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Synthesis for Logical Initializability of Synchronous
Finite-State Machines

Montek Singh and Steven M. Nowick

Abstract—togical initializability is the property of a gate-level  simulation is that, while the former uses sets of symbolic states
circuit whereby it can be driven to a unique start state when sim- - tg simulate the machine, the latter uses three-valued vectors to
ulated by a three-valued (0, 1,X) simulator. In practice, commer-  yaan track of the possible states of the machine. Thus, a precon-

cial logic and fault simulators often require initialization under dition for loaical initializability of th te-level circuit is that
such a three-valued simulation model. In this paper, the first sound ition for logical initializability of the gate-level circuit is tha

and Systematic Synthesis method is proposed to ensure the |ogica|the Underlying finite state machine be fUnCtiona”y initializable.
initializability of synchronous finite-state machines. The method In practice, the notion of logical initializability is important.

includes both state assignment and combinational logic synthesis Commercial and academic logic and fault simulators and non-
steps. It is shown that a previous approach to synthesis-for-ini- g5 ATPG tools are often based on a three-valued simulation

tializability, which uses a constrained state assignment method, . .
may produce uninitializable circuits. Here, a new state assignment model [16], [1]. These tools cannot work effectively if the under-

method is proposed that is guaranteed correct. Furthermore’ itis |y|ng circuitis not three-valued initializable. NOte, hOWeVer, that

shown that combinational logic synthesis also has a direct impact three-valued simulation is a coarse model, which only safely ap-
oninitializability; necessary and sufficient constraints on combina- - proximates functional simulation: at any time instant, a three-
tional logic synthesis are proposed to guarantee that the resulting valued simulator can only approximate the possible states of

gate-level circuits are logically initializable. The above two syn- . . .
thesis steps have been incorporated into a computer-aided designthe machine by representing them with a three-valued vector.

tool, salsify, targeted to both two-level and multilevel implementa- N particular, it is well known that a three-valued simulator may
tions. compute the logic value of a function to Bé (unknown) even

Index Terms—Automatic test-pattern generation (ATPG), de- )‘ijen the value can be functionally determined to be a “0” or
sign for testability, finite-state machines, hazards, initializability, “1”[3]. Nonetheless, the three-valued model is widely used be-
logic simulation, logic synthesis, state assignment, synchronizing cause of its simplicity and effectiveness.

sequence, testability, testing, three-valued simulation. In this paper, rather than attempt to modify commercial logic
and fault simulators by adopting a more accurate simulation
I. INTRODUCTION model, our aim is to synthesize a circuit itself is logically ini-

. o tializable. Several previous approaches to this problem have
I NITIALIZABILITY is a property of a circuit th_at €NSUres peen proposed. Some methods oahalyzea gate-level cir-
that it can be driven to a unique known state, irrespective gt 1o search for valid initialization sequences [28], [30]. In
Fhe startup state.. Inltle}llzabnlty is important in orQer to phySContrast, other methods attempt ggnthesizea logically ini-
ically reset machines if they get out of synchronism. Furthefiyjizaple gate-level circuit from a functionally initializable fi-
more,llt is required for several fault simulators and nonscan gjte-state machine [7], [8]. In this paper, our strategy is to focus
tomatic test-pattern generators (ATPGs) to work effectively. Exy, the synthesis step: to synthesize gate-level implementations

amples of such ATPGs include STG [16] and CONTEST [1]. of synchronous finite-state machines (with little overhead) that
Two notions of initializability are widely usedunctional ini- 5 guaranteed to be logically initializable.

tializability andlogical initializability. A finite-state machine
(FSM) is said to béunctionally initializableif it is initializable A, Contributions of This Paper

by a series of inputs whefunctionally simulatedFunctional . ' . .
; . . In this paper, the first sound and systematic synthesis method
simulation keeps track of all the symbolic states the state ma- A
: : : . . .~ Isintroduced to ensure the logical initializability of synchronous
chine can be in at any time, when subjected to a series of inpuis. : . .
) . . J A nite-state machines. It is shown that two synthesis steps—state
This series of inputs that initializes the state machine is called Jts

e o assignment and combinational logic synthesis—have an impact
synchronizing sequencoeinitialization sequencen contrast, a L T .
AN . S PR on logical initializability. The new method therefore provides
gate-level circuitis said to Hegically initializableif it is initial-

izable under a series of inputs when simulated tyee-valued algorithms for each of these steps.

simulator. The difference between functional and three-valued State ASS|gnmentM|c;o f'TS.t 'pO.Inte(.j'OUt [18] that statg as-
signment can affect logical initializability. For example, if the

sole objective of a state assignment is to minimize the number
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the constraints on state assignment imposed by this method ¢ , \ \grjee et AL
neither necessary nor sufficient.

The contributions of this paper toward state-assignment-fo

initializability are twofold: 1) we first identify where the con-
straints of [7] and [8] can be easily and safeiyunedand 2) CHENG/AGRAWAL - SALSIFY
we identify whereadditional new constraints are required (ir- ~— [ (SINGH/NOWICK)

respective of whether or not the constraints of [7] and [8] Wert .., xrapHAR ET AL [
pruned). The resulting combined set of state assignment co
straints is sufficient: the method is guaranteed to produce a stz

[ IState Machine Specification ]

assignment that allows one to synthesize a logically initializabl Tech Mapping
circuit, given a valid functional initialization sequence. Physical resettability e $\~3-va|ue o simulation

Combinational Logic SynthesisSeveral researchers have Test Generation
pointed out the impact of combinational logic synthesis on
three-valued simulation and initializability [6], [8]. In oneFig- 1. Synthesis for initializability
approach to initializability, it is hypothesized thghgle-output

two-level logic minimizatiormay ensure initializable circuits step of our method, and Section VI presents details of the com-
[8]. In related research on logic simulation,camplete sum pinational logic synthesis step. Finally, results on a set of bench-

two-level implementation is proposed, i.e., including all primgark examples are presented in Section VII, and Section VIII
implicants, to guarantee logical simulatability [6]. In this papegjiyes conclusions.

we show that, for logic initializability, the former approach does
not always succeed, and the latter approach may be suboptimal.
The contributions of the paper toward combinational logic . PREVIOUS WORK

synthesis are the following. There has been much work on initializability of finite-state
1) Both necessary and sufficient constraints on combingpchines, as well as on three-valued, or logic, simulation.
tional logic are proposed to guarantee logical initializ-
ability.
2) A two-level logic minimization method is introduced,
which incorporates these constraints. Traditionally, several approaches to initializability have been

3) Precise constraints for multilevel Synthesis are propos@@nSidered. Each of these assumes different models of initializ-
that can ensure initializable logic. ability (such as single or multivector) and of simulation (such as

Interestingly, the new constraints are precidedyard-freedom functional or logical). _Furthermore, while some r_ne_tho_ds only
constraints[26] used in the synthesis of asynchronous Combsli_nalyzea state machine to search for valid |n|t|aI|zat|_on se-
national circuits. que_nces_[Z_;],_[ZS], [30], other m_eth(_)ds attempsmthesae_a _

A further contribution is that, unlike previous methods [7]".39.ICaIIy |n_|t|.aI|zabIe gate-lgvel circuit from a functionally ini-
[8], our new method can correctly handiecompletely speci- tializable fmne—state machine [7], [8].
fied finite-state machine8oth the state assignment and combi-_S€veral analysis methods have been proposed. &tf.

national logic synthesis steps ensure that consistent logic valé?e]s] present a ;earch procgdgre to ffudcﬂoqal |n|t|aI|z.at|.on .
can be assigned to “don't-cares” such that three-valued initiseduencesstarting from a finite-state machine description, if
ization is feasible any exist. Wehbeh and Saab [28]-[30] propose a method to

The two modified synthesis steps have been combined irg[fanerate botHunctional and logical initialization sequences,

a computer-aided design (CAD) synthesis tool calledsiFy sta’\Ar\ltlng frqmla gater;le(\j/elhcwcug. q hesize ini
(state assignment and logic synthesis for initializability of fi-, ternatively, methods have been proposed to synthesize ini-

nite state machines). The tool is targeted to both two-level a ahzable circuits. A typical synthesis path consists of several

multilevel circuits. Experimental results indicate that little aredlePs (see '_:'g' b. In|t|aI|z_ab_|I|ty c<_)n3|derat|ons can be_ incorpo-
overhead is necessitated by the added constraints. rated at various levels. This figure is annotated to highlight some

In summary, given a finite-state machine and a valid fun@-f the recent work on initializability targeting different levels in

tional initialization sequence, the new approach provides a comt-3 synthesis path.

plete synthesis path that produces a gate-level circuit guaranteeg2nerieest al. [2] present a technique fasynchronousyn-
to be logically initializable. thesis that targets the highest level in the synthesis path: the

top-level specificationgignal transition graph The idea is to
modify specification itself to ensure functional initializability.
Initializability is achieved only at the cost of some reduction in
This paper is organized as follows. Section Il summarizes p@sncurrency. This approach targets a different synthesis level
vious work on initializability as well as three-valued simulation(behavioral), design style (asynchronous), and type of initializ-
Section Il reviews in detail an existing synthesis-for-initializability (functional) from our proposed approach.
ability method that was used as the starting point for our re-Miczo pointed out [18] thastate assignmerdan affect ini-
search. Section IV provides a short overview of our entire sytializability. In particular, it is shown that while some state en-
thesis method. Section V presents details of the state assignnoentings of a given state machine produce logically initializable

