,
corresponds to stage N+2 completing its computation (i.e.,
stage N + 1 starting its precharge; see Figure 3). The latter
condition, PC=low, is identical to the evaluation condition
of PS0; its role in LP3/1 is explained below. Precharge is en-
abled when both PC is asserted high and EVAL is de-asserted
low.

n-stack

Data
Inputs

Data
Output

....

D

F

Completion
Detector

To other bits

control
buffer

PC Eval

other data
outputs

Figure 4. Implementation of an LP3/1 stage

Detailed Comparison with the PS0 Protocol. In LP3/1,
there are now two distinct control inputs for a stage N ,
which are outputs from stages N + 1 and N + 2. The
precharge phase of stage N begins after stage N +1 is done
evaluating (PC asserted high), much like PS0. However,
this phase is now shortened: precharge terminates when
stage N + 2 is done evaluating (EVAL asserted high). In

2In general, this property is only true of fully-controlled (or “footed”)
dynamic logic. All of our pipelines presented in this paper use fully-
controlled dynamic logic. Therefore, this property of precharge can indeed
be exploited.

contrast, in PS0, precharge terminates only stage N + 1 is
done precharging. At this point, stage N enters its evaluate
phase.

In LP3/1, th evaluate phase continues until two dis-
tinct conditions hold, which drive the stage into the next
precharge: (i) stage N + 1 has completed evaluation (as in
PS0: PC asserted high) and (ii) stage N + 2 has completed
precharging (EVAL de-asserted low). The NAND gate in Fig-
ure 4 (with a bubble on its EVAL input) directly implements
these two conditions.

Interestingly, during LP3/1’s evaluate phase, the early
EVAL signal from stageN+2 may be non-persistent: it may
be de-asserted low even before stage N has had a chance
to evaluate its new data! However, one-sided timing con-
straints of Section 2.7 are imposed to insure a correct eval-
uate phase: PC=low will arrive in time to take over control
of the evaluate phase, which will then be maintained until
stage N has completed evaluating its inputs (as in PS0).

Pipeline Cycle Time and Latency. The complete cycle
of events for a stage, say stage 1, from one evaluation till
the next can be derived from Figure 3: (i) Stage 1 evalu-
ates, (ii) stage 2 evaluates, (iii) stage 2’s completion detec-
tor detects completion of precharge, and then (iv) stage 1
precharges. At the same time, after completing step (ii),
(iii)’ stage 3 evaluates, and (iv)’ stage 3’s completion detec-
tor detects completion of stage 3’s evaluation, thereby en-
abling two subsequent events: both the precharge of stage
2 and the next evaluation of stage 1 (“early evaluation”).
Thus, there are only four events in the complete cycle for
a stage, from one evaluation to the next, down from the
six events in PS0. This reduction by two events has been
brought about by eliminating the two events of stage 2’s
precharge phase from stage 1’s cycle.

The cycle time of the pipeline is therefore:

TLP3/1 = 3 � tEval + tCD + tNAND

where tNAND is the delay through the NAND gate for the early
evaluation signal. Thus, the LP3/1 cycle time is tPrech+tCD�

tNAND shorter than that of PS0.
The per-stage forward latency is simply the evaluation

delay of a stage, as in PS0:

LLP3/1 = tEval

Loading Issues. The above analysis does not take into ac-
count the fact that the completion detectors in LP3/1 will be
somewhat slower than those in PS0 due to greater capaci-
tive loads. The increased loading is due to the need to fork
off “done” to two preceding stages instead of one. Section 8
provides more refined results based on HSPICE simulations
of the actual pipeline circuits. The simulation results indi-
cate that, in spite of the overhead due to increased loading,
the LP3/1 pipeline has significantly higher throughput than
PS0.

2.5. The LP2/2 Pipeline
The second new pipeline design is called LP2/2. The key
feature is that a pipeline stage is now allowed to signal its
previous stage when it is “about to evaluate (or precharge)”
instead of after it has completed those actions. Thus, this
pipeline uses an early done protocol.

LP2/2 pipelines have shorter cycle times than PS0: like
LP3/1, the cycle of an LP2/2 stage consists of four events.
Moreover, these pipelines have another desirable feature:
unlike LP3/1, the stages of an LP2/2 pipeline have only one
control input as opposed to two, thereby reducing loading
on the completion detectors.

Pipeline Structure. Figure 5 shows a block diagram of
an LP2/2 pipeline. The stages are similar to those used in
PS0, but with one key difference: completion detectors are
placed before their functional blocks. The idea is to let
the previous pipeline stage know when the current stage is
about to evaluate (or precharge).

D1

F1

PC
D2

F2

PC
D3

F3

PC

Figure 5. Block diagram of an LP2/2 pipeline

A modified completion detector is needed in order to
generate the “early done” signal. The completion detector
now requires an extra input: the stage’s PC control input.
The functionality of the completion detector is as follows.
The completion detector asserts Done (high) when the stage
is about to evaluate: the stage is enabled to evaluate (PC de-
asserted low), and it has valid dual-rail inputs. The comple-
tion detector de-asserts Done (low) when the stage is about
to precharge: PC is asserted (high). Thus, the done sig-
nals are produced in parallel with the actual precharge or
evaluation by the associated function block, instead of af-
ter its completion. Note that these conditions are asymmet-
ric: only a single condition (PC asserted high) enables the
stage to precharge and its completion detector to indicate
that precharge is complete.

