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Synthesis for Logical Initializability of Synchronous
Finite-State Machines

Montek Singh and Steven M. Nowick

Abstract—Logical initializability is the property of a gate-level
circuit whereby it can be driven to a unique start state when sim-
ulated by a three-valued (0, 1, ) simulator. In practice, commer-
cial logic and fault simulators often require initialization under
such a three-valued simulation model. In this paper, the first sound
and systematic synthesis method is proposed to ensure the logical
initializability of synchronous finite-state machines. The method
includes both state assignment and combinational logic synthesis
steps. It is shown that a previous approach to synthesis-for-ini-
tializability, which uses a constrained state assignment method,
may produce uninitializable circuits. Here, a new state assignment
method is proposed that is guaranteed correct. Furthermore, it is
shown that combinational logic synthesis also has a direct impact
on initializability; necessary and sufficient constraints on combina-
tional logic synthesis are proposed to guarantee that the resulting
gate-level circuits are logically initializable. The above two syn-
thesis steps have been incorporated into a computer-aided design
tool, salsify, targeted to both two-level and multilevel implementa-
tions.

Index Terms—Automatic test-pattern generation (ATPG), de-
sign for testability, finite-state machines, hazards, initializability,
logic simulation, logic synthesis, state assignment, synchronizing
sequence, testability, testing, three-valued simulation.

I. INTRODUCTION

I NITIALIZABILITY is a property of a circuit that ensures
that it can be driven to a unique known state, irrespective of

the startup state. Initializability is important in order to phys-
ically reset machines if they get out of synchronism. Further-
more, it is required for several fault simulators and nonscan au-
tomatic test-pattern generators (ATPGs) to work effectively. Ex-
amples of such ATPGs include STG [16] and CONTEST [1].

Two notions of initializability are widely used:functional ini-
tializability and logical initializability. A finite-state machine
(FSM) is said to befunctionally initializableif it is initializable
by a series of inputs whenfunctionally simulated. Functional
simulation keeps track of all the symbolic states the state ma-
chine can be in at any time, when subjected to a series of inputs.
This series of inputs that initializes the state machine is called its
synchronizing sequenceor initialization sequence. In contrast, a
gate-level circuit is said to belogically initializableif it is initial-
izable under a series of inputs when simulated by athree-valued
simulator. The difference between functional and three-valued
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simulation is that, while the former uses sets of symbolic states
to simulate the machine, the latter uses three-valued vectors to
keep track of the possible states of the machine. Thus, a precon-
dition for logical initializability of the gate-level circuit is that
the underlying finite state machine be functionally initializable.

In practice, the notion of logical initializability is important.
Commercial and academic logic and fault simulators and non-
scan ATPG tools are often based on a three-valued simulation
model [16], [1]. These tools cannot work effectively if the under-
lying circuit is not three-valued initializable. Note, however, that
three-valued simulation is a coarse model, which only safely ap-
proximates functional simulation: at any time instant, a three-
valued simulator can only approximate the possible states of
the machine by representing them with a three-valued vector.
In particular, it is well known that a three-valued simulator may
compute the logic value of a function to be(unknown) even
when the value can be functionally determined to be a “0” or
“1” [3]. Nonetheless, the three-valued model is widely used be-
cause of its simplicity and effectiveness.

In this paper, rather than attempt to modify commercial logic
and fault simulators by adopting a more accurate simulation
model, our aim is to synthesize a circuit itself is logically ini-
tializable. Several previous approaches to this problem have
been proposed. Some methods onlyanalyzea gate-level cir-
cuit to search for valid initialization sequences [28], [30]. In
contrast, other methods attempt tosynthesizea logically ini-
tializable gate-level circuit from a functionally initializable fi-
nite-state machine [7], [8]. In this paper, our strategy is to focus
on the synthesis step: to synthesize gate-level implementations
of synchronous finite-state machines (with little overhead) that
are guaranteed to be logically initializable.

A. Contributions of This Paper

In this paper, the first sound and systematic synthesis method
is introduced to ensure the logical initializability of synchronous
finite-state machines. It is shown that two synthesis steps—state
assignment and combinational logic synthesis—have an impact
on logical initializability. The new method therefore provides
algorithms for each of these steps.

State Assignment:Miczo first pointed out [18] that state as-
signment can affect logical initializability. For example, if the
sole objective of a state assignment is to minimize the number
of state bits, or the amount of logic, an implementation may re-
sult that is logically uninitializable: a logic (three-valued) sim-
ulator may not be able to initialize the gate-level circuiteven
when the underlying FSM has a valid synchronizing sequence.
Later, Cheng and Agrawal proposed a constrained state assign-
ment procedure for logical initializability [7], [8]. We show that
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the constraints on state assignment imposed by this method are
neither necessary nor sufficient.

The contributions of this paper toward state-assignment-for-
initializability are twofold: 1) we first identify where the con-
straints of [7] and [8] can be easily and safelyprunedand 2)
we identify whereadditional new constraints are required (ir-
respective of whether or not the constraints of [7] and [8] were
pruned). The resulting combined set of state assignment con-
straints is sufficient: the method is guaranteed to produce a state
assignment that allows one to synthesize a logically initializable
circuit, given a valid functional initialization sequence.

Combinational Logic Synthesis:Several researchers have
pointed out the impact of combinational logic synthesis on
three-valued simulation and initializability [6], [8]. In one
approach to initializability, it is hypothesized thatsingle-output
two-level logic minimizationmay ensure initializable circuits
[8]. In related research on logic simulation, acomplete sum
two-level implementation is proposed, i.e., including all prime
implicants, to guarantee logical simulatability [6]. In this paper,
we show that, for logic initializability, the former approach does
not always succeed, and the latter approach may be suboptimal.

The contributions of the paper toward combinational logic
synthesis are the following.

1) Both necessary and sufficient constraints on combina-
tional logic are proposed to guarantee logical initializ-
ability.

2) A two-level logic minimization method is introduced,
which incorporates these constraints.

3) Precise constraints for multilevel synthesis are proposed
that can ensure initializable logic.

Interestingly, the new constraints are preciselyhazard-freedom
constraints[26] used in the synthesis of asynchronous combi-
national circuits.

A further contribution is that, unlike previous methods [7],
[8], our new method can correctly handleincompletely speci-
fied finite-state machines. Both the state assignment and combi-
national logic synthesis steps ensure that consistent logic values
can be assigned to “don’t-cares” such that three-valued initial-
ization is feasible.

The two modified synthesis steps have been combined into
a computer-aided design (CAD) synthesis tool calledSALSIFY

(state assignment and logic synthesis for initializability of fi-
nite state machines). The tool is targeted to both two-level and
multilevel circuits. Experimental results indicate that little area
overhead is necessitated by the added constraints.

In summary, given a finite-state machine and a valid func-
tional initialization sequence, the new approach provides a com-
plete synthesis path that produces a gate-level circuit guaranteed
to be logically initializable.

B. Organization

This paper is organized as follows. Section II summarizes pre-
vious work on initializability as well as three-valued simulation.
Section III reviews in detail an existing synthesis-for-initializ-
ability method that was used as the starting point for our re-
search. Section IV provides a short overview of our entire syn-
thesis method. Section V presents details of the state assignment

Fig. 1. Synthesis for initializability

step of our method, and Section VI presents details of the com-
binational logic synthesis step. Finally, results on a set of bench-
mark examples are presented in Section VII, and Section VIII
gives conclusions.

II. PREVIOUS WORK

There has been much work on initializability of finite-state
machines, as well as on three-valued, or logic, simulation.