A. Initializability and Synthesis-for-Initializability

B. Organization
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1 0 (51.52.33549 prior work that has formally proved the exact correspondence
! . 84)"’/ 0 269 between simulatable logic and static hazard-free logic.
@ 0 6 ' 1 In this paper, the correspondence between three-valued sim-
0 1 159 Sts2) qlatability and stati.c .hazard freedom _is formally proyed (Sec-
Foset (S 2N tion VI), thus providing precise requirements enabling us to
State 1 (83) Reset (5%] 618 synthesize simulatable circuits. Furthermore, while these earlier
0 State crsh O methods only focus on two-level requirements for simulatability
[6], [4], [8], our new formulation allows one to synthesize fully
Fig. 2. Example FSM and synchronization tree. simulatable multilevel circuits as well.
circuits, other encodings do not. Cheng and Agrawal [8] pro- ll. B ACKGROUND—THE CHENG-AGRAWAL METHOD

vide a constrained state assignment algorithm to produce logThis section reviews the Cheng and Agrawal state assign-
ically initializable circuits from functionally initializable syn- ment method [7], [8], which is the starting point of our method.
chronous specifications. However, as will be shown, their presiyen a finite-state machine and a synchronizing sequence, the
pose_d synthesis constraints are ne|t.her necessary nor s_ufﬁmggtsic approach is to use a constrained state assignment step
In this paper, we target an alternative set of state assignmgiknsure logical initializability. After highlighting the impact
constraints which are guaranteed sufficient. of state assignment on logical initializability, the details of the

The method of Chakradhaet al. [5] for asynchronous cheng-Agrawal state assignment method are reviewed.
synthesis targets theombinational logic synthesistep for

initializability. Their method is essentially a search procedurg Impact of State Assignment on Logical Initializability
for finding initialization sequences and concomitant don’t-care

assignments in order to synthesize initializable asynchronoud! IS Well known that state assignment may have an effect on
circuits. However, the method targets a different design stjfgical (three-valued) initializability [18], [7], [8]. An example
(asynchronous) and only considers the combinational |od||ystrates the impact and also introduces some useful termi-
functionality (it does not include logic covering requirements§1°l0gy- _ _ o

In this paper, we provide constraints on logic synthesis for theExample 3.1:Consider the functionally initializable ma-
corresponding synchronous problem and also include logifineM in Fig. 2. At startup, the machine can be in any state:

covering requirements. S1 or Sy or S3 or S4. The termstate grouprefers to a set of
Alternative approaches select an appropriate subset of fl ates. Thus, the initial sta.te group of the machine is.written as
flops to be partially reset [15], [20]. 51525354). When the series of inputs— 0 — 0, simply

written as 100, is applied to the machine, the machine is driven
to a unique staté. irrespective of the initial state. Therefore,
I = 100 is called asynchronizing sequenad M. The trace
Three-valued simulation has been used for decades bothdéstate groups, ostate group sequengthat results when the
logic simulation as well as hazard analysis. The earliest ref@iput sequence 100 is appliedAd is
ence to three-valued simulation is perhaps the use of ternary al-
gebra by Yoeli and Rinon in 1964 to study hazards in combi-
national circuits [32]. Subsequently, three-valued algebras were
used by Eichelberger [10] to detect hazards in logic circuits, a
by Jephsomt al.[11] to simulate the operation of digital circuits
in the presence of unknown values.
There have been a few attempts at synthesis of combinatio

B. Three-Valued Simulation and Hazard Freedom

(51555554) —(5152855) —(S154) —=(Ss). (1)

ﬁlﬂerefore, the machine fanctionally initializable

When logical initializability is required, however, the syn-
rngﬁonizing seguence must also converge under three-valued
logic to ensure simulatability or initializability [6], [4], [8]. The simulation. Once states have been encoded, a three-valued sim-

. L lator uses a sequencegrbup faceso represent the simulation
technique of [6] produces a two-level circuit that can be Su?r_ace Each group face is a three-valued vector, representin
cessfully simulated by using @mplete sunimplementation, ' group » rep 9

i.e., including all prime implicants. Another two-level synthesighe smallest contaln_mg cube” for the corrgspondmg binary
approach [4] notes the need foonsensugproducts to enhance states. A group faqe |s‘corr_1p.uted as fOHO.WS' ttrebit in the
simulatability but does not guarantee simulatable circuits. F%]E'OUp face 'S.l ©) 'f_th@th b't.m the_encodlng of all the stat_es
the more limited problem of insuring logical initializability, it 2 the group is 1 (0); otherwise, it i¥’. Thus, for example, if

has been suggested theingle-output two-level minimizationmg Stritue efgizdégfggoghgfﬁ 016’56?: 1&,05% tl)g) t\év:rsen?slfgs't
might ensure a correct implementation [8]. group P 9 t6,.5%)

However, none of these methods has noted the tight connCUbe containing 00 and 10¢0. Similarly, the group face of

tion between three-valued simulatability and hazard freedoﬁ‘*) is ten, and the group face @, 5>8) is X X.
: ) . , Thegroup face sequends the resulting trace of group faces
In particular, while the constraints proposed by the first tWﬁ}1

of these approaches relate to constraints for asynchronou"’slzt results when the series of inputs is applied. Thus, for the

hazard-free design [10], they do not explicitly note thaq1aChIne in the above example, the group face sequence is
hazard-free synthesis may provide theecise conditiondor L o o
three-valued simulatability. In fact, we are unaware of any XX —XX— X0—10.
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Since the three-valued simulation converges, the resulting il Before state assignment: state group sequence
plementation igogically initializable O Input=1 input=0 Input=0
Next, consider a different state assignment for the same n

R N —"— \
Example 3.2: Assume that state encoding:( 00, S»: 01, 5‘--\/53,-53 o ..

S3: 10, S4: 11) is used for the specification of Fig. 2 instead. Ir

this case, the group face sequence is
After state assignment: group face sequence

1 0l 0l
XX —XX—XX—XX. $4 100 s4 s S
ss Ao s3 s3 s3 ))
001 4 1 4 0 0

]
S _ _—

S1

This sequence does not converge to a single state; thereft
the implementation ifogically uninitializable O Y s2 s2 s2
Example 3.2 demonstrates the impact of state assignment on
logical initializability—arbitrary state encoding can render cirfig- 3.  Groups faces “track” state groups.
cuits uninitializable by a three-valued simulator, even though the
state group sequendenctionallyconverges to a unique state. Example 3.3:Given the finite-state machine of Fig. 2 and
This problem arises since a three-valued simulator can only sithe synchronizing sequence 100 [(1)], the Cheng—Agrawal
ulate group faces, not state groups; there is a loss of infornface-embedding constraints afe&;5253; S4), (S154; S2),
tion during three-valued simulation. Thus, even though both ahd (51.54; S3). Note thattrivial face-embedding constraints
the state encodings of Examples 3.1 and 3.2 are satisfactorydan always be omitted: those whose left side consists of a
functional or physical initializability, the state encoding of Exsingleton state. A state assignment satisfying these dichotomies

ample 3.2 is inadequate for three-valued initializability. is (S1: 000, So: 010, S3: 001, S4: 100). In this example, the
first state bit satisfies dichotoms; .52 55; S4): the bit is 0 for
B. State Assignment for Logical Initializability statesSy, So andSs, but is 1 for stateS,. Similarly, the other

The goal of the Cheng—Agrawal method is to produce a stawzo state bits satisfy the remaining dichotomies. Thus, the state

. . coding ensures that the state code dgr 100, is not em-
assignment, such as that of Example 3.1, that provides Iﬁ; - )
ical initializability. That is, the state assignment should allo dded in the group fadiX X of state grouQS;LSgél‘g) during

the sequence of group faces to “track” the sequence of sttte first step in the three-valued simulationX X — 0X X.
groups, and therefore ensure logical initializability. To this end, Fig. 3 shows graphically the state group sequence and the cor-
the method introduces constraints into the state assignment skepponding group face sequence after three-valued simulation.

These constraints are in the formdithotomieg17], [25]. three-valued simulation converges to the correct value, 100
A dichotomy constraint, or simply dichotomy, is written as L o o

(X; Y), whereX andY are disjoint sets of states. A constraint XXX —0XX — X00— 100.