This new completion detector is implemented using an
asymmetric C-element (Figure 6). From the figure, it is
clear that this particular asymmetric C-element is a degen-
erate special case: it can be regarded as simply a precharged
dynamic gate, which de-asserts Done (low) whenever PC is
asserted high.

Pipeline Protocol and Performance. A complete cycle
of events for stage 1 can be traced in Figure 5. From

Dual-rail
data

Done

PC

a0
b0
c0

a1
b1
c1

aC
Done

+
+
+

PC

Dual-rail
data

Figure 6. LP2/2 Completion Detector

one evaluation to the next, it consists of four events: (i)
Stage 1 evaluates, (ii) stage 2’s completion detector de-
tects “early done” of stage 2’s evaluation (in parallel with
stage 2’s evaluation), thereby asserting the precharge con-
trol of stage 1, and then (iii) stage 1 precharges. At the
same time, after completing step (i), (ii)’ stage 2 evaluates,
(iii)’ stage 3’s completion detector detects “early done”
of stage 3’s evaluation (in parallel with stage 2’s evalua-
tion), thereby asserting the precharge control of stage 2, and
(iv) stage 2’s completion detector detects “early done” of
stage 2’s precharge (in parallel with stage 2’s precharge),
thereby enabling stage 1 to evaluate once again in the next
step.

Thus, the cycle time of the pipeline is:

TLP2/2 = 2 � tEval + 2 � tCD

which is tEval + tPrech shorter than that of PS0. The latency
is identical to that of PS0 and LP3/1:

LLP2/2 = tEval

2.6. The LP2/1 Pipeline
LP2/1 is the last new dual-rail design style. This design is
basically a hybrid: it combines both the “early evaluation”
of LP3/1 and the “early done” of LP2/2. Consequently, an
LP2/1 pipeline has the shortest analytical cycle time of the
three LP design styles: a cycle of a stage consists of only
three events.

Pipeline Structure. Figure 7 shows the implementation
of an LP2/1 pipeline. Each stage uses information from
two succeeding stages (as in LP3/1), and also employs early
completion detection (as in LP2/2).

Pipeline Protocol and Performance. A complete cycle
of events for stage 1 can again be traced in the figure. From
one evaluation to the next it consists of three events: (i)
Stage 1 evaluates, (ii) stage 2’s completion detector de-
tects “early done” of stage 2’s evaluation (in parallel with
stage 2’s evaluation), thereby asserting the precharge con-
trol of stage 1, and then (iii) stage 1 precharges. At the
same time, after completing step (i), (ii)’ stage 2 evaluates,

D2

F2

PC Eval
D3

F3

PC Eval
D1

F1

PC Eval

Figure 7. Block diagram of an LP2/1 pipeline

and (iii)’ stage 3’s completion detector detects the “early
done” of stage 3’s evaluation, thus enabling the evaluation
of stage 1 in the next step. Thus, the cycle time is:

TLP2/1 = 2 � tEval + tCD + tNAND

which is tEval + tPrech + tCD � tNAND shorter than that of PS0.
Once again, the latency is identical to that of PS0:

LLP2/1 = tEval

2.7. Timing Constraints
Each of the LP pipeline designs requires certain one-sided
timing constraints to be satisfied for correct operation. We
found, in practice, that all of these timing constraints are
easily satisfied.

Precharge Width. LP3/1 and LP2/1 pipelines have a
shorter precharge phase than PS0 pipelines, since the start
of the evaluation phase is advanced by two time steps.3

For correct precharge, the precharge of a stage should be
complete before the stage receives the evaluation signal,
EVAL=high. That is, a minimum precharge width must be
enforced.

The appropriate timing constraint for the LP3/1 pipeline
is now formally derived. Using as reference the instant stage
N + 1 finishes evaluating, stage N receives the precharge
signal at time tCDN+1", where tCDN+1" is the time it takes for
stage N + 1’s completion detector to switch high.4 Also,
from the same reference, the EVAL signal for stage N goes
high at time tEvalN+2 + tCDN+2". Therefore, for correct
precharge, the precharge width tPrechN must satisfy:

tPrechN � tEvalN+2 + tCDN+2" � tCDN+1"

Assuming that all stages are similar and that both transitions
of a completion detector are equally fast, the constraint can
be rewritten as:

tPrech � tEval

3The “1” in their designation indicates precisely this fact: their
precharge phase is only 1 “unit” long, where a “unit” is approximately
the amount of time for one stage evaluation, or one stage reset, or one
completion detection.

4Note that, here, for a more precise analysis, we make a distinction
between tCDN+1" and tCDN+1#, which are the delays associated with
detection of stageN + 1’s evaluation and reset, respectively.

This condition is satisfied if a stage’s precharge is not
slower than its evaluation. In practice, the precharge
phase benefits from the additional inverter delay which
the EVAL=high signal must go through at the inputs of
the NAND gate. This constraint effectively means that
“precharge should be fast enough,” and, in our experience,
is quite easily satisfied. Similar constraints on the precharge
width for LP2/1 pipelines can be derived.