A. Initializability and Synthesis-for-Initializability

Traditionally, several approaches to initializability have been
considered. Each of these assumes different models of initializ-
ability (such as single or multivector) and of simulation (such as
functional or logical). Furthermore, while some methods only
analyzea state machine to search for valid initialization se-
quences [21], [28], [30], other methods attempt tosynthesizea
logically initializable gate-level circuit from a functionally ini-
tializable finite-state machine [7], [8].

Several analysis methods have been proposed. Rhoet al.
[21] present a search procedure to findfunctional initialization
sequences, starting from a finite-state machine description, if
any exist. Wehbeh and Saab [28]–[30] propose a method to
generate bothfunctional and logical initialization sequences,
starting from a gate-level circuit.

Alternatively, methods have been proposed to synthesize ini-
tializable circuits. A typical synthesis path consists of several
steps (see Fig. 1). Initializability considerations can be incorpo-
rated at various levels. This figure is annotated to highlight some
of the recent work on initializability targeting different levels in
the synthesis path.

Banerjeeet al. [2] present a technique forasynchronoussyn-
thesis that targets the highest level in the synthesis path: the
top-level specification (signal transition graph). The idea is to
modify specification itself to ensure functional initializability.
Initializability is achieved only at the cost of some reduction in
concurrency. This approach targets a different synthesis level
(behavioral), design style (asynchronous), and type of initializ-
ability (functional) from our proposed approach.

Miczo pointed out [18] thatstate assignmentcan affect ini-
tializability. In particular, it is shown that while some state en-
codings of a given state machine produce logically initializable
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Fig. 2. Example FSM and synchronization tree.

circuits, other encodings do not. Cheng and Agrawal [8] pro-
vide a constrained state assignment algorithm to produce log-
ically initializable circuits from functionally initializable syn-
chronous specifications. However, as will be shown, their pro-
posed synthesis constraints are neither necessary nor sufficient.
In this paper, we target an alternative set of state assignment
constraints which are guaranteed sufficient.

The method of Chakradharet al. [5] for asynchronous
synthesis targets thecombinational logic synthesisstep for
initializability. Their method is essentially a search procedure
for finding initialization sequences and concomitant don’t-care
assignments in order to synthesize initializable asynchronous
circuits. However, the method targets a different design style
(asynchronous) and only considers the combinational logic
functionality (it does not include logic covering requirements).
In this paper, we provide constraints on logic synthesis for the
corresponding synchronous problem and also include logic
covering requirements.

Alternative approaches select an appropriate subset of flip-
flops to be partially reset [15], [20].

B. Three-Valued Simulation and Hazard Freedom

Three-valued simulation has been used for decades both for
logic simulation as well as hazard analysis. The earliest refer-
ence to three-valued simulation is perhaps the use of ternary al-
gebra by Yoeli and Rinon in 1964 to study hazards in combi-
national circuits [32]. Subsequently, three-valued algebras were
used by Eichelberger [10] to detect hazards in logic circuits, and
by Jephsonet al.[11] to simulate the operation of digital circuits
in the presence of unknown values.

There have been a few attempts at synthesis of combinational
logic to ensure simulatability or initializability [6], [4], [8]. The
technique of [6] produces a two-level circuit that can be suc-
cessfully simulated by using acomplete sumimplementation,
i.e., including all prime implicants. Another two-level synthesis
approach [4] notes the need forconsensusproducts to enhance
simulatability but does not guarantee simulatable circuits. For
the more limited problem of insuring logical initializability, it
has been suggested thatsingle-output two-level minimization
might ensure a correct implementation [8].

However, none of these methods has noted the tight connec-
tion between three-valued simulatability and hazard freedom.
In particular, while the constraints proposed by the first two
of these approaches relate to constraints for asynchronous
hazard-free design [10], they do not explicitly note that
hazard-free synthesis may provide theprecise conditionsfor
three-valued simulatability. In fact, we are unaware of any

prior work that has formally proved the exact correspondence
between simulatable logic and static hazard-free logic.

In this paper, the correspondence between three-valued sim-
ulatability and static hazard freedom is formally proved (Sec-
tion VI), thus providing precise requirements enabling us to
synthesize simulatable circuits. Furthermore, while these earlier
methods only focus on two-level requirements for simulatability
[6], [4], [8], our new formulation allows one to synthesize fully
simulatable multilevel circuits as well.

III. B ACKGROUND—THE CHENG–AGRAWAL METHOD

This section reviews the Cheng and Agrawal state assign-
ment method [7], [8], which is the starting point of our method.
Given a finite-state machine and a synchronizing sequence, the
basic approach is to use a constrained state assignment step
to ensure logical initializability. After highlighting the impact
of state assignment on logical initializability, the details of the
Cheng–Agrawal state assignment method are reviewed.

A. Impact of State Assignment on Logical Initializability

It is well known that state assignment may have an effect on
logical (three-valued) initializability [18], [7], [8]. An example
illustrates the impact and also introduces some useful termi-
nology.

Example 3.1:Consider the functionally initializable ma-
chine in Fig. 2. At startup, the machine can be in any state:

or or or . The termstate grouprefers to a set of
states. Thus, the initial state group of the machine is written as

. When the series of inputs , simply
written as 100, is applied to the machine, the machine is driven
to a unique state irrespective of the initial state. Therefore,

is called asynchronizing sequenceof . The trace
of state groups, orstate group sequence, that results when the
input sequence 100 is applied to is

(1)

Therefore, the machine isfunctionally initializable.
When logical initializability is required, however, the syn-

chronizing sequence must also converge under three-valued
simulation. Once states have been encoded, a three-valued sim-
ulator uses a sequence ofgroup facesto represent the simulation
trace. Each group face is a three-valued vector, representing
the “smallest containing cube” for the corresponding binary
states. A group face is computed as follows: theth bit in the
group face is 1 (0) if theth bit in the encoding of all the states
of the group is 1 (0); otherwise, it is . Thus, for example, if
the state encoding ( , , , ) were used,
the group face corresponding to would be the smallest
cube containing 00 and 10: . Similarly, the group face of

is ten, and the group face of is .
Thegroup face sequenceis the resulting trace of group faces

that results when the series of inputs is applied. Thus, for the
machine in the above example, the group face sequence is
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Since the three-valued simulation converges, the resulting im-
plementation islogically initializable.

Next, consider a different state assignment for the same ma-
chine.

Example 3.2:Assume that state encoding ( , ,
, ) is used for the specification of Fig. 2 instead. In

this case, the group face sequence is

This sequence does not converge to a single state; therefore,
the implementation islogically uninitializable.

Example 3.2 demonstrates the impact of state assignment on
logical initializability—arbitrary state encoding can render cir-
cuits uninitializable by a three-valued simulator, even though the
state group sequencefunctionallyconverges to a unique state.
This problem arises since a three-valued simulator can only sim-
ulate group faces, not state groups; there is a loss of informa-
tion during three-valued simulation. Thus, even though both of
the state encodings of Examples 3.1 and 3.2 are satisfactory for
functional or physical initializability, the state encoding of Ex-
ample 3.2 is inadequate for three-valued initializability.

B. State Assignment for Logical Initializability

The goal of the Cheng–Agrawal method is to produce a state
assignment, such as that of Example 3.1, that provides log-
ical initializability. That is, the state assignment should allow
the sequence of group faces to “track” the sequence of state
groups, and therefore ensure logical initializability. To this end,
the method introduces constraints into the state assignment step.
These constraints are in the form ofdichotomies[17], [25].