(X; Y) is the stipulation that the smallest containing cubes of

X andY, after state encoding, do not intersect. This dichotomy U

constraint issatisfiedby a state encoding if some state bit has

the value 1 for all states iA and the value O for all states In, IV. NEW SYNTHESIS-FOR-INITIALIZABILITY

or vice versa. If the cardinality of the state sétis n and the METHOD—OVERVIEW

cardinality ofY is &, the constrainf.X'; Y') can be called &pe
n — k dichotomy
The constraints used by Cheng and Agrawal are type 1

d'ChOtO(;mﬁs’ also cfalr!eti:ce—ecr:nk?edd!ng condstra|g[];$7]. An cludes a complete combinational logic synthesis step.
n — 1 dichotomy of the form(Gy; s;) is introduced for every ;0 o incompletely specified finite-state machine and a

;mgleton symbolic stats; not present in the state group; synchronizing input sequence, a new constrained state assign-
in the state group sequence. That is, a symbolic state that d t step is proposed, in Step 1. This step in tun has two

not belong to a state group is forbidden from being embedd rts: First, it generates a setrefaxed face-embedding con-

in its group face after state encoding. This requirement appl&?aints(RFECs), which is a pruned version of the set of orig-

T[O all st_ate groups enco_untered when a synchronizing SeqUEpCE Cheng-Agrawal face-embedding constraints. Second, it is
!S_?DF"'G‘.’ to the machine. More formally, given a function hown that neither our RFECs nor the earlier FECs alone are
Initialization sequence sufficient to ensure logical initializability. Therefore, additional
I I, I constraints, calledon’t-care intersection constrain{f®CICs),
G —Gy— - — Gy are imposed that guarantee logical initializability.

Next, in Step 2, once a valid state assignment has been
the Cheng-Agrawal face-embedding constraints (FECs) @oemed, it is shown that the actual combinational logic syn-
written as thesis step is critical to obtaining a logically initializable

circuit. New constraints on logic synthesis are proposed, which
Cheng-AgrawaFEC = {(G;; s;)|s; € G:}. (2) are both necessary and sufficient for logical initializability.

Our proposed synthesis method for logical initializ-
ability builds partly on the state assignment method of
Cheng—Agrawal, but with significant extensions. It also in-
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Interestingly, these constraints are shown to be preciselyBath of these constraints are satisfied by the two-bit state as-
form of static hazard-freedom constraintR6] used in the signment §;: 00, Ss: 01, S3: 11, S4: 10), while still yielding a
synthesis of asynchronous combinational circuits. Techniquesrect three-valued simulation

for synthesizing both two-level and multilevel initializable L o o

circuits are then presented. XX — XX —X0—10.

In sum, by pruning the set of face-embedding constraints, a

shorter length state encoding can be used (two state bits instead
This section presents the new constrained state assignnadithree) that still ensures logical initializability. O

step. Section V-A introduces ther new relaxed face-embedding?) Safe EmbeddingsThe notion of safe embeddings

constraints, and Section V-B introduces the don’t-care interse@@an now be formally defined. LetM be a finite-state

V. STEP 1: CONSTRAINED STATE ASSIGNMENT

tion constraints. machine having a functional initialization sequence,
I I I, .
_ _ Gy =5 Gy — -~ Gpyy. Here, G; is theith state group
A. Step 1(a)—Relaxed Face-Embedding Constraints in the initialization sequence anf is the input applied to

It is now demonstrated that the Cheng—Agrawal face-embed;. Let NSurrent-state, inpJt be the next-state function.
ding constraints can be overly restrictive. In some cases, thd) embedding of state; in the group face of state groug;
may be safely pruned. is safewhenever the transition out af; on the current input

The intuition is as follows. The idea of logical initializability NS(s;, I;) is to a state in the specified next-state grakip ;;
is to apply an input sequence to drive a machine to a sindl@t is, whenever NS, I;) € Gi4.1. In this case
state. The result is a narrowing sequence of state groups (or _ .
group faces). The Cheng—Agrawal method imposes constraints G; — G411 = (G; U {s;}) —(Giy1 U NS(s;, 1))
on state assignment to insure that no state lgiaigidethe cur-

rent simulated state group will be embedded within it, after statg 4 therefore. as desirdd;; U{s;}) o Giy1ifNS(s;, I;) €
’ ’ T J ) 70+t

assignment. Such an embedding may “derail” the simulation.({,m‘ﬂ' The embedding is safe because, evesy ils embedded

contrast, we show that, in some cases, such an “outlier” stgighin the group face of;, the three-valued simulation for
may safely be embedded within such a state group. Such @n_ iyl siill result in the same value as it would ¥; were
embedding is permitted as long as this state’s destination (Ngt embedded in the group face@f.

state)reconvergesi.e., lies within the next state group in the 3) Relaxed Face-Embedding Constraintdsing the above

simulation sequence. Thus, certain embeddings are admiss'm;ﬁon' the set of Cheng—Agrawal face-embedding constraints

and will not derail the three-valued simulation. can safely be pruned. The original Cheng—Agrawal face-embed-
1) Cheng-Agrawal Constraints—A Reexamination: ding constraints were [(2)]

Example 5.1:Once again, consider the machine in Fig. 2;
100 is a synchronizing sequence for the machine, resulting in Cheng-AgrawaFEC = {(G;; s;)|s; € Gi}.
state group sequence
Our new RFECs are

1 0 0
(51.525385) —(515253) —(51.54) —(S0). RFEC = {(Gi; 5,)INS(s;, 1) € i}, (3)
From Example 3.3, the dichotomy constraints produced by tiffe RFEC constraints are clearly a subset of the orig-
Cheng-Agrawal method were inal Cheng-Agrawal constraintss; € G; implies
NS(s;, I;) € Giy1. Moreover, for any states; such that
{(515253; 54), (5154; Sg), 5154; Sg)} 54 ¢ G; but NgSJ, IZ) € Gi+1, the Cheng—AgrawaI con-

straints include the dichotom{G;; s;), whereas the RFEC
Clearly, at least three state bits are required to satisfy afynstraints do not.
three constraints. However, a careful examination of the state
transition diagram of Fig. 2 indicates that, in fact, the diB. Step 1(b)—Don't-Care Intersection Constraints

chotomy(:515253; S4) is unnecessary. Consider the transition |t js now shown that face-embedding constraints alone,
(515253) —°(5154). Note that states, also has a transition whether the original Cheng—-Agrawal FECs or the new RFECs,
on input 0 to Sy, which belongs to the next state groupgreinsufficientto ensure a state assignment that allows logical
(5154). Therefore, it is safe to allow, to be embedded in the jnjtjalizability. New constraints, calledon't-care intersection
group-face of .515253): even thougtb,, is not part of the cur- constraintsare therefore introduced to ensure initializability.
rent state group(,515253), 94 also has a transition on the given  The intuition is as follows. The earlier face-embedding
input, which drives it to the correct next state grotfi S4).  constraints ensure that all symbolic states are encoded cor-
We call this scenario safe embeddingf 5, in (515253), and  rectly. However, for a three-valued simulatiodpn’t-cares

therefore can delete the dichotor(t§, 5253; S4). Thus, there mystalso be assigned correct next-state values. A don’t-care,
is now a smaller set of dichotomy constraints to solve
1in this example, we use 100 as the synchronizing sequence even though 00
is a shorter synchronizing sequence. However, the same problem can arise even
{(5154; S2), (5154; S3)}. starting with a minimum-length sequence.
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after state assignment, may arise in two ways: 1) it may be 0.1 s1 s2
present in the original FSM specification (i.e., unassigned 1
next-states in an incompletely specified machine) and 2) it

eset

may appear after state assignment, in binary state codes that State o 33_01 11
have no corresponding symbolic state. If don't-care entries Initialization A7
are assigned arbitrary values, three-valued simulation may be Vector =1 ggges?ggzﬂ tsr;a)‘e
“derailed,” and logical initialization may fail. Interestingly, it

is shown that, after arbitrary state assignment, there may exist FSM STATE ASSIGNMENT

no feasible assignment of values to don’t-cares which ensures
logical initializability. Therefore, state assignment itself mugt9- 4. The issue of assignment to don't-care entries.
be constrained to guarantee that don’t-care assignment for " . . ) )
initializability is feasible. fore, if D.C transitions are aSS|g_ned_arb|trary values (during logic
In this section, it is first shown how don’t-care (DC) assignéyNthesis), a noninitializable circuit may result. _
ment has an impact on logical initializability. Next, conditions 10 @void this problem, suppose the next state of 11 on input
on DC assignment are formulated to ensure that DC assiiﬂ'-S now be assigned the value 00 (corresponding.fo The
ment does not adversely affect logical initializability. It is thefP!lowing three-valued simulation results:
shown that, under arbitrary state assignment, these conditions 1
may be unsatisfiable, and three-valued simulation may fail. Fi- XX —00.
gﬁggdn(%wc Tg;f;ctgag; (S:arsttrha;?ts é)gss;iagtﬁ n?giﬁgﬂgg:j:ﬁﬁg;ﬁﬁe. circuit is now initializable. In this case, initializability is
S . chieved by assigning to the DC next-state entry a value lying
ability is always feaS|b!e. . e within the next group face, 00. O
1) Impact of DC Assignment on Logical Initializabilityfhe

: . _ X 2) Don't-Care  Assignment for Logical Initializ-
following example illustrates the impact of DC assignment Ogbility: Based on the previous discussion, the key to proper
logical initializability. '

) . . . . DC assignment is to assign to every DC next-state anttle
Example 5.2: Consider the state machine of Fig. 4. Applyln£%:urrent group facea value thaties within the next group face.