Safe Takeover. For correct operation of the evaluation
phase in LP3/1 and LP2/1, it is required that the “takeover”
signal, PC=low, arrive at the inputs of the NAND gate be-
fore the non-persistent EVAL goes low. This requirement
is needed to insure that the control maintains a glitch-free
evaluation phase whenever early evaluation is used (i.e.
LP3/1 and LP2/1). We now focus on the case of LP3/1; simi-
lar constraints can be derived for LP2/1.

The following analysis calculates the time at which stage
N ’s EVAL is de-asserted low, and the time at which stage
N ’s takeover signal appears. The reference time 0 is set at
the point when stage N + 2 has just completed evaluation,
which will start the early evaluation of state N . The time in-
stant when EVAL for stage N is de-asserted low (from stage
N + 2) is given by:

tEvalN+3 + tCDN+3" + tPrechN+2 + tCDN+2#

Similarly, the takeover signal, PC, of stage N is asserted low
at time:

tCDN+2" + tPrechN+1 + tCDN+1#

Therefore, to maintain uninterrupted evaluation, the
takeover should arrive at least a setup time, tsetup, before
EVAL is de-asserted:

tCDN+2" + tPrechN+1 + tCDN+1# + tsetup �

tEvalN+3 + tCDN+3" + tPrechN+2 + tCDN+2#
Assuming all stages are similar, this constraint becomes:

tEval � tsetup

This constraint is also easily satisfied since the setup time
of a transistor is usually less than the evaluation time of a
stage.

Input Hold Time. In LP2/2 and LP2/1, the data inputs to
an evaluating stage must be held valid long enough for the
stage to complete evaluation, before the inputs are reset.
That is, the “early done” path through the completion de-
tector must not reset the previous stage before the current
stage has effectively absorbed its data inputs. If the time
for a precharge-released dynamic gate to absorb its inputs
is thold, then the input hold time constraint is:

thold � tCDN" + tPrechN�1

Assuming all stages are identical, this constraint becomes:

tCD" � thold � tPrechN�1

According to this constraint, the completion detectors can-
not be “too fast.” This constraint is also easily satisfied in
practice.

3. Single-Rail Pipelines

While dual-rail datapaths allow variable-speed completion
and have been effectively used in a number of applications,
the area penalties are often unacceptable and the power
overhead may be large. Single-rail design has much wider
applicability in the synchronous world, and several asyn-
chronous groups have recently moved from dual- to single-
rail design [12]. Therefore, the focus of this section is now
on single-rail pipelines using dynamic bundled datapaths.

3.1. Related Work and Overview

Synchronous Pipelines. Several novel synchronous pipelin-
ing techniques have been proposed for high-throughput ap-
plications. In wave pipelining [17], multiple waves of data
are allowed at any time between two latches. Other quasi-
asynchronous approaches include skew-tolerant domino [6,
3] and self-resetting circuits [11, 3]. These styles have par-
tial asynchronous behavior (e.g., precharge control or waves
of data). All of these styles have complex timing require-
ments which are difficult to verify, lack elasticity and still
require global clock distribution.

Asynchronous Pipelines. The classic approach to design-
ing asynchronous pipelines is called micropipelines [15].
These use an elegant control structure but have slow and
complex latch control (i.e., capture-pass latches). Most re-
cent designs—including our own—can be regarded as de-
rived from this pipeline, using variations on both latches
and protocol.

Several variants have been proposed using transition sig-
naling. One design [18] uses dual-edge-triggered flipflops,
and another [10] uses a double (parallel) pipeline with pairs
of capture-pass latches per stage.

Other variants have been proposed using four-phase
handshaking. In [2], transparent latches replace capture-
pass latches and phase converters are used to accommodate
them. In contrast, both Furber and Liu [5] and Molnar et
al. [10] (a second design: asp*) modify the original mi-
cropipeline control, introducing both asymmetric protocols
and decoupled implementations.

All of these designs have limitations for fine-grained dy-
namic applications. Two of the highest performance ones
(asp* [10] and Yun et al.’s 4-phase design [18]) will not
function correctly on a dynamic pipeline unless there are ex-
plicit latches, due to overlapped activity in adjacent stages.

In addition, while the former design is elegant, it has com-
plex relative timing assumptions which are not explicitly
formalized; in fact, an early version was unstable due to
timing issues. The second Molnar design, using two paral-
lel pipelines, has significant area penalty; and another de-
sign [7] has both area and throughput penalties due to dou-
ble latches. Only a few asynchronous pipeline styles have
been proposed which are specially tailored to single-rail dy-
namic pipelines [5, 4], but these also require explicit latches
and have synchronization overheads.

Overview. We now present our two new single-rail
pipeline designs. The first design, LPSR2/2, essentially uses
a straightforward micropipeline control for these datapaths,
but modified with an early done optimization similar to that
of Section 2.5. The second design, LPSR2/1, adds the further
improvement of early evaluate, similar to the LP2/1 design
of Section 2.6. The designs operate correctly under simple,
explicit and easily satisfiable one-sided timing constraints.