A dichotomy constraint, or simply dichotomy, is written as
, where and are disjoint sets of states. A constraint
is the stipulation that the smallest containing cubes of

and , after state encoding, do not intersect. This dichotomy
constraint issatisfiedby a state encoding if some state bit has
the value 1 for all states in and the value 0 for all states in,
or vice versa. If the cardinality of the state setis and the
cardinality of is , the constraint can be called atype

dichotomy.
The constraints used by Cheng and Agrawal are type

dichotomies, also calledface-embedding constraints[17]. An
dichotomy of the form is introduced for every

singleton symbolic state not present in the state group
in the state group sequence. That is, a symbolic state that does
not belong to a state group is forbidden from being embedded
in its group face after state encoding. This requirement applies
to all state groups encountered when a synchronizing sequence
is applied to the machine. More formally, given a functional
initialization sequence

the Cheng–Agrawal face-embedding constraints (FECs) are
written as

Cheng–Agrawal (2)

Fig. 3. Groups faces “track” state groups.

Example 3.3:Given the finite-state machine of Fig. 2 and
the synchronizing sequence 100 [(1)], the Cheng–Agrawal
face-embedding constraints are , ,
and . Note thattrivial face-embedding constraints
can always be omitted: those whose left side consists of a
singleton state. A state assignment satisfying these dichotomies
is ( , , , ). In this example, the
first state bit satisfies dichotomy : the bit is 0 for
states , and , but is 1 for state . Similarly, the other
two state bits satisfy the remaining dichotomies. Thus, the state
encoding ensures that the state code for, 100, is not em-
bedded in the group face of state group during

the first step in the three-valued simulation: .
Fig. 3 shows graphically the state group sequence and the cor-

responding group face sequence after three-valued simulation.
three-valued simulation converges to the correct value, 100

IV. NEW SYNTHESIS-FOR-INITIALIZABILITY

METHOD—OVERVIEW

Our proposed synthesis method for logical initializ-
ability builds partly on the state assignment method of
Cheng–Agrawal, but with significant extensions. It also in-
cludes a complete combinational logic synthesis step.

Given an incompletely specified finite-state machine and a
synchronizing input sequence, a new constrained state assign-
ment step is proposed, in Step 1. This step in turn has two
parts: First, it generates a set ofrelaxed face-embedding con-
straints(RFECs), which is a pruned version of the set of orig-
inal Cheng–Agrawal face-embedding constraints. Second, it is
shown that neither our RFECs nor the earlier FECs alone are
sufficient to ensure logical initializability. Therefore, additional
constraints, calleddon’t-care intersection constraints(DCICs),
are imposed that guarantee logical initializability.

Next, in Step 2, once a valid state assignment has been
formed, it is shown that the actual combinational logic syn-
thesis step is critical to obtaining a logically initializable
circuit. New constraints on logic synthesis are proposed, which
are both necessary and sufficient for logical initializability.
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Interestingly, these constraints are shown to be precisely a
form of static hazard-freedom constraints[26] used in the
synthesis of asynchronous combinational circuits. Techniques
for synthesizing both two-level and multilevel initializable
circuits are then presented.

V. STEP 1: CONSTRAINED STATE ASSIGNMENT

This section presents the new constrained state assignment
step. Section V-A introduces ther new relaxed face-embedding
constraints, and Section V-B introduces the don’t-care intersec-
tion constraints.

A. Step 1(a)—Relaxed Face-Embedding Constraints

It is now demonstrated that the Cheng–Agrawal face-embed-
ding constraints can be overly restrictive. In some cases, they
may be safely pruned.

The intuition is as follows. The idea of logical initializability
is to apply an input sequence to drive a machine to a single
state. The result is a narrowing sequence of state groups (or
group faces). The Cheng–Agrawal method imposes constraints
on state assignment to insure that no state lyingoutsidethe cur-
rent simulated state group will be embedded within it, after state
assignment. Such an embedding may “derail” the simulation. In
contrast, we show that, in some cases, such an “outlier” state
may safely be embedded within such a state group. Such an
embedding is permitted as long as this state’s destination (next
state)reconverges, i.e., lies within the next state group in the
simulation sequence. Thus, certain embeddings are admissible
and will not derail the three-valued simulation.

1) Cheng–Agrawal Constraints—A Reexamination:
Example 5.1:Once again, consider the machine in Fig. 2;

100 is a synchronizing sequence for the machine, resulting in
state group sequence

From Example 3.3, the dichotomy constraints produced by the
Cheng–Agrawal method were

Clearly, at least three state bits are required to satisfy all
three constraints. However, a careful examination of the state
transition diagram of Fig. 2 indicates that, in fact, the di-
chotomy is unnecessary. Consider the transition

. Note that state also has a transition
on input 0 to , which belongs to the next state group,

. Therefore, it is safe to allow to be embedded in the
group-face of : even though is not part of the cur-
rent state group, , also has a transition on the given
input, which drives it to the correct next state group .
We call this scenario asafe embeddingof in , and
therefore can delete the dichotomy . Thus, there
is now a smaller set of dichotomy constraints to solve

Both of these constraints are satisfied by the two-bit state as-
signment ( , , , ), while still yielding a
correct three-valued simulation

In sum, by pruning the set of face-embedding constraints, a
shorter length state encoding can be used (two state bits instead
of three) that still ensures logical initializability.1

2) Safe Embeddings:The notion of safe embeddings
can now be formally defined. Let be a finite-state
machine having a functional initialization sequence,

. Here, is the th state group
in the initialization sequence and is the input applied to

. Let NS(current-state, input) be the next-state function.
An embedding of state in the group face of state group
is safewhenever the transition out of on the current input
NS is to a state in the specified next-state group ;
that is, whenever NS . In this case

and, therefore, as desired, if NS
. The embedding is safe because, even ifis embedded

within the group face of , the three-valued simulation for
will still result in the same value as it would if were

not embedded in the group face of.
3) Relaxed Face-Embedding Constraints:Using the above

notion, the set of Cheng–Agrawal face-embedding constraints
can safely be pruned. The original Cheng–Agrawal face-embed-
ding constraints were [(2)]

Cheng–Agrawal

Our new RFECs are

(3)

The RFEC constraints are clearly a subset of the orig-
inal Cheng–Agrawal constraints: implies
NS . Moreover, for any state such that

but NS , the Cheng–Agrawal con-
straints include the dichotomy , whereas the RFEC
constraints do not.

B. Step 1(b)—Don’t-Care Intersection Constraints

It is now shown that face-embedding constraints alone,
whether the original Cheng–Agrawal FECs or the new RFECs,
areinsufficientto ensure a state assignment that allows logical
initializability. New constraints, calleddon’t-care intersection
constraints,are therefore introduced to ensure initializability.

The intuition is as follows. The earlier face-embedding
constraints ensure that all symbolic states are encoded cor-
rectly. However, for a three-valued simulation,don’t-cares
mustalso be assigned correct next-state values. A don’t-care,

1In this example, we use 100 as the synchronizing sequence even though 00
is a shorter synchronizing sequence. However, the same problem can arise even
starting with a minimum-length sequence.
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after state assignment, may arise in two ways: 1) it may be
present in the original FSM specification (i.e., unassigned
next-states in an incompletely specified machine) and 2) it
may appear after state assignment, in binary state codes that
have no corresponding symbolic state. If don’t-care entries
are assigned arbitrary values, three-valued simulation may be
“derailed,” and logical initialization may fail. Interestingly, it
is shown that, after arbitrary state assignment, there may exist
no feasible assignment of values to don’t-cares which ensures
logical initializability. Therefore, state assignment itself must
be constrained to guarantee that don’t-care assignment for
initializability is feasible.