the input vector 1 functionally initializes the machine to thﬁ/lore formally, let machiné have the following initialization
unique reset stats; . Thus, the machine has a single-vector ini- '

tialization sequencefl = 1. The corresponding state group Se§equence
quence is GlLGQi"'GiLGi+1"'l>Gn+1~
(515253) i>(Sl). Let a states (symbolic or nonsymbolic) have a don't-care next-
state entry oninpuf;, i.e., NS s, I;) = don't-care. Suppose that
There are no required face-embedding constraints, whether $fste assignment has been completed and that the state code of
original Cheng—Agrawal FECs or our RFECS, since this stageates is embedded in the group face of state gréip Then,
group sequence is empty (the dichotomy constraints are triviadssigning the next state NS I;) of s to lie within the group
Fig. 4 shows a state encoding that trivially satisfies all the factace ofG;1 will ensure initializability. Such a DC assignment
embedding constraints (since there are none). Two bits are usagst be performed for every suerand:.
to encode the three states; ( 00, S,: 10, S3: 01). The fourth More formally, assuming that StateCdegrepresents the bi-
state code, 11, has no associated symbolic state. Such a statg state code of and GroupFacéG) represents the binary
code is arunassigned state coae anonsymbolic stateThere group face of the state growp, this condition can be written as
are no specified next-state transitions for nonsymbolic statesyracking requirement
they are alldon’t-care next-state transitiorts )
gare must be taken in assigning the next-state values to this Vs g (StateCodgs) € GroupFace;) = (4)
unassigned state code, 11. Such values will eventually be as- StateCodfNS(s, 1;)) € GroupFaceGi+1))-
signed during a later stage in the synthesis path (e.g., conibhis requirement ensures that during three-valued simulation,
national logic synthesis). Suppose that this latter synthesis s@@upFaceg;) is always followedy GroupFacef;, 1), thus
assigns this DC entry for state 11 on input 1 with a next staitesuring initializability. By virtue of the definition of a synchro-
value 11. In this case, the three-valued simulation trace is  nizing sequence, the final group face is guaranteed to be the ex-
. pected singleton state. Thus, given a synchronizing sequence,
XX —XX. the tracking requirement of (4) is a sufficient condition for log-
ical initializability.
Thus, the result is a logically uninitializable circuit. Simulation 3) Infeasible Satisfaction of the Tracking Requiremelnt:
fails because the assigned next state transition from state 11h® preceding example, a DC assignment could be applied to
11, on input 1, lieoutsideof the group face of the destinationensure initializability. However, this is not always the case.
state group(S1 ), thus throwing initialization off course. There- It is now shown that, after an arbitrary state assignment, sat-

o o isfying the tracking requirement may not always be feasible. In
2Alternatively, in an incompletely specified FSM, a don't-care next-state tran-

sition can also arise in a state code correspondingstorolic statéf it has an part'CUIa_r' the e_xa_mple below shows that, using a state assign-
undefined next-state entry. ment which satisfies the Cheng—Agrawal constraints (or our
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00 Ideally, the same result should be obtained for three-valued sim-
11 ulation when the effect of next-state transitions out of stgte
is included in the simulation.
The goal in the DC assignment to stdig is to satisfy the
tracking requirements outlined above. We begin by noting that
stateS,, is embedded in the group faces of b¢th S2.53) and

@ 00 (5455S6). Both of these state groups have specified transitions
in the initialization sequence on tlsame inpuO0. The latter
01 01 o1 embedding mandates that the next-state valug,obe set to
S3 in order to meet the tracking requirement [(4)]. The former
@ embedding requires that the next-state value be set to any state

in the column containingS7.55.Sy). Since the group fac€s’s)
(a) FSM and(575s5y) are disjointthese two conditions are not simulta-
00 01 1 10 neously satisfiableThat is, no next-state DC assignment exists,

for nonsymbolic staté,, on input 00, which simultaneously sat-
s7 isfies both tracking requirements. Therefore, the resultis always
Sx= unassigned a logically uninitializable circuit.
S5 ﬁ____state code Examining the example in more detail, the embedding of
(DC entry) within (54555¢) mandates the next-state value%f on input
S6 S9 00 to be set ta53. With this DC assignment, the three-valued
simulation trace is
11 00
XXXX —0X1X — XXXX
01 00
(b) STATE ASSIGNMENT — XXXX — XXXX.
Fig. 5. Example illustrating unsatisfiable tracking requirement. The machine is not logically initializable. Observe that initial-

izability gets derailed when the second state gr@§p.52.5s),

. . . . _ receives input 00. The group face associated WthS,Ss) is
relaxed FECs) may resultin an implementation that is logicallyx | x  The next state groups; Ss Ss), has an associated group
uninitializable for every possible assignment of don’t—caree,ace, 10¢ X . However, the unassigned state code, 0111 (labeled
This problem occurs because the tracking requirement m&Y), which is embedded within the group face(6% S».S3), has
impose conflicting DQ assignments for cert_ain total states. peen assigned to next state 01H3)(on input 00, which lies

Example 5.3: Consider the example of Fig. 5@)The ma- g side of next group face 10X . As a result, all four state bits
chine is functionally initializable. Applying the following syn- 5ve reset tax .
chronizing sequence results in a sequence of state groups:  ajernatively, if S, were assigned a next-state transition that
1 was embedded within the third group faceX\, as desired,
(5152535485556575859) —(51.5253) then initialization would proceed normally at this step but would
00 01 00 be thrown off course on the final input vector. For example,
—(875559) —(54555) —(S3). assuming now that NS, 00) = 1010, the following three-

. . : - valued simulation results:
Fig. 5(b) shows a 4-bit state assignment that satisfies all the re-

sulting Cheng—Agrawal face-embedding constraints, as well as
our new relaxed face-embedding constraints. Bit vector 0111 v v v v "\ o v1x 2 10x ¥ -5 Y1X1 2 X X10.
is an unassigned state code, or nonsymbolic state, which is la-
beledS,.. The detailed analysis below shows that logical initial- Thus, since there are conflicting don't-care assignment re-
izability is impossible with the given state assignment. In pagirements, the implementation is logically uninitializabl&l
t|cqlar, S“J cannot b € ass!gne.d any ne>§t.—state vareinput 00 4) Satisfying the Tracking Requirement—-Don’t-Care Inter-
while still preserving Ioglcal |n|t|a_I|zab|_I|ty. section Constraints:In this section, the state assignment step

) For the moment, don’t cares will b_e_lgnored. rae-valued jqef is modified to guarantee that the tracking requirement al-
simulation is performed on the specified states, and the res s can be satisfied, and don’t cares can be correctly assigned.

are cqllapged at every time step into a three-valued vector, th‘bnce again, consider a machine with the initialization se-
following simulation trace occurs: quence

11 00 01 00
XXXX —0X1X —10XX — X1X1—0110.
I I I;
Gr—Gy— -G — Giqq -
3This state machine is incompletely specified, but note that our analysis also T; T,
applies to completely specified machines. Gy — G G — G
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Let a binary states belong to two distinct group faces corre- 00 o1 11 10
sponding to state grougs; andG; 00 57
StateCodés) € GroupFacé?;
) pRacts) 01 sS4 | s5 | s8
StateCodgs) € GroupFaced;).

11 ] s1 S9

Then the tracking requirement [(4)] results in the following pair
of constraints: 10

S2 S3

StateCodéNS(s, I;)) € GroupFacé’; 1)

StateCod€eNS(s, I;)) € GroupFacéG,+1). @
00 o1 11 10

This pair of constraints may be unsatisfiablel/jfand I; are

identical inputs (revisited in the initialization sequence). That 00 S4 | S5} S7

is, if 1; = I;, the above two constraints reduce to one: o1 s | ss

. S
StateCodeNS(s, I;)) € ) 1l "
GroupFacé;+1) N GroupFacéF,41).

In this case, the tracking requirement is unsatisfiabte- 10 82 | s3

ciselywhen the two next group faces, GroupFagg, 1) and

GroupFacé; 1), aredisjoint (i.e., have an empty intersec- (b)

tion): there will then be no consistent assignment to the D&y . (a) Bad state encoding and (b) good encoding
entry for NSs, I;).