3.2. The LPSR2/2 Pipeline

LPSR2/2 is the first of the new single-rail pipelines. This
design can be thought of as a derivative of LP2/2, or PS0,
adapted to a single-rail bundled datapath.

Pipeline Structure. Figure 8 shows the structure of the
pipeline. Each pipeline stage has a function block and a
control block. The function block alternately evaluates and
precharges. The control block generates the bundling sig-
nal to indicate completion of evaluation (or precharge). The
bundling signal is passed through a suitable delay, allowing
time for the dynamic function block to complete its eval-
uation (or precharge). This signal is communicated to two
stages: (i) to the previous stage, to indicate a “done” (Done),
and (ii) to the next stage, to indicate a “request” (Req) (i.e.,
valid data).

aC

+

F1

matched
delay aC

+

F2

matched
delay aC

+

F3

matched
delay

Done

Req

Figure 8. Block diagram of an LPSR2/2 pipeline

Pipeline Protocol. The pipeline protocol is very similar
to that of PS0. When a stage is done evaluating, it tells the
previous stage to precharge. Similarly, when a stage is done
precharging, it tells the previous stage to evaluate. In ad-
dition, the Done signal is passed forward to the next stage,
indicating that the evaluation (or precharge) is complete.

However, there are two subtle optimizations that take ad-
vantage of the innate property of dynamic logic. The first
is aimed at reducing the cycle time; the second is aimed at
decreasing latency.

The first optimization is to tap off the Done signal for the
previous stage from before the matched delay, instead of af-
ter the matched delay. In spirit, this optimization is similar
to the “early done” of LP2/2. The same justification applies.
For footed dynamic logic, it is safe to indicate completion
of precharge as soon as the precharge cycle begins: during
precharge, the stage is effectively isolated from changes at
its inputs. Likewise, for a dynamic stage, it is safe to in-
dicate completion of evaluation as soon as the stage begins
to evaluate on valid inputs; once the stage has evaluated, its
outputs are effectively isolated from a reset at the inputs.5

This early tap-off optimization has a significant impact on
the pipeline performance: the cycle time is reduced by an
amount equal to two matched delays.

The second optimization is to allow an early precharge-
release. In dynamic logic, unlike static logic, the function
block can be precharge-released before new valid inputs
arrive. Once data inputs arrive, the function block starts
computing its data outputs. Similarly, once the matched
bundling input arrives, the bundling output (Req) is also
generated. Thus, in our design, precharge release of the
function block is completely decoupled from the arrival of
the inputs. In contrast, in other recent pipeline designs, the
function block is precharge-released only after the bundling
input has been received [5]; this latter requirement typically
adds extra gates to the critical forward path in the pipeline.
In LPSR2/2, the optimization results in a reduction in the for-
ward latency.

Pipeline Cycle Time and Latency. A complete cycle of
events for a stage in LPSR2/2 is quite similar to that in PS0.
From one evaluation of stage 1 to the next, the cycle consists
of four events: (i) Stage 1 evaluates, (ii) stage 2 evaluates,
(iii) stage 3 evaluates, asserting the precharge input for stage
2, and finally, (iv) stage 2 precharges, enabling stage 1 to
evaluate once again.

The following notation is used for the various delays as-
sociated with this pipeline:

tEval = time for a stage evaluation
tgC = delay of the control block (generalized C-

element)
tdelay = magnitude of the matched delay. For correct

operation, tdelay � tEval� tgC. For ideal opera-
tion, we will assume that tdelayis no larger than
necessary, tdelay = tEval � tgC.

In this notation, the delays of steps (i) and (ii) in the cycle
traced above, are each tEval. The delays of steps (iii) and

5More precisely, completion of evaluation can be safely indicated a
time thold after the start of evaluation (cf. Section 2.7).

(iv) are each tgC. Therefore, the pipeline cycle time is:

TLPSR2=2 = 2 � tEval + 2 � tgC

The per-stage forward latency of the pipeline,
LLPSR22 = tEval.

3.3. The LPSR2/1 Pipeline
LPSR2/1 is our final dynamic pipeline. This design can be
thought of as a derivative of LP2/1, or LP3/1, adapted to a
single-rail bundled-datapath.

Pipeline Structure. Figure 9 shows the structure of the
pipeline. Each stage has a function block and a control
block identical to those of the first single-rail design. How-
ever, a stage receives control inputs not only from the subse-
quent stage (PC), but also from its successor (EVAL). Much
like LP2/1 and LP3/1, the second control input is used for
“early evaluation.”

aC

+

F1

matched
delay

PC Eval

aC

+

F2

matched
delay

PC Eval

aC

+

F3

matched
delay

PC Eval

Figure 9. Block diagram of an LPSR2/1 pipeline

Pipeline Protocol and Performance. The sequencing of
control is very similar to that in LP2/1 or LP3/1. A complete
cycle of events, from one evaluation of stage 1 to the next,
consists of three events: (i) Stage 1 evaluates, (ii) Stage
2 evaluates, and finally, (iii) stage 3 evaluates, triggering
“early evaluation” of stage 1. Thus, the cycle time is:

TLPSR2=1 = 2 � tEval + tgC + tNAND

The analytical cycle time is somewhat better than that of
LPSR2/2, because tNAND < tgC.