In this section, it is first shown how don’t-care (DC) assign-
ment has an impact on logical initializability. Next, conditions
on DC assignment are formulated to ensure that DC assign-
ment does not adversely affect logical initializability. It is then
shown that, under arbitrary state assignment, these conditions
may be unsatisfiable, and three-valued simulation may fail. Fi-
nally, new sufficient constraints on state assignment are intro-
duced (DCICs) to ensure that DC assignment for logic initializ-
ability is always feasible.

1) Impact of DC Assignment on Logical Initializability:The
following example illustrates the impact of DC assignment on
logical initializability.

Example 5.2:Consider the state machine of Fig. 4. Applying
the input vector 1 functionally initializes the machine to the
unique reset state . Thus, the machine has a single-vector ini-
tialization sequence: . The corresponding state group se-
quence is

There are no required face-embedding constraints, whether the
original Cheng–Agrawal FECs or our RFECs, since this state
group sequence is empty (the dichotomy constraints are trivial).
Fig. 4 shows a state encoding that trivially satisfies all the face-
embedding constraints (since there are none). Two bits are used
to encode the three states ( 00, 10, 01). The fourth
state code, 11, has no associated symbolic state. Such a state
code is anunassigned state codeor anonsymbolic state. There
are no specified next-state transitions for nonsymbolic states;
they are alldon’t-care next-state transitions.2

Care must be taken in assigning the next-state values to this
unassigned state code, 11. Such values will eventually be as-
signed during a later stage in the synthesis path (e.g., combi-
national logic synthesis). Suppose that this latter synthesis step
assigns this DC entry for state 11 on input 1 with a next state
value 11. In this case, the three-valued simulation trace is

Thus, the result is a logically uninitializable circuit. Simulation
fails because the assigned next state transition from state 11 to
11, on input 1, liesoutsideof the group face of the destination
state group, , thus throwing initialization off course. There-

2Alternatively, in an incompletely specified FSM, a don’t-care next-state tran-
sition can also arise in a state code corresponding to asymbolic stateif it has an
undefined next-state entry.

Fig. 4. The issue of assignment to don’t-care entries.

fore, if DC transitions are assigned arbitrary values (during logic
synthesis), a noninitializable circuit may result.

To avoid this problem, suppose the next state of 11 on input
1 is now be assigned the value 00 (corresponding to). The
following three-valued simulation results:

The circuit is now initializable. In this case, initializability is
achieved by assigning to the DC next-state entry a value lying
within the next group face, 00.

2) Don’t-Care Assignment for Logical Initializ-
ability: Based on the previous discussion, the key to proper
DC assignment is to assign to every DC next-state entryin the
current group face, a value thatlies within the next group face.
More formally, let machine have the following initialization
sequence

Let a state (symbolic or nonsymbolic) have a don’t-care next-
state entry on input , i.e., NS don't-care. Suppose that
state assignment has been completed and that the state code of
state is embedded in the group face of state group. Then,
assigning the next state NS of to lie within the group
face of will ensure initializability. Such a DC assignment
must be performed for every suchand .

More formally, assuming that StateCoderepresents the bi-
nary state code of and GroupFace represents the binary
group face of the state group, this condition can be written as
a tracking requirement:

StateCode GroupFace
StateCodeNS GroupFace

(4)

This requirement ensures that during three-valued simulation,
GroupFace( ) is always followedby GroupFace( ), thus
insuring initializability. By virtue of the definition of a synchro-
nizing sequence, the final group face is guaranteed to be the ex-
pected singleton state. Thus, given a synchronizing sequence,
the tracking requirement of (4) is a sufficient condition for log-
ical initializability.

3) Infeasible Satisfaction of the Tracking Requirement:In
the preceding example, a DC assignment could be applied to
ensure initializability. However, this is not always the case.

It is now shown that, after an arbitrary state assignment, sat-
isfying the tracking requirement may not always be feasible. In
particular, the example below shows that, using a state assign-
ment which satisfies the Cheng–Agrawal constraints (or our
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Fig. 5. Example illustrating unsatisfiable tracking requirement.

relaxed FECs) may result in an implementation that is logically
uninitializable for every possible assignment of don’t-cares.
This problem occurs because the tracking requirement may
impose conflicting DC assignments for certain total states.

Example 5.3:Consider the example of Fig. 5(a).3 The ma-
chine is functionally initializable. Applying the following syn-
chronizing sequence results in a sequence of state groups:

Fig. 5(b) shows a 4-bit state assignment that satisfies all the re-
sulting Cheng–Agrawal face-embedding constraints, as well as
our new relaxed face-embedding constraints. Bit vector 0111
is an unassigned state code, or nonsymbolic state, which is la-
beled . The detailed analysis below shows that logical initial-
izability is impossible with the given state assignment. In par-
ticular, cannot be assigned any next-state valuefor input 00
while still preserving logical initializability.

For the moment, don’t cares will be ignored. If atrue-valued
simulation is performed on the specified states, and the results
are collapsed at every time step into a three-valued vector, the
following simulation trace occurs:

3This state machine is incompletely specified, but note that our analysis also
applies to completely specified machines.

Ideally, the same result should be obtained for three-valued sim-
ulation when the effect of next-state transitions out of state
is included in the simulation.

The goal in the DC assignment to state is to satisfy the
tracking requirements outlined above. We begin by noting that
state is embedded in the group faces of both and

. Both of these state groups have specified transitions
in the initialization sequence on thesame input00. The latter
embedding mandates that the next-state value ofbe set to

in order to meet the tracking requirement [(4)]. The former
embedding requires that the next-state value be set to any state
in the column containing . Since the group faces
and are disjoint,these two conditions are not simulta-
neously satisfiable. That is, no next-state DC assignment exists,
for nonsymbolic state on input 00, which simultaneously sat-
isfies both tracking requirements. Therefore, the result is always
a logically uninitializable circuit.

Examining the example in more detail, the embedding of
within mandates the next-state value of on input
00 to be set to . With this DC assignment, the three-valued
simulation trace is

The machine is not logically initializable. Observe that initial-
izability gets derailed when the second state group, ,
receives input 00. The group face associated with is

. The next state group, , has an associated group
face, 10 . However, the unassigned state code, 0111 (labeled

), which is embedded within the group face of , has
been assigned to next state 0110 () on input 00, which lies
outside of next group face 10 . As a result, all four state bits
are reset to .

Alternatively, if were assigned a next-state transition that
was embedded within the third group face 10 , as desired,
then initialization would proceed normally at this step but would
be thrown off course on the final input vector. For example,
assuming now that NS , the following three-
valued simulation results:

Thus, since there are conflicting don’t-care assignment re-
quirements, the implementation is logically uninitializable.

4) Satisfying the Tracking Requirement–Don’t-Care Inter-
section Constraints:In this section, the state assignment step
itself is modified to guarantee that the tracking requirement al-
ways can be satisfied, and don’t cares can be correctly assigned.

Once again, consider a machine with the initialization se-
quence
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Let a binary state belong to two distinct group faces corre-
sponding to state groups and

StateCode GroupFace

StateCode GroupFace

Then the tracking requirement [(4)] results in the following pair
of constraints:

StateCode GroupFace

StateCode GroupFace

This pair of constraints may be unsatisfiable ifand are
identical inputs (revisited in the initialization sequence). That
is, if , the above two constraints reduce to one:

StateCode
GroupFace GroupFace

(5)

In this case, the tracking requirement is unsatisfiablepre-
cisely when the two next group faces, GroupFace and
GroupFace , are disjoint (i.e., have an empty intersec-
tion): there will then be no consistent assignment to the DC
entry for NS .