To ensure that the tracking requirement can be met, N&¥signments. This new constraint between GroupEagend
constraints are added to the state assignment. Informally, @ﬁ)upFachx) can be written as an — k type dichotomy
constraints force the two group faces in the above simulatigReen twojstate groups; andG;: (G; G;).
sequence [GroupFad&() and GroupFacet;)] to be disjoint — gyample 5.3 (Continued)in the above example, we
when there is a possibility that they may impose conflicting,arefore add a dichotomy constrairtts, S»Ss; S455Ss),

DC assignments on any common unassigned states.  gjnce the inputs in the synchronization sequence are identical

More formally, GroupFacet;) and GroupFac€t;) in (;, _ ;. _ g0) for these two state groups, and the next state
the simulation sequence are forced to be disjoint Whene\éerbups s = (S:SsS9) andGs = (S3)] are disjoint. After
two conditions hold: 1) the inputs applied &; and G; in  gaistying this dichotomy, the result is the new state encoding
the synchronizing sequence adentical (i.e., I; = I;) and ot rig g(h). This encoding does not suffer from the problem of
2) the corresponding nexttate groupsGz;1 and Gj+1 aré  oneicting tracking requirements since there is no counterpart
Q|SJo_|nt. The motivation is that any unassigned ststethat S, here: GroupFacé(: 5255 }) and GroupFacd6.S5S61)
lies in both of the “source” group faces [GroupFa&e(and  ,re now forced to be disjoint. Effectively, there is no longer an
GroupFacef;)] will have two requirements on its next-stateg hat s shared by two different group faces, since they have
assignment under inpuf;: its next state must lie in both oo forced apart. Consequently, the new synthesized machine
GroupFace@; 1) and GroupFacé{jJ_,l_).. However, if the' is logically initializable. 0
next-state group&;, andG;., are disjoint, there is a possi- - e gichotomy constraints introduced above are called
bility that their corresponding group faces [GroupF&€&() «gont-care intersection constraints.” They are formalized as
and GroupFace{;1)] will also be disjoint after state assigN-to|lows, where, andG; are any two state groups appearing in

ment. In that case, the requiremgnts on the DC assignmenyol injialization sequence ang and.; are the corresponding
S, cannot be simultaneously satisfied. input vectors:

Thus, our conservative solution is to separate the “source
group faces: that is, if the symbobtate groups+;; andG 1, DCIC = {(G;; G;)|(L; = I;) N(Gigz1 NGjp1 = ¢)}. (6)
are disjoint,force the binarygroup facesof &; andG; to be
nonintersecting.In this case, no conflicting DC assignment can ) o - )
ever occur, since the “source” group faces@fand G; no C- Solving the Initializability Constraints
longer intersect. Together, the RFECs of Section V-A and the DCICs of Sec-
After imposing these constraints on state assignment, eithien V-B are sufficient to produce a state assignment that allows
the next state group&/;;; and G4, intersect [and, hence, the synthesis of a logically initializable machine. Both RFECs
GroupFace(;+1) and GroupFacé{;,:) will intersect] or and DCICs are dichotomy constraints. It is well-known that any
the current group faces GroupFaGe)l and GroupFacéf;) setof dichotomy constraints can always be solved. For example,
will be made disjoint. In each case, the tracking requiremeabne-ho{26], which uses one state bit for every symbolic state,
of (5) is now satisfiable, with no conflicting next-state DGcan be used to satisfy a set of dichotomies. However, such a
. o o code is potentially expensive in terms of the number of state
Note that it will never happen thét; ., andG ;. are disjoint, butz; and . . .
G ; have a symbolic state in common, since in this case they must have a SQH.S- Therefore, more efficient algorithms have been developed
bolic next state in common. to solve dichotomies using fewer state bits [27], [31], [22], [9].
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VI. STEP2: COMBINATIONAL LOGIC SYNTHESIS S

Once constrained state assignment is complete, combina- a 00 o1l 11
tional logic synthesis is performed. However, combinational
logic synthesis can adversely affect three-valued simulatability, 0
and hence logical initializability. That is, even after an FSM has
been state encoded in accordance with the method of Section V, 1
arbitrary combinational logic minimization can produce a
logically uninitializable implementation.

A previous approach to synthesis for logical initializability
[8] suggested thatingle-output two-level minimizatiqas op-
posed to multioutput minimization) might ensure logical simu- abc=X11
latability. However, in this section, it is demonstrated that this Y
approach is neither necessary nor sufficient. In addition, it has a be 00
the drawback that it is limited to two-level implementations, un-
like the proposed approach, which can produce multilevel im- 0
plementations.

In Section VI-A, it is first shown how combinational logic 1
synthesis has an impact on three-valued simulation. Then, in
Section VI-B, the key result of this section is presented: a the-
orem that precisely relatekree-valued simulatabilitpf a cir-
cuit with hazard freedorof asynchronous circuits. In particular,
it is proved that a combinational circuit is three-valued simulat- abc=X11
able if and only if itstatic hazard fre¢19], [10] for certain mul-
tiple-input changes. Based on this result, in Section VI-C, boﬁtg. 7. (a) Uninitializable and (b) initializable implementationsof
two-level and multilevel synthesis methods for logical initializ-

ability are presented, which leverage off of existing hazard-fregiting gate-level circuit will be initializable by a three-valued
logic synthesis methods. simulator.

A. How Logic Synthesis Affects Three-Valued Simulatability g, Sjmulatability and Hazard Freedom

The following example motivates how logic synthesis can af- This section states and proves the fundamental correspon-
fect logical initializability under three-valued simulation. dence between two different properties of an arbitrary combi-

Example 6.1:Let Y be the Boolean function of three vari-pational circuit: three-valued simulatability on the one hand and
ablesz, b, andc, shown in the Karnaugh map of Fig. 7(a). et  gtatic hazard freedom on the other.

be implemented as aND-OR circuit using two product terms: - Hazard freedonmefers to the absence of glitches at the out-

Y’ = ab+ac. Suppose the gate-levelimplementation of Fig. 7(hts of a combinational circuit when the inputs to the circuit
is S|m_ulated by a three-valued simulator. Assume _that the Afindergo a transition [26]. Hazards are usually not a problem in
mary inputs are set tobc = X11. Forabc = X11, Y is func-  ¢jocked, or synchronous, systems since all the circuit outputs
tionally equal to one, as seen from the Karnaugh map. Howevgfe assumed to have stabilized before the arrival of the clock
a three-valued simulator may evaluateas follows: tick. However, in unclocked, or asynchronous, systems, freedom

from hazards is usually critical to correct operation.

Y=abtac=X -1+X -1=X+X=X. In this section, the notion of three-valued simulatability, and

hence logical initializability, of a given synchronous circuit is
Therefore, the above implementationiofs logically uninitial-  related to hazard freedom. The goal of this exercise is to estab-
izablesince it is not correctly simulatable to the value 1. lish a direct correspondence between these two seemingly dif-
The Karnaugh map of Fig. 7(b) shows an alternate implemeférent properties, and then leverage off of existing techniques

tation of Y that islogically initializable: Y = ab + bc (where  for hazard-free synthesis in order to synthesize logically initial-
the shaded region represents the added productiigrrim this  jzable circuits.

case, three-valued simulation yields the correct result 1) Example and OverviewThe correspondence between
three-valued simulatability and hazard freedom is now illus-
Y=ab+bc=X-14+1-1=X+1=1. trated by an example. Consider the two-level implementation of

Fig. 8 (from Example 6.1). In three-valued simulatioframe-
Initialization succeeds in this case sirtegevaluates to onere-  work, the highlighted column corresponding dbc = X 11
spectiveof the value of:. Therefore, thisimplementation dfis  representindeterminacyin the values of the inputs—the value
correctly simulatable for the input combinatiabc = X11. 0  of a is unknown. In order fok” to be simulatable to one for this
Thus, combinational logic synthesis is critical to insuring lognput combination, it is required that the cubebe contained
ical initializability. Any synthesis method that does not incorpan some product of the cover. In the terminology of [184,
rate initializability considerations cannot guarantee that the ris- called arequired cube the stipulation that the two-level
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The remainder of this section is devoted to defining several

|
a\_w o im gepff’lsef(‘jts.i”d?t‘t?rmi?acy in . notions related to simulatability (Section VI-B2) and hazard
0 o -valued simuiation ramework ¢reedom (Section VI-B3), and then formally proving the above
; } | - ‘ 3 corresponds to transition in correspondence between the two (Section VI-B4). .
! Gy hazard-freedom framework 2) Three-Valued Simulation of a NetworRhe following
| ‘ definitions formalize the notion of three-valued simulation.
S Definition 1: Given a three-valued vecter € {0, 1, X},

Fig. 8. Simulatability and hazard-freedom. a binary vectogs € {0, 1} is coveredby vector iff

Given 3-valued A transition a; = 1 = /31 =1 ’
input vector that spans the
3-valued vector Static O
hazard
} _ __ == - ::‘:I,,
0 - XTI XL For example, the binary vectgt = 110010 is covered by
_ A - ' OVve
X I = Egeal Non. three-valued vectorr = 1X001X. The next definition for-
X t ' multi-level circuit simulatable  malizes the notion of three-valued simulation of a single-output
combinational gate.
Fig. 9. A general multilevel circuit Definition 2 (Three-Valued Simulation of a Gateiven a

gateG corresponding to a Boolean functighof » variables,

implementation ofy” must include at least one product ternd - {0, 1} — {0, 1}, and given a three-valued input vecter
that coverdic is acovering requirement the gate output is simulated by

In a hazard-freedoniramework, the functiory” is regarded 0, iff f(3) =0V 3 covered by
as being the output of an asynchronous combinational circuit. 1, iff £() = 1V 3 covered by
Here, the input colummbec = X11 is now viewed as rep- X, iff f(Bo) =0, f(B) =1
resenting theinput transition011 — 111 (or, equivalently, ’ for some binary vectors
111 — 011), which spansX11. It is well known that to en- o, /1 covered by,
sure a glitch-free output'—i.e., to ensure thal” remains at ’ 0

one throughout the input transition, static hazard free-it is

necessary that some product term in the implementatidri ofthe definition states that a gate is simulatedtoinder a three-
cover the cubéc [19], [26], [10]. Otherwise, the product termya|yed vector if the vector covers at least one minterm where
ac may turn offbeforethe product termab turns on, causing the 7 has value 1 and at least one minterm whéréas value 0:

“1” output to momentarily switch to “0” and then back to “1." stherwise, the gate is simulated to the appropriate binary value,
The presence of a product term covering the dutensures that 1 or 0. Given a three-valued input Definition 2 can be gener-
the output does not glitchy: holds the “1” value throughout the gjized from gate simulation to a gate network simulation, by a

transition. Once again, in the terminology of [18;is a re-  topological traversal from the inputs toward the output, applying
quired cube; the stipulation that a hazard-free two-level implgyefinition 2 once to each gate.

mentation oft” must include at least one term that coverss  3) Hazard Simulation of a NetworkThe following presents

astatic hazard-free covering requirement _ _ basics of hazards in combinational logic. First, Kung’s nine-
This correspondence between three-valued simulatability apglued hazard simulation algebra [12] is reviewed, and then the
static hazard freedom can now be formally stated. notion of hazard simulation is formalized.
Given a three-valued input vectdr the covering re- Kung introduced a hazard simulation algebra that clas-

quirement for three-valued simulatability of an implemen- sifies a transition on a wire into one of nine values

tation of Y is identical to the static hazard-free covering {0, 1, 1, |, S0, S1, D+, D—, x}. The first two values,

requirement to ensure a hazard-free implementatiori of 0 and1, represenhazard-freestatic0 — 0 and staticl — 1

for any input transition that spadsThus, for the given ex-  transitions, respectively. Valués |, S0, S1, D+ andD— are

ample of Fig. 8, the following states the relation between transient valuesand represent transitions and hazardsnd

three-valued simulation and the transient (asynchronous)| denote hazard-free dynamic— 1 and1 — 0 transitions,

behavior: respectively. S0 and S1 denote hazardousstatic0 — 0

If the implementation ofY” is not correctly simulatabléo and1 — 1 transitions, respectivelyD+ and D— represent
one over the input combinatiaki11, then each input transition hazardouslynamic0 — 1 and1 — 0 transitions, respectively.
spanningX11 (i.e.,011 — 111 and111 — 011) has astatic Finally, *, which represents a don’t-care transition, will not be
logic hazardfor the same implementation. needed for the remainder of this section.

This result can be generalized from a two-level to an arbitrary An input transition or a multiple-input change on a
multilevel circuit of Fig. 9 as follows. Replace the three-valuedet of input wiresz; ...z, can be described as a vector
input vector by a corresponding input transition that spans the= 4, ... §,, of corresponding values in Kung's algebra, where
three-valued input. Then, if the output of the circuit has a staté¢ € {0, 1,7, |, S0, S1, D+, D—}.
logic hazard, the circuit is nonsimulatable for that three-valuedIn order to relate three-valued simulation to hazard freedom,
input, and vice versa. it is important to give basic definitions for hazard freedom. The
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first is the classical notion of aatomic gatein the context of  In the following, assume that is an arbitrary three-valued

hazard freedom. vector whoseith bit is «;. A corresponding input transition
Definition 3 (Atomic Gate):An atomic gateis a combi- & is constructed by replacing each zero entrydnby a

national logic gate that can be modeled as an instantane6us- 0 transition (), each one entry by & — 1 transition

Boolean operator followed by an arbitrary finite delay. O (1), and eachX entry by any oneof the transient values
The next proposition indicates that, for the purpose of hazafdl, |, S0, S1, D+, D—}. More formally, the transformation

simulation, any input combination (minterm) that might bé denoted by the operater

reachable during an input transition is assumed to be reachable.

Proposition 1 (Reachable Inputs):etz = z; ...z, be aset 6 =0 ifa; =0
of wires, and let = &; ... 6, be a corresponding input transi- 7(c) = {0 |6 =1 if a; =1
tion. Then, the set of input combinations reachable on tran- 6 €41, 1, 50,51, D+, D-} ifa;=X
zﬁfr?ti; the set of all minterms» = m ....m,, € {0, 1} for all bits< of vectora, wherer describes a set of corresponding
input transitions. For example,df = X10X is a three-valued
input, thené =7 10 | is one of the input transitions corre-
m; =0 =& € {0}U{], |, S0, S1, D+, D-} sponding to vectot.
m; =1 =6 ¢€{1}U{1, |, S0, S1, D+, D—}. 5) The Correspondence Theorerte now have all the tools

needed to state and prove the key theorem relating three-valued

Proof: In a hazard model that assumes arbitrary gate afinulation and ha;ard freedom of an arbitrary muItiI(_aveI net-
wire delays, worst case behavior is assumed [26], [12]. Hen¥¥rk. The proof will essentially consist of a topological tra-
if a minterm may be reachable under the given input transitid§rsal of the circuit, applying the above propositions once to
by some sequence of permitted events on the set of wirigs ©ach gate. _ o
is assumed reachable. - We introduce the notation SIMvalued(a) is introduced

Proposition 2 (Hazard Simulation of an Atomic Gatd)et 0 represent the result of three—valiued simulation_ of a circuit
G be an atomic gate for a Boolean functignLet there be an With output f for the three-valued input vectar. Similarly,
input transitiors at the inputs. Let the set of all the inputs reachSleia_Lzard(é) denotes the result of hazard simulation fofor
able on this transition be noted By For the purpose of hazardthe nl_ne—valued input vectof. Given these definitions, the
simulation, any input that is reachable for some combination E}owing key theorem lets us deduce the result of three-valued
gate and wire delays is assumed to be reached. Therefore,S\W%”'at'o” of a circuit from the result of hazard simulation, and
have the following. vice versa.

a) If f(3) = 0 VB € A, the gate output stays at zerq, Theorem 1 (The Correspondence Theoreigt f be a

throughout the transition and is therefore hazard foee: oolean function implemented by a netwodk of atomic

b) If f(3) = 1 V3 € A, the gate output stays at Or]egates, lety be any three_-valued input vector, anddet ()
” ; . be any corresponding input transition. Then, the three-valued
throughout the transition and is therefore hazard fiee: and hazard simulation results for the implementatibof the
c) If f(B1) = 0, f(B2) = 1 for somep, B2 € A, the P

gate output either exhibits a monotonic transition or ifsunc'uonf correspond, as follows:

hazardous for this input change. Sim/ (@) =0 < Sim____(6)=0 @)
Proof: Part a) follows directly from the definition of an Sj fﬁvalued _q Sj m};azard § =1 8
atomic gate (Definition 3)—if at all times the inputs seen by My ajwea(@) =1 = Simy_ .. 4(6) = ®)
the gate are those for which evaluates to zero, then under Simgfvalued(a) =X
an atomic gate model, the gate output must stay constant at sim/_ (&) €{1, |, 50, 51, D+, D—}. 9)

zero. Part b) is proved similarly. Part c) follows as well, since

during the input transition, the gate sees an input for whighat is

f = 0 and another input for whiclf = 1. By definition

of an atomic gate, the instantaneous operator evaluates to two Siml a6 e (Sin‘é_valued(a)) .

different values during the transition. Therefore, by virtue of

Proposition 1 (reachable inputs), the output will produce atran- Proof: The above correspondence is shown to hold for

sient value, i.e., one dff, |, S0, S1, D+, D—}. B everygate output in the network. The proof is by induc-
The above definitions can easily be generalized to hazard sition on the “depth” of the subcircuit in the transitive fan-in of

ulation of a gate network: given an input transitibnhazard ¢, where “depth” of this subcircuit is defined as the number of

simulation of a gate network is performed by a topological tragates on the longest path4drom any of the primary inputs.

versal from the inputs toward the output, applying Proposition Induction Base:Let depti(¢£) = 0. Then,/ must be one of

6.1 once to each gate. the primary input wires, and the result holds by virtue of the
4) Transformation—Three-Valued Vecter Input Transi- definition of ther operator.
tion: Based on the above definitions, we now formulateas Induction Hypothesis:Assume that the results holds for all

ural transformationbetween annput vectora (used in three- wires? of depth less thak, £ > 1.
valued simulation) and a correspondingut transitioné (used Induction Step:Let wire ¢ be at a depth of. Then,/ is the
in hazard simulation, under Kung’s nine-valued algebra).  output of a gate with inputs . . .4, . Letg represent the Boolean
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function corresponding to the gate. Under three-valued simula-1) SIM]___ _(a) = X andf(3) = 1 for all 3 covered by
tion, these gate inputs are represented by a three-valued vector «;
ag Of sizen. Each of these inputs lies at a depth less thawe 2) SIMgfvalued(a) = X andf(/3) = 0 for all 3 covered by
now show that the same correspondence holds for odtpéit .

gateg. There are three cases. In each case, given a nonsimulatable implementation, three-

Case 1: The functiong has value 0 for all inputs covered by, 51 ed simulation yields the valug even thoughf is either
Sy Le..g(f) = Of_or eagh blnar_y vectof covered by, . T_h(_ep, functionally equal to one over all inputs covereddyr func-
in three-valued simulatiory, is simulated to zero, by Definition tionally equal to one over all such inputs