Once again, forward latency LLPSR2=1 = tEval.

4. Comparison of LP3/1 with Williams’ PA0
Pipelines

In [16], Williams introduces another pipeline design, called
PA0. Although we have so far only referred to Williams’ PS0

pipeline, his PA0 pipeline is also directly relevant to LP3/1:
both designs effectively use control inputs from two subse-
quent stages, instead of one. Below is an in-depth compari-
son between the two.

The structure of a PA0 pipeline is shown in Figure 10. As
in LP3/1, each pipeline stage receives two control inputs, PC

and EVAL. The PC input of stage N is the completion signal

PC

F1

D1

PC

F2

D2

PC

F3

D3

NAND2 gategC element

Eval

PC

PC

Eval

Figure 10. Block diagram of a PA0 pipeline

from stage N +1. The EVAL input of N is derived from the
completion detector of stage N + 2.

A PA0 pipeline operates as follows. Stage N is driven
into evaluation as soon as stage N + 1 starts to precharge;
thus, the pipeline allows early evaluation, much like LP3/1.
The “trigger signal” which causes the start of is EVAL=low.
Stage N is precharged when N + 1 is done evaluating
(PC=high) and N + 2 is done precharging (EVAL=high).
This stage’s control is implemented by a generalized C-
element, shown in Figure 10.

There is an important difference in the controls of PA0

and LP3/1, although they seem to be functionally quite sim-
ilar: the PA0 control uses a generalized C-element, whereas
the LP3/1 control uses a NAND2 gate. The net difference is
not only a change of function in our design, but the removal
of two inverters in series from the critical path.6

We now justify our use of a NAND2 gate instead of the
generalized C-element. A simple timing assumption must
be made on the arrival of inputs to the NAND2 gate. In each
design, an early evaluation of stage N is enabled by the trig-
ger signal, EVAL=low, which is an input to the control. In
PA0, the C-element holds this value, and evaluation persists,
until the desired precharged phase begins. In contrast, in
LP3/1, while EVAL=low (input to the NAND2) correctly en-
ables an early evaluation of stage N, this trigger signal is
non-persistent: the control output could incorrectly get de-
asserted. Therefore, for correct operation, a takeover signal
(PC=low) is required to arrive at the gate input, before EVAL

is de-asserted (see Section 2.7).
Once this timing assumption on the arrival of PC is sat-

isfied, the C-element can safely be replaced by the combi-
national gate. As shown in Figure 10, the NAND2 gate is
identical to the logic portion of the generalized C-element,
but with one extra parallel PMOS transistor, controlled by
PC. This modification makes the gate fully complementary,
hence the two output inverters can be deleted.

The net effect of eliminating two inverters from the crit-
ical path is the elimination of four inverter delays from the
cycle time of the pipeline, because the PA0 critical path

6Theoretically, for an inverting output from the C-element, the internal
node of the C-element could be tapped. However, in our experiments,
electrical simulations indicated this not to be very reliable.

for stage N goes through two of these C-elements: the C-
element of stage N + 1, and that of stage N + 2.

Interestingly, while Williams points out that the through-
put of PA0 is likely to be worse than that of PS0 [16],
we have observed a significant throughput improvement
in LP3/1 (see Section 8). We believe this improvement is
brought about partially because of the elimination of the ex-
tra inverters.

5. Interface with the Environment

This section presents modifications to the pipeline designs
in order to handle two special types of environments. The
first type is an environment that can only absorb one control
input, whereas some of the pipeline designs use two control
inputs per stage. The second type is an unusually slow en-
vironment that cannot meet certain timing requirements for
correct operation.

5.1. Handling Environments that Cannot Absorb
Two Control Inputs

For LP3/1, LP2/1 and LPSR2/1, the presence of two control in-
puts per stage implies that the input and the output environ-
ments must have the capability to adequately handle both
PC as well as EVAL control signals. However, if the environ-
ment can only handle one control signal, the simple scheme
of Figure 11 is proposed to address the situation. At the in-
put interface, the environment simply uses a NAND gate to
combine the two control signals, PC and EVAL, exactly as
each of the pipeline stages does so internally (cf. Figure 4).
At the output interface, the last pipeline stage derives its
EVAL input as a delayed version of the PC provided by the
environment; the delay should correspond to the precharge
delay of the last pipeline stage. Clearly, this scheme adds
no extra delays to either the cycle time or the latency.

NAND

PC Eval

F1 F2

D1 D2

Fn

Dn...
PC

Eval
delays

PC

Eval

PC Eval EvalPC

Figure 11. Interfacing an LP3/1 pipeline with
the environment

5.2. Handling Unusually Slow Environments

Normally, the environment is expected to be reasonably
fast. In the event that it is unusually slow, the whole range
of designs in this paper, including Williams’ PS0, will mal-
function. In the following, a generic and modular solution
is proposed, to allow all of these designs to robustly handle
such environments.