To ensure that the tracking requirement can be met, new
constraints are added to the state assignment. Informally, the
constraints force the two group faces in the above simulation
sequence [GroupFace() and GroupFace( )] to be disjoint
when there is a possibility that they may impose conflicting
DC assignments on any common unassigned states.

More formally, GroupFace( ) and GroupFace( ) in
the simulation sequence are forced to be disjoint whenever
two conditions hold: 1) the inputs applied to and in
the synchronizing sequence areidentical (i.e., ) and
2) the corresponding nextstate groups and are
disjoint. The motivation is that any unassigned statethat
lies in both of the “source” group faces [GroupFace() and
GroupFace( )] will have two requirements on its next-state
assignment under input : its next state must lie in both
GroupFace( ) and GroupFace( ). However, if the
next-state groups and are disjoint, there is a possi-
bility that their corresponding group faces [GroupFace( )
and GroupFace( )] will also be disjoint after state assign-
ment. In that case, the requirements on the DC assignment of

cannot be simultaneously satisfied.
Thus, our conservative solution is to separate the “source”

group faces: that is, if the symbolicstate groups and
are disjoint,force the binarygroup facesof and to be
nonintersecting.4 In this case, no conflicting DC assignment can
ever occur, since the “source” group faces of and no
longer intersect.

After imposing these constraints on state assignment, either
the next state groups and intersect [and, hence,
GroupFace( ) and GroupFace( ) will intersect] or
the current group faces GroupFace() and GroupFace( )
will be made disjoint. In each case, the tracking requirement
of (5) is now satisfiable, with no conflicting next-state DC

4Note that it will never happen thatG andG are disjoint, butG and
G have a symbolic state in common, since in this case they must have a sym-
bolic next state in common.

(a)

(b)

Fig. 6. (a) Bad state encoding and (b) good encoding

assignments. This new constraint between GroupFace() and
GroupFace( ) can be written as an type dichotomy
between two state groups, and : .

Example 5.3 (Continued):In the above example, we
therefore add a dichotomy constraint, ,
since the inputs in the synchronization sequence are identical
( ) for these two state groups, and the next state
groups [ and ] are disjoint. After
satisfying this dichotomy, the result is the new state encoding
of Fig. 6(b). This encoding does not suffer from the problem of
conflicting tracking requirements since there is no counterpart
of here: GroupFace( ) and GroupFace( )
are now forced to be disjoint. Effectively, there is no longer an

that is shared by two different group faces, since they have
been forced apart. Consequently, the new synthesized machine
is logically initializable.

The dichotomy constraints introduced above are called
“don’t-care intersection constraints.” They are formalized as
follows, where and are any two state groups appearing in
the initialization sequence and and are the corresponding
input vectors:

(6)

C. Solving the Initializability Constraints

Together, the RFECs of Section V-A and the DCICs of Sec-
tion V-B are sufficient to produce a state assignment that allows
the synthesis of a logically initializable machine. Both RFECs
and DCICs are dichotomy constraints. It is well-known that any
set of dichotomy constraints can always be solved. For example,
aone-hot[26], which uses one state bit for every symbolic state,
can be used to satisfy a set of dichotomies. However, such a
code is potentially expensive in terms of the number of state
bits. Therefore, more efficient algorithms have been developed
to solve dichotomies using fewer state bits [27], [31], [22], [9].
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VI. STEP 2: COMBINATIONAL LOGIC SYNTHESIS

Once constrained state assignment is complete, combina-
tional logic synthesis is performed. However, combinational
logic synthesis can adversely affect three-valued simulatability,
and hence logical initializability. That is, even after an FSM has
been state encoded in accordance with the method of Section V,
arbitrary combinational logic minimization can produce a
logically uninitializable implementation.

A previous approach to synthesis for logical initializability
[8] suggested thatsingle-output two-level minimization(as op-
posed to multioutput minimization) might ensure logical simu-
latability. However, in this section, it is demonstrated that this
approach is neither necessary nor sufficient. In addition, it has
the drawback that it is limited to two-level implementations, un-
like the proposed approach, which can produce multilevel im-
plementations.

In Section VI-A, it is first shown how combinational logic
synthesis has an impact on three-valued simulation. Then, in
Section VI-B, the key result of this section is presented: a the-
orem that precisely relatesthree-valued simulatabilityof a cir-
cuit withhazard freedomof asynchronous circuits. In particular,
it is proved that a combinational circuit is three-valued simulat-
able if and only if itstatic hazard free[19], [10] for certain mul-
tiple-input changes. Based on this result, in Section VI-C, both
two-level and multilevel synthesis methods for logical initializ-
ability are presented, which leverage off of existing hazard-free
logic synthesis methods.

A. How Logic Synthesis Affects Three-Valued Simulatability

The following example motivates how logic synthesis can af-
fect logical initializability under three-valued simulation.

Example 6.1:Let be the Boolean function of three vari-
ables and , shown in the Karnaugh map of Fig. 7(a). Let
be implemented as anAND–OR circuit using two product terms:

. Suppose the gate-level implementation of Fig. 7(a)
is simulated by a three-valued simulator. Assume that the pri-
mary inputs are set to . For , is func-
tionally equal to one, as seen from the Karnaugh map. However,
a three-valued simulator may evaluateas follows:

Therefore, the above implementation ofis logically uninitial-
izablesince it is not correctly simulatable to the value 1.

The Karnaugh map of Fig. 7(b) shows an alternate implemen-
tation of that is logically initializable: (where
the shaded region represents the added product term). In this
case, three-valued simulation yields the correct result

Initialization succeeds in this case sinceevaluates to oneirre-
spectiveof the value of . Therefore, this implementation of is
correctly simulatable for the input combination .

Thus, combinational logic synthesis is critical to insuring log-
ical initializability. Any synthesis method that does not incorpo-
rate initializability considerations cannot guarantee that the re-

Fig. 7. (a) Uninitializable and (b) initializable implementations ofY

sulting gate-level circuit will be initializable by a three-valued
simulator.

B. Simulatability and Hazard Freedom

This section states and proves the fundamental correspon-
dence between two different properties of an arbitrary combi-
national circuit: three-valued simulatability on the one hand and
static hazard freedom on the other.

Hazard freedomrefers to the absence of glitches at the out-
puts of a combinational circuit when the inputs to the circuit
undergo a transition [26]. Hazards are usually not a problem in
clocked, or synchronous, systems since all the circuit outputs
are assumed to have stabilized before the arrival of the clock
tick. However, in unclocked, or asynchronous, systems, freedom
from hazards is usually critical to correct operation.

In this section, the notion of three-valued simulatability, and
hence logical initializability, of a given synchronous circuit is
related to hazard freedom. The goal of this exercise is to estab-
lish a direct correspondence between these two seemingly dif-
ferent properties, and then leverage off of existing techniques
for hazard-free synthesis in order to synthesize logically initial-
izable circuits.

1) Example and Overview:The correspondence between
three-valued simulatability and hazard freedom is now illus-
trated by an example. Consider the two-level implementation of
Fig. 8 (from Example 6.1). In athree-valued simulationframe-
work, the highlighted column corresponding to
representsindeterminacyin the values of the inputs—the value
of is unknown. In order for to be simulatable to one for this
input combination, it is required that the cubebe contained
in some product of the cover. In the terminology of [19],
is called arequired cube; the stipulation that the two-level
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Fig. 8. Simulatability and hazard-freedom.

Fig. 9. A general multilevel circuit

implementation of must include at least one product term
that covers is acovering requirement.