2H Thus, Slw’bz‘?e—'valued(g‘g)h: 0. “E) hgzard sirEuIatir?n., let " The following key corollary now shows that nonsimulata-
the 'Up“t transmo_n seen by the gate be enc_)t_e&_iig By the in- bility implies existence of a static logic hazard transition, and
duction hypothesisi, € 7(«,). Then, by definition ofr, each vice versa

transient in, corresponds to ax in «,, each zero i, corre- Corollary 1 (Nonsimulatability<= Static Logic Hazard

sponds to a zero ia,;, and each one ify, corresponds to aon('T\Transition): Let f be a Boolean function implemented by

in . Therefore, by Proposition 1, the reachable inputs du”r};tgnetworkG of atomic gates, and lat be any three-valued

input transitions, are all covered by,. Therefore, by Propo- inrput vector. If G is nonsimulatablefor three-valued vector

?tl?/:/]iti(\a/lz);lltjr;% g_?:]ea? iitpgltl\ll? haz?gd)ffeounder nput transm%’ then G has astatic logic hazardfor each input transition
g1 : ! wazard\Vg/ — M

Case 2: Functiong has value 1 for all inputs covered by.(5 € 7(a). Conversely, if; has a stalic logic hazard for any

o, By similar reasoning as above, S{M_,._,(a,) = 1 and mlr):;t\:;r;selgovneéct; (), then @ is nonsimulatable for the
SIMﬁazard(ég) =1 .

Case 3:In this case, the gate evaluates to both zero and Proof: Suppose that G S nonsimulatable  for
O input vector «. Then, by Definition 4, SII\§_ (6)
one; i.e.,g(f1) = 0andg(B:) = 1 for somepy, 32 cov- S—valued
e must equal X. As a result, Theorem 1 implies that
ered bya,. Then, by Definition 2, SIM___, . (ay) = X. By p ,
o . value SIM (6) € {1,1,50, S1, D+, D—}. That s,
Proposition 1, all those inputs that are coveredpyare reach- SIMlawd s i ¢ ot H Definiti 4 al
able by a corresponding input transition. Therefore, igtand hazara(6) 1S @ transient However, Definition also

(> are reachable during the input transiti&n By Proposition |mp||esdtrt1)atf IS eflthe:.funciltlonallyletqual to zero (ﬁver a;:lilnputts
2, A1, B2 € A. Combining this result with Proposition 2(c),Covere Yy, orfunctionally equalto one over all such inputs.

SIM{_ " (6) must be a transient value in hazard simulatiort'ence’ under input transitiofy the ]‘uncnon .|t_self is stable at
1azat one (or zero) throughout the entire transition, and therefore

i.e.,,oneof{7, |,50, S1, D+, D—}. . ] X o :
(| + ; is a static 1 (or static 0) transition. A transient at the output

The above theorem states that, given an input veetos . .
three-valued simulation of a gate network will result in Valugherefore |nd|c.:ates-a logic hazard. Therefore, $3|Md(6)
ust be a static logic hazardl1 (or S0).

0 (1)if and only ifthe corresponding hazard simulation on inplﬁn T th Heath tatic loai
transition$ is hazard free ab(1). The three-valued simulation O prove fhe converse, assume as a static logic
hazard for some transitiofi € 7(«). Then, by Theorem 1,

will result in X if and only if the corresponding hazard sim-_ = B - .
ulation corresponds to an output change (either hazard freﬁséwi%—valued(é) . _X' Howeyer, by definition of a static
ogic hazard,f is either functionally equal to zero over all

hazardous). ipput d by or functionall I't Il such
Tthe key corollary to this theorem that gives a precis'gputs c_cl)_\r:eref o (t))r LE)an.'O.Pa yzgqga o one Olv?t?l sfuc

equivalence between nonsimulatability and existence of a sta{ﬂeu s heretore, by Detinition IS honsimulatable for

ree-valued input. [ |

hazard. But first, precise definitions of “simulatability” anaI 6) S . the k It of this subsection i
“nonsimulatability,”are needed, terms that we have thus far ) Summary:In summary, the key result of this subsection is

used informally that, given an input vector, to ensure three-valued simulatability,
Definition 4 (Simulatability/Nonsimulatability)Boolean f{he cireut §hou|d bestatp logic hazgrd-freé(?r a given set of
function f be implemented by a networ® of atomic gates. input transitions. (These input transitions will correspond to the
'Rsnut vectors taken from the group face sequence.) Conversely,

Let « be any three-valued input vector to be used to simula ircuit realization that is f f static logic h ds for th
the circuit output. Then, networ& is said to besimulatable any cireuitrealization thatis free ot staticlogic hazards for those

for input if and only if one of the following holds: input transitions is also three-valued simulatable.

1) SlMg—valued(a) = 1’ . . . . T .

2) S"V';J;_vamed(a) — 0 C. Combinational Logic Synthesis for Initializability

3) SIMf,f_Valued(a) = X,andf(8,) =0andf(5,) = 1for The correspondence between nonsimulatability and the ex-

some binary inputgy, 3; covered by. istence of static logic hazards (Corollary 1) provides a com-

G is said to benonsimulatabldor input « if it is not simu- plete method for the synthesis of initializable logic, after state
latable fora. For example, iﬁilng_valued(a) = X, whereas assignment is complete. The input vectors, which are applied
f(B) = 0 for all binary inputs? covered by, thenG is non- to the circuit, are those that arise in the group face simula-
simulatable; clearly, the simulation does not accurately repitsoan sequence (when applying the functional initialization se-
sent the value of the Boolean function. O quence).Three-valued simulatabilitis guaranteed by synthe-

It can be easily proved that there are only two cases in whistzing a combinational circuit that &atic hazard fredor each
a networkG can be nonsimulatable: of the corresponding input transitions.
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In particular, the method is as follows: 1) identify the inpufunctionally initializable, and the same initialization sequence
transitions that span the three-valued input vectors encounteieedised for each synthesis method. For each machine, the
in the group face sequence and 2) synthesize a circuit thabftimal state encoding constraints of [17] are first generated.
free of static hazards for those input transitions. Such stafiben, the appropriate initializability constraints for each of
hazard-free logic can always be synthesized, for any setthé different synthesis methods are generated (except for the
(function hazard-free) input transitions, for both two-level anBASEmethod, which uses none). The dichotomy constraints
multilevel logic [10], [19]. are then solved to obtain a final-state assignment. Next,

Two-Level: For the special case of a two-levalD-OR im-  two-level multioutput logic minimization is performed (either
plementation, the conditions for hazard freedom have been pnenhazard-free using SIS’s espresso-exact or hazard free [19],
sented in [10], [19], and [26]. To eliminate static logic hazf24]) to synthesize a gate-level circuit. The circuit is then
ards, constraints imposed on logic synthesis make use of “sémulated with a three-valued simulator to verify whether it
quired cubes.” Arequired cube is a cube that must be coveredigs logically initializable for the synchronizing sequence used
some product term of the cover. Techniques for minimization &r its synthesis.
hazard-free logic based on required cubes are well known [19],

[24]. Moreover_, the inpu_t transitions are function hazard freg,_ Logical Initializability

since the function value is all O (or all 1) throughout the transi-

tion. Therefore, the constraints for static logic hazard-freedomTable | focuses on the most important property of the syn-
can always be solved [19]. thesized circuitslogical initializability. The table indicates if

Multilevel: Two different approaches can be used to sythe gate-level implementation was actually initializable by the
thesize multilevel logic that is static hazard free for the givesynchronizing sequence used for synthesis, when simulated by
input transitions. First, hazard-free circuits can be synthesizathree-valued simulator. As expected, the trend shows that log-
in two steps: 1) perform two-level hazard-free logic synthesigal initializability improves in moving across the table from left
(as above), then 2) apphazard-nonincreasing multilevel trans-to right.
formations,which do not introduce any static hazards [12]. A The BASE method fares poorest in logical initializability,
wide range of algebraic transformations have been identifiedwskereassALsIFY guarantees logically initializable circuits in
hazard nonincreasing, including factorization and De Morgarésery case. Note that in some cases (see, BASE, CA{Eik),
law. Alternatively, direct methods can be used for the synthesiee synthesized circuit happens to be logically initializable,
of hazard-free multilevel circuits based on binary decision dia¢hile the method itself does not include sufficient constraints
grams (BDDs) [13]. to guarantee initializability. In these cases, either the state

assignment happens to satisfy our additional new constraints
VII. RESULTS (DCICs), even though these constraints were not included

The tw trained thesis st tat . ¢ in the method; or the logic synthesis step happens to ensure
€ two constrained synthesis steps—state assighment glo, y free logic, even though the method did not require it.

logic minimization—have been combined into a new CAD syn- For example, note that for two benchmark<7 anddk512,

thesis tool calledALsIFy. The tool is targeted to incompletelyt CA + HF method does not guarantee initializability, but
specified synchronous FSMs. It can be used to synthesize bé]}ﬁ . . 9 S Y:

. S € actual implementations happen to be initializable. However,
two-level and multilevel circuits.