The problem arises if the left environment is very slow
in precharging.7 Suppose the leftmost pipeline stage has
signaled the environment to precharge, but the environment
takes too long to precharge. Then, two potential problems
could arise: (i) the leftmost stage could subsequently de-
assert the precharge signal to the environment before the
environment has completed precharge, or (ii) the leftmost
stage could get precharge-released before the stale data in-
puts from the environment have been reset. In either case,
an invalid data token might appear on the datapath, caus-
ing the pipeline to malfunction. (Interestingly, the root of
this problem is an assumption made in Williams’ PS0 [16,
pp. 33–34], that “precharges are fast enough.”)

Our solution is simply to add additional synchronization
between the environment and the leftmost pipeline stage.
Until the environment has actually completed precharging,
two critical events will thus be delayed: precharge-release
of the environment, and precharge-release of the leftmost
pipeline stage. This mechanism ensures that the environ-
ment resets properly, and that the leftmost stage does not
evaluate prematurely.

aC

aC

+

ok2eval

aC

Env
Stage

1

Done
(D)e

Done
(D)I

PCe PCI

pI

p
e

Data

(Done of
Stage 2)

+

+

Figure 12. Handling Slow Environments

An implementation of this solution requires modification
of the control of the environment as well as the leftmost
pipeline stage (Figure 12). A state variable, ok2eval, is in-
troduced to keep track of whether the precharge of the en-
vironment is complete. The following production rules [8]
describe the behavior of the circuit:

De �! ok2eval"

[De^]DI �! ok2eval#

pe �! PCe #

pI �! PCI #

pe ^ ok2eval �! PCe "

pI ^ ok2eval �! PCI "

While the pipeline cycle time does increase by one gate
delay due to the added circuitry at the interface, in practice
this is not a serious overhead because the real bottleneck to
high throughput is actually the slow environment.

7Note that other situations, such as those in which environments are
slow in computing, or environments are extremely fast, do not pose any
problems; our protocols clearly handle those situations.

6. On the Practicality of Gate-Level Pipelining
While it may appear that the overhead of completion de-
tection may severely limit the performance of fine-grain
pipelines, in practice this overhead can be kept very low.

So far, for simplicity of exposition, this paper has only
shown linear pipelines: each stage appears to have a sin-
gle completion detector for the entire width of the datap-
ath. Such a scheme would clearly suffer from a significant
throughput overhead if the datapath were wide.

In fact, in many cases, this is not the appropriate scheme.
As an example, in a pipelined 32-bit ripple-carry adder,
each stage only depends on three inputs: two data bits and
one carry-in. Therefore, in a gate-level pipeline implemen-
tation, each stage would simply have three inputs, two out-
puts, and a completion detector on only those outputs (and
acknowledging only the corresponding input sources). As
a different example, an array multiplier, where each stage
can now be 32 bits wide, a similar scheme can still be
used, because the dependence of each output bit is local-
ized: based on only a small number of inputs. Therefore,
in such a pipeline, completion detection is inexpensive: in-
volving one, or at most a few, bits. Thus, the overhead of
completion detection in gate-level pipelining, in practice, is
often quite low.

7. Pipeline Initialization
Initialization of our pipelines is achieved very simply by
making use of an additional global “reset” input to every
pipeline stage. The reset input forces a precharge of every
stage’s function logic, and in parallel, it forces the comple-
tion signal generators (completion detectors in dual-rail de-
signs, and bundling signal generators in single-rail designs)
to go low. This resetting is effected by simply adding an
extra pull-up transistor to every logic gate and completion
signal generator. Once the pipeline is thus initialized, reset
is de-asserted. The pipeline is now ready for operation.

8. Results
This section presents the results of HSPICE simulations
of our new pipeline designs. Results of simulations of
Williams’ PS0 pipeline are also presented, to serve as the
base case for comparison.

Experimental Setup. We chose a 4-bit wide FIFO as our
test vehicle. We simulated 10 stages of the FIFO in HSPICE
using a 0:6�m HP CMOS process. The operating condi-
tions were 3.3V power supply and 300ÆK.

A significant effort was made to fine-tune the transistor
sizing of each of the designs. In our view, a comparison
of the throughputs of various pipeline designs is most fair
only when each of them is fine-tuned for optimal through-
put. Therefore, a detailed analysis of capacitive loading on
each node of the control circuit was done, to arrive at the
optimum transistor sizes. Further, identical datapaths were

used in all of the designs, with the following sizes for the
transistors in the dynamic gate: the W/L of the precharge
PMOS transistor was 24�=2�, and the W/L of the two se-
ries NMOS transistors was 18�=2�. Further, for each of
our designs, the simulations indicated that the timing con-
straints of Section 2.7 were met: there was at least a 0.24ns
safety margin for precharge pulse-width (almost 100% mar-
gin), at least a 0.40ns safety margin for safe takeover, and
at least a 0.55ns safety margin for input hold time.

8.1. Simulation Results for Dual-Rail Pipelines
The operation of the 4-bit FIFO was simulated for each of
the three new dual-rail pipeline designs—LP3/1, LP2/2 and
LP2/1—as well as Williams’ PS0 design.