In a hazard-freedomframework, the function is regarded
as being the output of an asynchronous combinational circuit.
Here, the input column is now viewed as rep-
resenting theinput transition (or, equivalently,

), which spans . It is well known that to en-
sure a glitch-free output —i.e., to ensure that remains at
one throughout the input transition, orstatic hazard free—it is
necessary that some product term in the implementation of
cover the cube [19], [26], [10]. Otherwise, the product term

may turn offbeforethe product term turns on, causing the
“1” output to momentarily switch to “0” and then back to “1.”
The presence of a product term covering the cubeensures that
the output does not glitch; holds the “1” value throughout the
transition. Once again, in the terminology of [19], is a re-
quired cube; the stipulation that a hazard-free two-level imple-
mentation of must include at least one term that coversis
a static hazard-free covering requirement.

This correspondence between three-valued simulatability and
static hazard freedom can now be formally stated.

Given a three-valued input vector, the covering re-
quirement for three-valued simulatability of an implemen-
tation of is identical to the static hazard-free covering
requirement to ensure a hazard-free implementation of
for any input transition that spans.Thus, for the given ex-
ample of Fig. 8, the following states the relation between
three-valued simulation and the transient (asynchronous)
behavior:
If the implementation of is not correctly simulatableto

one over the input combination , then each input transition
spanning (i.e., and ) has astatic
logic hazardfor the same implementation.

This result can be generalized from a two-level to an arbitrary
multilevel circuit of Fig. 9 as follows. Replace the three-valued
input vector by a corresponding input transition that spans the
three-valued input. Then, if the output of the circuit has a static
logic hazard, the circuit is nonsimulatable for that three-valued
input, and vice versa.

The remainder of this section is devoted to defining several
notions related to simulatability (Section VI-B2) and hazard
freedom (Section VI-B3), and then formally proving the above
correspondence between the two (Section VI-B4).

2) Three-Valued Simulation of a Network:The following
definitions formalize the notion of three-valued simulation.

Definition 1: Given a three-valued vector ,
a binary vector is coveredby vector iff

For example, the binary vector is covered by
three-valued vector . The next definition for-
malizes the notion of three-valued simulation of a single-output
combinational gate.

Definition 2 (Three-Valued Simulation of a Gate):Given a
gate corresponding to a Boolean functionof variables,

, and given a three-valued input vector,
the gate output is simulated by

iff covered by
iff covered by
iff

for some binary vectors
covered by

The definition states that a gate is simulated tounder a three-
valued vector if the vector covers at least one minterm where

has value 1 and at least one minterm wherehas value 0;
otherwise, the gate is simulated to the appropriate binary value,
1 or 0. Given a three-valued input, Definition 2 can be gener-
alized from gate simulation to a gate network simulation, by a
topological traversal from the inputs toward the output, applying
Definition 2 once to each gate.

3) Hazard Simulation of a Network:The following presents
basics of hazards in combinational logic. First, Kung’s nine-
valued hazard simulation algebra [12] is reviewed, and then the
notion of hazard simulation is formalized.

Kung introduced a hazard simulation algebra that clas-
sifies a transition on a wire into one of nine values

. The first two values,
and , representhazard-freestatic and static

transitions, respectively. Values and are
transient valuesand represent transitions and hazards.and

denote hazard-free dynamic and transitions,
respectively. and denote hazardousstatic
and transitions, respectively. and represent
hazardousdynamic and transitions, respectively.
Finally, , which represents a don’t-care transition, will not be
needed for the remainder of this section.

An input transition, or a multiple-input change, on a
set of input wires can be described as a vector

of corresponding values in Kung’s algebra, where
.

In order to relate three-valued simulation to hazard freedom,
it is important to give basic definitions for hazard freedom. The
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first is the classical notion of anatomic gatein the context of
hazard freedom.

Definition 3 (Atomic Gate):An atomic gateis a combi-
national logic gate that can be modeled as an instantaneous
Boolean operator followed by an arbitrary finite delay.

The next proposition indicates that, for the purpose of hazard
simulation, any input combination (minterm) that might be
reachable during an input transition is assumed to be reachable.

Proposition 1 (Reachable Inputs):Let be a set
of wires, and let be a corresponding input transi-
tion. Then, the set of input combinations, reachable on tran-
sition , is the set of all minterms
such that

Proof: In a hazard model that assumes arbitrary gate and
wire delays, worst case behavior is assumed [26], [12]. Hence,
if a minterm may be reachable under the given input transition
by some sequence of permitted events on the set of wires, it
is assumed reachable.

Proposition 2 (Hazard Simulation of an Atomic Gate):Let
be an atomic gate for a Boolean function. Let there be an

input transition at the inputs. Let the set of all the inputs reach-
able on this transition be noted by. For the purpose of hazard
simulation, any input that is reachable for some combination of
gate and wire delays is assumed to be reached. Therefore, we
have the following.

a) If , the gate output stays at zero
throughout the transition and is therefore hazard free:0.

b) If , the gate output stays at one
throughout the transition and is therefore hazard free:1.

c) If for some , the
gate output either exhibits a monotonic transition or is
hazardous for this input change.

Proof: Part a) follows directly from the definition of an
atomic gate (Definition 3)—if at all times the inputs seen by
the gate are those for which evaluates to zero, then under
an atomic gate model, the gate output must stay constant at
zero. Part b) is proved similarly. Part c) follows as well, since
during the input transition, the gate sees an input for which

and another input for which . By definition
of an atomic gate, the instantaneous operator evaluates to two
different values during the transition. Therefore, by virtue of
Proposition 1 (reachable inputs), the output will produce a tran-
sient value, i.e., one of .

The above definitions can easily be generalized to hazard sim-
ulation of a gate network: given an input transition, hazard
simulation of a gate network is performed by a topological tra-
versal from the inputs toward the output, applying Proposition
6.1 once to each gate.

4) Transformation—Three-Valued Vector Input Transi-
tion: Based on the above definitions, we now formulate anat-
ural transformationbetween aninput vector (used in three-
valued simulation) and a correspondinginput transition (used
in hazard simulation, under Kung’s nine-valued algebra).

In the following, assume that is an arbitrary three-valued
vector whose th bit is . A corresponding input transition

is constructed by replacing each zero entry inby a
transition (0), each one entry by a transition

(1), and each entry by any oneof the transient values
. More formally, the transformation

is denoted by the operator

for all bits of vector , where describes a set of corresponding
input transitions. For example, if is a three-valued
input, then is one of the input transitions corre-
sponding to vector .

5) The Correspondence Theorem:We now have all the tools
needed to state and prove the key theorem relating three-valued
simulation and hazard freedom of an arbitrary multilevel net-
work. The proof will essentially consist of a topological tra-
versal of the circuit, applying the above propositions once to
each gate.

We introduce the notation SIM is introduced
to represent the result of three-valued simulation of a circuit
with output for the three-valued input vector. Similarly,
SIM denotes the result of hazard simulation offor
the nine-valued input vector. Given these definitions, the
following key theorem lets us deduce the result of three-valued
simulation of a circuit from the result of hazard simulation, and
vice versa.

Theorem 1 (The Correspondence Theorem):Let be a
Boolean function implemented by a network of atomic
gates, let be any three-valued input vector, and let
be any corresponding input transition. Then, the three-valued
and hazard simulation results for the implementationof the
function correspond, as follows:

Sim Sim (7)

Sim Sim (8)

Sim

Sim (9)

That is

Sim Sim

Proof: The above correspondence is shown to hold for
everygate output in the network . The proof is by induc-
tion on the “depth” of the subcircuit in the transitive fan-in of
, where “depth” of this subcircuit is defined as the number of

gates on the longest path tofrom any of the primary inputs.
Induction Base:Let . Then, must be one of

the primary input wires, and the result holds by virtue of the
definition of the operator.