Results are compared with three alternative methods aH alternative implementation, which uses a different solution
examoles from thepMCNC89 benchmark suite [14] Thepg the state assignment constraints of @AHF that does not
ples i . ' Snappen to satisfy our new required DCIC constraints, could be
methods include: 1) 8ASE method, which uses the KISSI X L
ogically uninitializable.

optimal state assignment, but otherwise no additional con—A comparison oBALSIFY and CA highlights the effectiveness

straints on state assignment or logic minimization; and 2) th?ournew method aver the earlier Cheng—Agrawal approach: in
heng—Agrawal (CA) method, which incl hirnrinf lers jrawa’ approach.
Cheng—Agrawal (CA) method ch includes their constra ﬁe latter, only three out of 14 circuits are logically initializable,

on state assignment, coupled with the KISS optimality €OWhile all circuits produced bgALSIFY are logically initializable.

straints, but no constraints on logic minimization. Finally, to _. ) :
highlight the impact of our neswazard-free logic minimization Finally, a comparison of the CA and GAHF columns high-

step (Section VI), we run a hybrid method 3) CA HF, lights the critical importance of our new combinational logic

which combines the existing Cheng—Agrawal state assignmé?ﬂntheSis. step fo_r ini_tial?zability: using Fhe same state assign-
method with the new hazard-free logic synthesis step. In e nt, Wh”? 11 circuits in CA are.unlnlt_la.h_za.ble, all synthe-
case, the focus is on two-level logic implementations. Resuft ed circuits happened to be logically initializable when our

of the methods are compared with respect to two criteria: (i?nstralned lOQ'(_: synthesis method was mc_luded (EHF).
logical initializability and 2)overhead We should point out that one conclusion is to use the-€A

Methodology: Results for 14 state machines from thé_": method: generate a circuit, and test if it is logically initial-

MCNC89 benchmark suite are presented. Each machine'4 ble. While initializability is not guaranteed, it may in fact

hold in many cases. Alternatively, one can use our RFECs
5A simple proof that a solution always exists follows from the fact that &lF, with a pruned set of face-embedding constraints. However,

trivial cover that is the sum of all the prime implicants will always satisfy albmy the full methodsALSIFY, which includes DCIC's, is guar-
the static logic hazard-free covering requirements. Such a solution is expensive ! '

but unnecessary; in practice, when an exact hazard-free minimizer is used 4h§€€d to produce a logically initializable circuit. Since DCIC's
overhead in satisfying hazard constraints is often negligible [19]. are so rarely needed, this is the most straightforward approach.
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TABLE |
COMPARISON OF THECORRECTNESS OF THE FOUISYNTHESIS METHODS

Name || BASE | CA | CA{HF | SALSIFY
dk14
dk15
dk17
dk27
dk512

ex3

—
X
X

IN—1

SN SRR/

X
N1

-
X
N1

ex5

lion9
bbtas
bbara
beecount

X
[N

~
X

trainll
s8
shiftreg

<O XX XXX XXX XX RO X

—
X

< XXX XXX XXX X < | X

b
X

NN N NN SOSNN

Legend: X The synthesized circuit was uninitializable.

(X) The synthesized circuit was initializable, but not all implementations
of this benchmark example that can result from this method will be initializable.
(The method does not guarantee initializability of circuit.)

\/ All implementations of this benchmark example
using this method are guaranteed initializable.

TABLE I
COMPARISON OFSYNTHESIS METHODS
BASE CA CA+HF SALSIFY
No. of No. of No. of No. of No. of
Len. of|| n— 1 State n—1 State n—1 State n—1 n—k State

Circuit No. of | Synec. ncodingl code No. of |lencoding] code No. of |lencoding] code No. of encoding | encoding code No. of
Name states Seq. cons. length gates cons. length gates cons. length gates cons. cons. length gates
dk14 7 2 32 5 25 35 5 25 35 5 26 35 0 5 24
dk15 4 1 9 4 17 9 4 17 9 4 17 9 0 4 17
dk17 8 3 34 4 17 26 4 17 26 4 19 28 [} 4 21

T dk27 7 4 19 3 [ 24 4 9 24 4 9 22 1 4 9
dk512 15 4 101 6 19 113 6 19 113 6 20 113 1 6 19
ex3 10 2 31 7 18 35 7 17 35 7 18 36 0 7 19
exh 9 2 35 7 15 40 7 16 40 7 17 39 0 7 16
lion9 9 3 22 7 8 36 8 8 36 8 10 31 0 7 10
bbtas 6 3 7 3 13 9 4 11 9 4 11 8 0 4 11
bbara 10 2 30 5 28 33 5 27 33 5 28 33 0 5 28
beecount 7 1 16 5 11 16 5 11 16 5 12 16 0 5 12
trainll 11 2 42 10 10 50 11 11 50 11 12 49 0 11 12
s8 5 4 0 3 10 6 3 10 6 3 11 6 0 3 11
shiftreg 8 3 28 3 4 24 3 6 24 3 6 24 0 3 6

B. Overhead straints is only a very rough indicator of the restrictiveness of

Table Il evaluates the overhead of the four synthesis methdf€Se constraints. For example, a single dichotomy may sub-
as measured by three parameters: 1) number of state encodige several smaller dichotomies [edabe; d)} is more re-
constraints, 2) state code length, and 3) number of gates. ~ Strictive than{(ab; d), (ac; d)}]. The table shows only mod-

Number of State Encoding ConstraintShe column “no. of €rate variance in the number of face-embedding constraints.
n — 1 encoding cons.” lists the total number of face-embedi!so, while theBASEmethod tends to have fewer constraints
ding constraints used in state assignment. These include f@n the initializability methods (e.g., train11), this is not always
KISS optimality constraints, as well as any additional face-erfhe case (e.g., dk17).
bedding constraints for initializability (either FECs or RFECs). InterestinglysALsIFY required use of our the new DCICs for
Additionally, for SALSIFY, the number of DCICs is shown in theonly two circuits (dk27, dk512), and, moreover, only one DCIC
column “no. ofn — k cons.” for each. These DCIC constraints were shown to be critical

For all such columns, only the number iofedundantcon- for guaranteeing initializability. Thus, whereas existing methods
straints is listed; a constraint that is subsumed by other conay not always achieve initializability, our method uses DCICs
straints is not counted. Note that the number of dichotomy coie-guarantee initializability often at little cost.
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State Code LengthCode length, or the number of state bitgnay also be applicable not only for logical initializability but
used to encode the machine, is another parameter to commdse for the synthesis of fully simulatable multilevel circuits

optimality of the methods. As expected, tBASEmethod al- (e.g.
ways produced the shortest code length because it uses the least

constraining set of constraints. In only four examples, though,
was one extra state bit used in CA and G¢AHF, over the base
method. InterestinglysALSIFY produced state encodings thal
were the same length as codes produced by CA orCAf, ex-
cept for one exampldion9, wheresALsIFy produced a shorter
encoding, using seven state bits instead of eight.

In sum, while the new face-embedding constraints, RFE 3
are a pruned version of the Cheng—Agrawal FECs, this relax-
ation had little impact on resulting code lengths. It is possible
that RFEC’s will have a greater impact on larger examples.
However, more important, the state code length across all of thé*!
initializability methods differed little from the BASE method.

Gate Count: The column “No. of gates” lists the number of [2]
gates used in the final two-leveND-OR circuit implementa-
tion. For the purpose of this comparison, itis assumed that eaclp;
product term is implemented using oAeD gate, and that all
the products are summed together using orRgate. From the
table, it is clear thasALSIFY incurs low logic overhead over the
BASE method in order to ensure initializability (215 gates total [5]
used bysaLsIFY for the 14 examples versus 203 gates total used
by BASE). A comparison with CA and CA HF also shows that
the gate counts of circuits produced_siFy compare favorably
with those of CA and CA+ HF.

[4]

(6]
(71

VIIl. CONCLUSIONS [8]

This paper has presented the first sound and systematig]
method for the synthesis for logical initializability of syn-
chronous FSM’s. The method provides both a state assignmeHP]
step and a combinational logic synthesis step. [11]

For state assignment, two sets of dichotomy constraints were
introduced. First, relaxed face-embedding constraints were prer,
sented. These constraints are safely pruned versions of existing
face-embedding constraints [8]. Second, don't-care intersectidas3]
constraints were introduced and were shown to be critical for
initializability. [14]

For combinational logic synthesis, it was first demonstrated
that unconstrained logic minimization can render a circuit Iog-[ls]
ically uninitializable under three-valued simulation. Necessaryie)
and sufficient conditions on combinational logic synthesis for
initializability were presented. These conditions are identical "]
ensuring static logic hazard freedom for input transitions thatig]
correspond to three-valued vectors that arise when applying the
S . . 19]
initialization sequence. Finally, synthesis methods to general[e
two-level and multilevel logic for initializability were presented.

Combined together, given a functionally initializable specifi- [20]
cation, our synthesis method guarantees logical initializability
for the resulting circuit under three-valued simulation. In ad-[21]
dition, unlike existing methods, it can correctly handle incom-
pletely specified finite-state machines and can produce multim]
level circuits as well. Benchmark results show low logic over-
head.

The basic results of this paper, especially the corresponden&zeS]
between three-valued simulatability and static hazard freedom,

. [6]).
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