Table 1 summarizes the results of the simulation. For
each of the four pipeline styles, the table lists the overall
pipeline cycle time T , as well as a breakdown of the cycle
time into the following components:

tEval time for a stage evaluation
tPrech time for a stage precharge
tCD delay through the completion detector (aver-

age of the up and down transitions). This in-
cludes the delay through the buffers that am-
plify this signal to provide sufficient drive.

tNAND For LP3/1 and LP2/1, this is the delay through
the NAND2 gate that combines the two control
inputs into one (see Figure 4).

Finally, the throughput of each pipeline, in million data
items per second is expressed as a percentage improvement
over the throughput of PS0.

The throughput of each of our designs is significantly
higher than that of PS0. In agreement with our analysis of
Sections 2.2–2.6, the throughput increases in the following
order: PS0, LP3/1, LP2/2 and LP2/1. As expected, LP2/1 de-
livers the highest throughput of all four designs, 860 million
data items per second: this rate is an improvement by more
than a factor of 2 over PS0 (420 million data items per sec-
ond). Our other two designs, LP3/1 and LP2/2, also posted
higher throughputs: 590 and 760 million data items per sec-
ond respectively, which are 40% and 79% higher than PS0.

The improvement in throughput is principally due to two
factors: (i) improved protocols, and (ii) faster completion
detectors. The table confirms the earlier analytical results
on the new protocols. In each new design, since there are
fewer component delays, overall cycle time is reduced. The
second factor is faster completion detection. Column tCD

indicates that in two of our designs—LP2/2 and LP2/1—the
completion detector delay is significantly lower. The rea-
son is that these two designs use an asymmetric C-element
with a very short pull-up stack (Figure 6). In contrast, the
completion detectors of PS0 and LP3/1 use a symmetric C-
element which is slower.

Finally, note that the latencies of our stages (tEval and
tPrech) are essentially the same as in PS0. Hence, our

throughput improvements are obtained without degrading
latency.

8.2. Simulation Results for Single-Rail Pipelines
The operation of the 4-bit FIFO was simulated for both of
the new single-rail bundled-datapath designs—LP SR2/2 and
LPSR2/1.

Table 2 summarizes the results of our simulation. For
each of the pipelines, the overall pipeline cycle time T

is shown, as well as the delays of individual components:
stage evaluation time (tEval), stage precharge time (tPrech),
the delay though the control block (t gC), and in the case of
LPSR2/1, the delay through the extra NAND gate (tNAND).

The two new designs, LPSR2/2 and LPSR2/1, deliver very
high throughputs: 1050 million and 1208 million data items
per second, respectively. As expected, the throughput of
LPSR2/1, which combines both early evaluation and early
done protocols, is better than the throughput of LP SR2/2.
Comparison with the Pipelines of Molnar et al. By far
the most competitive pipelines presented in literature are the
two FIFO designs by Molnar et al. [10]. We now compare
the performance of our pipelines with that of Molnar’s with
respect to throughput, latency, area and robustness.

Throughput and Latency. The throughputs of our FIFO
designs (1.05 and 1.2 Giga per second) compare quite fa-
vorably with that of Molnar’s first FIFO design (1.1 Giga
per second). Molnar’s second FIFO design has a through-
put rate of 1.7 Giga per second. However, this design in
fact uses two parallel FIFO’s—one for the odd numbered
data items, and another one for the even numbered items—
in order to achieve this performance; the throughput of this
design can not directly be compared with the throughput of
our FIFO’s, which use only a single data stream.

For a processing pipeline, as opposed to a FIFO, the per-
formance of our designs is likely to be even better, rela-
tive to that of Molnar’s designs. When logic processing
is desired in Molnar’s pipelines, extra logic gates must be
inserted between the latches of the FIFO. This insertion
of gates directly adds to the pipeline cycle time, as well
as to the latency. In contrast, our designs use dynamic
stages which provide latching as well as logic functionality
in the same dynamic gate. Adding functionality to a dy-
namic stage merely involves adding transistors to the evalu-
ate stack of the dynamic gate, which should only marginally
adds to the cycle time and latency (e.g., see Figure 2).

Chip Area. Our new designs should occupy significantly
less chip area than Molnar’s FIFO’s. In particular, our de-
signs do not use explicit latches; latching is provided im-
plicitly by the dynamic function blocks. In contrast, Mol-
nar’s asp* FIFO uses explicit pass transistor latches which
are significantly more area-expensive. Molnar’s second
design is even more area-expensive: it uses two parallel
latches for each stage, and each one is a large capture-pass
latch.

Cycle Time, T Throughput
Pipeline tEval tPrech tCD tNAND 10

6 items % increase
Design (ns) (ns) (ns) (ns) Analytical Formula (ns) per sec. over PS0

LP3/1 0.24 0.26 0.72 0.26 3 � tEval + tCD + tNAND 1.70 590 40%
LP2/2 0.22 0.26 0.45 - 2 � tEval + 2 � tCD 1.33 760 79%
LP2/1 0.22 0.25 0.38 0.36 2 � tEval + tCD + tNAND 1.18 860 102%

PS0 0.25 0.25 0.68 - 3 � tEval + 2 � tCD + tPrech 2.38 420 Base

Table 1. A comparison of the performance of dual-rail LP pipelines vs. Williams’ PS0.