Induction Hypothesis:Assume that the results holds for all
wires of depth less than, .

Induction Step:Let wire be at a depth of . Then, is the
output of a gate with inputs . Let represent the Boolean
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function corresponding to the gate. Under three-valued simula-
tion, these gate inputs are represented by a three-valued vector

of size . Each of these inputs lies at a depth less than. We
now show that the same correspondence holds for outputof
gate . There are three cases.

Case 1: The function has value 0 for all inputs covered by
, i.e., for each binary vector covered by . Then,

in three-valued simulation, is simulated to zero, by Definition
2. Thus, SIM . In hazard simulation, let
the input transition seen by the gate be denoted by. By the in-
duction hypothesis, . Then, by definition of , each
transient in corresponds to an in , each zero in corre-
sponds to a zero in , and each one in corresponds to a one
in . Therefore, by Proposition 1, the reachable inputs during
input transition are all covered by . Therefore, by Propo-
sition 2(a), the gate output is hazard free under input transition

, with value . That is, SIM .
Case 2: Function has value 1 for all inputs covered by
. By similar reasoning as above, SIM and

SIM .
Case 3: In this case, the gate evaluates to both zero and

one; i.e., and for some cov-
ered by . Then, by Definition 2, SIM . By
Proposition 1, all those inputs that are covered byare reach-
able by a corresponding input transition. Therefore, bothand

are reachable during the input transition. By Proposition
2, . Combining this result with Proposition 2(c),
SIM must be a transient value in hazard simulation,
i.e.,, one of .

The above theorem states that, given an input vector, a
three-valued simulation of a gate network will result in value
0 (1) if and only ifthe corresponding hazard simulation on input
transition is hazard free at . The three-valued simulation
will result in if and only if the corresponding hazard sim-
ulation corresponds to an output change (either hazard free or
hazardous).

Tthe key corollary to this theorem that gives a precise
equivalence between nonsimulatability and existence of a static
hazard. But first, precise definitions of “simulatability” and
“nonsimulatability,”are needed, terms that we have thus far
used informally..

Definition 4 (Simulatability/Nonsimulatability):Boolean
function be implemented by a network of atomic gates.
Let be any three-valued input vector to be used to simulate
the circuit output. Then, network is said to besimulatable
for input if and only if one of the following holds:

1) SIM ;
2) SIM ;
3) SIM , and and for

some binary inputs covered by .
is said to benonsimulatablefor input if it is not simu-

latable for . For example, if , whereas
for all binary inputs covered by , then is non-

simulatable; clearly, the simulation does not accurately repre-
sent the value of the Boolean function.

It can be easily proved that there are only two cases in which
a network can be nonsimulatable:

1) SIM and for all covered by
;

2) SIM and for all covered by
.

In each case, given a nonsimulatable implementation, three-
valued simulation yields the value even though is either
functionally equal to one over all inputs covered byor func-
tionally equal to one over all such inputs.

The following key corollary now shows that nonsimulata-
bility implies existence of a static logic hazard transition, and
vice versa.

Corollary 1 (Nonsimulatability Static Logic Hazard
Transition): Let be a Boolean function implemented by
a network of atomic gates, and let be any three-valued
input vector. If is nonsimulatablefor three-valued vector

, then has astatic logic hazardfor each input transition
. Conversely, if has a static logic hazard for any

input transition , then is nonsimulatable for the
three-valued vector .

Proof: Suppose that is nonsimulatable for
input vector . Then, by Definition 4, SIM
must equal . As a result, Theorem 1 implies that
SIM . That is,
SIM is a transient. However, Definition 4 also
implies that is either functionally equal to zero over all inputs
covered by , or functionally equal to one over all such inputs.
Hence, under input transition, the function itself is stable at
one (or zero) throughout the entire transition, and therefore
is a static 1 (or static 0) transition. A transient at the output
therefore indicates a logic hazard. Therefore, SIM
must be a static logic hazard, (or ).

To prove the converse, assume thathas a static logic
hazard for some transition . Then, by Theorem 1,
SIM . However, by definition of a static
logic hazard, is either functionally equal to zero over all
inputs covered by or functionally equal to one over all such
inputs. Therefore, by Definition 4, is nonsimulatable for
three-valued input .

6) Summary: In summary, the key result of this subsection is
that, given an input vector, to ensure three-valued simulatability,
the circuit should bestatic logic hazard-freefor a given set of
input transitions. (These input transitions will correspond to the
input vectors taken from the group face sequence.) Conversely,
any circuit realization that is free of static logic hazards for those
input transitions is also three-valued simulatable.

C. Combinational Logic Synthesis for Initializability

The correspondence between nonsimulatability and the ex-
istence of static logic hazards (Corollary 1) provides a com-
plete method for the synthesis of initializable logic, after state
assignment is complete. The input vectors, which are applied
to the circuit, are those that arise in the group face simula-
tion sequence (when applying the functional initialization se-
quence).Three-valued simulatabilityis guaranteed by synthe-
sizing a combinational circuit that isstatic hazard freefor each
of the corresponding input transitions.
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In particular, the method is as follows: 1) identify the input
transitions that span the three-valued input vectors encountered
in the group face sequence and 2) synthesize a circuit that is
free of static hazards for those input transitions. Such static
hazard-free logic can always be synthesized, for any set of
(function hazard-free) input transitions, for both two-level and
multilevel logic [10], [19].

Two-Level: For the special case of a two-levelAND-OR im-
plementation, the conditions for hazard freedom have been pre-
sented in [10], [19], and [26]. To eliminate static logic haz-
ards, constraints imposed on logic synthesis make use of “re-
quired cubes.” A required cube is a cube that must be covered by
some product term of the cover. Techniques for minimization of
hazard-free logic based on required cubes are well known [19],
[24]. Moreover, the input transitions are function hazard free,
since the function value is all 0 (or all 1) throughout the transi-
tion. Therefore, the constraints for static logic hazard-freedom
can always be solved [19].5

Multilevel: Two different approaches can be used to syn-
thesize multilevel logic that is static hazard free for the given
input transitions. First, hazard-free circuits can be synthesized
in two steps: 1) perform two-level hazard-free logic synthesis
(as above), then 2) applyhazard-nonincreasing multilevel trans-
formations,which do not introduce any static hazards [12]. A
wide range of algebraic transformations have been identified as
hazard nonincreasing, including factorization and De Morgan’s
law. Alternatively, direct methods can be used for the synthesis
of hazard-free multilevel circuits based on binary decision dia-
grams (BDDs) [13].

VII. RESULTS

The two constrained synthesis steps—state assignment and
logic minimization—have been combined into a new CAD syn-
thesis tool calledSALSIFY. The tool is targeted to incompletely
specified synchronous FSMs. It can be used to synthesize both
two-level and multilevel circuits.

Results are compared with three alternative methods on
examples from the MCNC89 benchmark suite [14]. These
methods include: 1) aBASEmethod, which uses the KISS
optimal state assignment, but otherwise no additional con-
straints on state assignment or logic minimization; and 2) the
Cheng–Agrawal (CA) method, which includes their constraints
on state assignment, coupled with the KISS optimality con-
straints, but no constraints on logic minimization. Finally, to
highlight the impact of our newhazard-free logic minimization
step (Section VI), we run a hybrid method 3) CA HF,
which combines the existing Cheng–Agrawal state assignment
method with the new hazard-free logic synthesis step. In each
case, the focus is on two-level logic implementations. Results
of the methods are compared with respect to two criteria: 1)
logical initializability and 2)overhead.