Cycle Time, T Throughput
Pipeline tEval tPrech tgC tNAND 10

6 items
Design (ns) (ns) (ns) (ns) Analytical Formula (ns) per sec.

LPSR2/2 0.19 0.21 0.29 - 2 � tEval + 2 � tgC 0.95 1050
LPSR2/1 0.19 0.21 0.26 0.19 2 � tEval + tgC + tNAND 0.83 1208

Table 2. The performance of single-rail LPSR2/2 and LPSR2/1.

Timing Constraints. Molnar’s first design, based on an
asp* protocol, has complex timing assumptions which are
not explicitly formalized; in fact, an early version was un-
stable due to timing issues. In contrast, our designs have
simple one-sided timing constraints, which were very eas-
ily satisfied in our example FIFO designs.

In summary, our new pipelines, LPSR2/2 and LPSR2/1, of-
fer significant advantages over Molnar’s designs, for each
of the following parameters: throughput, latency, area and
ease of satisfiability of timing constraints.

9. Conclusions

This paper presents several new asynchronous pipeline con-
trol structures for dynamic datapaths. These structures
are especially suitable for very fine-grained, or gate-level,
pipelines where each stage consists of a single gate. The
dual-rail designs offer significantly higher throughput than
a well-known design style by Williams, while maintaining
the same forward latency. The single-rail designs are com-
petitive with the leading recent approaches by Molnar et al.,
while offering significant advantages in area, latency and
robustness.

Acknowledgments. The authors gratefully acknowledge
Naeem Abbasi and Prof. Ken Shepard of Columbia Uni-
versity for their help with simulations and modeling issues.
We also benefited from helpful discussions with Michael
Theobald and Tiberiu Chelcea. We also thank the anony-
mous reviewers for insightful comments, especially for sug-
gesting that we address the problem due to slow environ-
ments.

References
[1] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,

A. Taubin, and A. Yakovlev. Lazy transition systems: application
to timing optimization of asynchronous circuits. In ICCAD, 1998.

[2] P. Day and J. V. Woods. Investigation into micropipeline latch design
styles. IEEE TVLSI, 3(2):264–272, June 1995.

[3] A.E. Dooply and K.Y. Yun. Optimal clocking and enhanced testa-
bility for high-performance self-resetting domino pipelines. In
ARVLSI’99.

[4] C. Farnsworth, D. Edwards, and S. Sikand. Utilizing dynamic logic
for low power consumption in asynchronous circuits. In Proc. Intl.
Symp. Adv. Res. Async. Circ. Syst. (ASYNC), 1994.

[5] S. B. Furber and J. Liu. Dynamic logic in four-phase micropipelines.
In Proc. Intl. Symp. Adv. Res. Async. Circ. Syst. (ASYNC), 1996.

[6] D. Harris and M.A. Horowitz. Skew-tolerant domino circuits. IEEE
JSSC, 32(11):1702–1711, November 1997.

[7] R. Kol and R. Ginosar. A doubly-latched asynchronous pipeline. In
Proc. ICCD, 1996.

[8] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes,
R. Southworth, and U. Cummings. The design of an asynchronous
MIPS R3000 microprocessor. In Proc. ARVLSI, September 1997.

[9] G. Matsubara and N. Ide. A low power zero-overhead self-timed
division and square root unit combining a single-rail static circuit
with a dual-rail dynamic circuit. In ASYNC97.

[10] C.E. Molnar, I.W. Jones, W.S. Coates, J.K. Lexau, S.M. Fairbanks,
and I.E. Sutherland. Two FIFO ring performance experiments. Pro-
ceedings of the IEEE, 87(2):297–307, February 1999.

[11] V. Natayanan, B.A. Chappell, and B.M. Fleischer. Static timing anal-
ysis for self resetting circuits. In Proc. ICCAD, 1996.

[12] A. M. G. Peeters. Single-Rail HandshakeCircuits. PhD thesis, Eind-
hoven University of Tech., June 1996.

[13] M. Renaudin, B. Hassan, and A. Guyot. New asynchronous pipeline
scheme: Application to the design of a self-timed ring divider. IEEE
JSSC, 31(7):1001–1013, July 1996.

[14] K. S. Stevens, S. Rotem, and R. Ginosar. Relative timing. In Proc.
Intl. Symp. Adv. Res. Async. Circ. Syst. (ASYNC), April 1999.

[15] I. E. Sutherland. Micropipelines. Communications of the ACM,
32(6):720–738, June 1989.

[16] T.E. Williams. Self-Timed Rings and their Application to Division.
PhD thesis, Stanford University, June 1991.

[17] D.C. Wong, G. De Micheli, and M. Flynn. Designing high-
performance digital circuits using wave-pipelining. IEEE TCAD,
12(1):24–46, January 1993.

[18] K.Y. Yun, P.A. Beerel, and J. Arceo. High-performance asyn-
chronous pipeline circuits. In Proc. Intl. Symp. Adv. Res. Async. Circ.
Syst. (ASYNC), 1996.