Methodology: Results for 14 state machines from the
MCNC89 benchmark suite are presented. Each machine is

5A simple proof that a solution always exists follows from the fact that a
trivial cover that is the sum of all the prime implicants will always satisfy all
the static logic hazard-free covering requirements. Such a solution is expensive,
but unnecessary; in practice, when an exact hazard-free minimizer is used, the
overhead in satisfying hazard constraints is often negligible [19].

functionally initializable, and the same initialization sequence
is used for each synthesis method. For each machine, the
optimal state encoding constraints of [17] are first generated.
Then, the appropriate initializability constraints for each of
the different synthesis methods are generated (except for the
BASEmethod, which uses none). The dichotomy constraints
are then solved to obtain a final-state assignment. Next,
two-level multioutput logic minimization is performed (either
nonhazard-free using SIS’s espresso-exact or hazard free [19],
[24]) to synthesize a gate-level circuit. The circuit is then
simulated with a three-valued simulator to verify whether it
was logically initializable for the synchronizing sequence used
for its synthesis.

A. Logical Initializability

Table I focuses on the most important property of the syn-
thesized circuits:logical initializability. The table indicates if
the gate-level implementation was actually initializable by the
synchronizing sequence used for synthesis, when simulated by
a three-valued simulator. As expected, the trend shows that log-
ical initializability improves in moving across the table from left
to right.

The BASEmethod fares poorest in logical initializability,
whereasSALSIFY guarantees logically initializable circuits in
every case. Note that in some cases (see, BASE, CA, CAHF),
the synthesized circuit happens to be logically initializable,
while the method itself does not include sufficient constraints
to guarantee initializability. In these cases, either the state
assignment happens to satisfy our additional new constraints
(DCICs), even though these constraints were not included
in the method; or the logic synthesis step happens to ensure
hazard-free logic, even though the method did not require it.

For example, note that for two benchmarks and ,
the CA HF method does not guarantee initializability, but
the actual implementations happen to be initializable. However,
an alternative implementation, which uses a different solution
to the state assignment constraints of CAHF that does not
happen to satisfy our new required DCIC constraints, could be
logically uninitializable.

A comparison ofSALSIFY and CA highlights the effectiveness
of our new method over the earlier Cheng–Agrawal approach: in
the latter, only three out of 14 circuits are logically initializable,
while all circuits produced bySALSIFY are logically initializable.

Finally, a comparison of the CA and CAHF columns high-
lights the critical importance of our new combinational logic
synthesis step for initializability: using the same state assign-
ment, while 11 circuits in CA are uninitializable, all synthe-
sized circuits happened to be logically initializable when our
constrained logic synthesis method was included (CAHF).

We should point out that one conclusion is to use the CA
HF method: generate a circuit, and test if it is logically initial-
izable. While initializability is not guaranteed, it may in fact
hold in many cases. Alternatively, one can use our RFECs
HF, with a pruned set of face-embedding constraints. However,
only the full method,SALSIFY, which includes DCIC’s, is guar-
anteed to produce a logically initializable circuit. Since DCIC’s
are so rarely needed, this is the most straightforward approach.
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TABLE I
COMPARISON OF THECORRECTNESS OF THE FOURSYNTHESIS METHODS

TABLE II
COMPARISON OFSYNTHESIS METHODS

B. Overhead

Table II evaluates the overhead of the four synthesis methods
as measured by three parameters: 1) number of state encoding
constraints, 2) state code length, and 3) number of gates.

Number of State Encoding Constraints:The column “no. of
encoding cons.” lists the total number of face-embed-

ding constraints used in state assignment. These include the
KISS optimality constraints, as well as any additional face-em-
bedding constraints for initializability (either FECs or RFECs).
Additionally, for SALSIFY, the number of DCICs is shown in the
column “no. of cons.”

For all such columns, only the number ofirredundantcon-
straints is listed; a constraint that is subsumed by other con-
straints is not counted. Note that the number of dichotomy con-

straints is only a very rough indicator of the restrictiveness of
those constraints. For example, a single dichotomy may sub-
sume several smaller dichotomies [e.g., is more re-
strictive than ]. The table shows only mod-
erate variance in the number of face-embedding constraints.
Also, while theBASEmethod tends to have fewer constraints
than the initializability methods (e.g., train11), this is not always
the case (e.g., dk17).

Interestingly,SALSIFY required use of our the new DCICs for
only two circuits (dk27, dk512), and, moreover, only one DCIC
for each. These DCIC constraints were shown to be critical
for guaranteeing initializability. Thus, whereas existing methods
may not always achieve initializability, our method uses DCICs
to guarantee initializability often at little cost.
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State Code Length:Code length, or the number of state bits
used to encode the machine, is another parameter to compare
optimality of the methods. As expected, theBASEmethod al-
ways produced the shortest code length because it uses the least
constraining set of constraints. In only four examples, though,
was one extra state bit used in CA and CAHF, over the base
method. Interestingly,SALSIFY produced state encodings that
were the same length as codes produced by CA or CAHF, ex-
cept for one example,lion9, whereSALSIFY produced a shorter
encoding, using seven state bits instead of eight.

In sum, while the new face-embedding constraints, RFECs,
are a pruned version of the Cheng–Agrawal FECs, this relax-
ation had little impact on resulting code lengths. It is possible
that RFEC’s will have a greater impact on larger examples.
However, more important, the state code length across all of the
initializability methods differed little from the BASE method.

Gate Count: The column “No. of gates” lists the number of
gates used in the final two-levelAND-OR circuit implementa-
tion. For the purpose of this comparison, it is assumed that each
product term is implemented using oneAND gate, and that all
the products are summed together using oneOR gate. From the
table, it is clear thatSALSIFY incurs low logic overhead over the
BASE method in order to ensure initializability (215 gates total
used bySALSIFY for the 14 examples versus 203 gates total used
by BASE). A comparison with CA and CA HF also shows that
the gate counts of circuits producedSALSIFY compare favorably
with those of CA and CA HF.

VIII. C ONCLUSIONS

This paper has presented the first sound and systematic
method for the synthesis for logical initializability of syn-
chronous FSM’s. The method provides both a state assignment
step and a combinational logic synthesis step.

For state assignment, two sets of dichotomy constraints were
introduced. First, relaxed face-embedding constraints were pre-
sented. These constraints are safely pruned versions of existing
face-embedding constraints [8]. Second, don’t-care intersection
constraints were introduced and were shown to be critical for
initializability.

For combinational logic synthesis, it was first demonstrated
that unconstrained logic minimization can render a circuit log-
ically uninitializable under three-valued simulation. Necessary
and sufficient conditions on combinational logic synthesis for
initializability were presented. These conditions are identical to
ensuring static logic hazard freedom for input transitions that
correspond to three-valued vectors that arise when applying the
initialization sequence. Finally, synthesis methods to generate
two-level and multilevel logic for initializability were presented.

Combined together, given a functionally initializable specifi-
cation, our synthesis method guarantees logical initializability
for the resulting circuit under three-valued simulation. In ad-
dition, unlike existing methods, it can correctly handle incom-
pletely specified finite-state machines and can produce multi-
level circuits as well. Benchmark results show low logic over-
head.

The basic results of this paper, especially the correspondence
between three-valued simulatability and static hazard freedom,

may also be applicable not only for logical initializability but
also for the synthesis of fully simulatable multilevel circuits
(e.g., [6]).
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