
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Fall 2014

Lab #3: Designing an ALU

Issued Thu 9/4/14; Due Wed 9/10/14 (11:59pm)

This lab assignment consists of several steps, each building upon the previous. Detailed instructions are
provided. Verilog code is provided for almost all of the designs, but some portions of the code have been
erased; in those cases, it is your task to complete and test your code carefully. Submission instructions are at
the end.

You will learn the following:

• Designing a hierarchical system, with much deeper levels of hierarchy

• Designing arithmetic and logic circuits

• Using `define and parameter constants

• Verilog simulation, test fixtures and stimuli

Part 0: Modify the Adder-Subtractor of Lab 2 to make it parameterizable

In order to make the number of bits in the operands of the adder customizable, a parameterized version of the
ripple-carry adder is shown below.

By simply changing the parameter N, the width of the adder can be easily changed. The value “8” is specified
as the default value of N, but this is overridden by the value of the parameter when this module is instantiated
in the enclosing module. Also note that new outputs have been added to generate the Negative, Carryout and
Overflow flags. The enclosing Adder-Subtractor unit is also accordingly modified, as shown here.

Once again, the Adder-Subtractor is parameterized, with a default width of 8 bits. This width parameter, N, is
passed into the enclosed object, adder. Thus, changing the value of N in the top line of the module addsub to,
say, 32 automatically passes the parameter value 32 to the adder module named add. Modify your test fixture
from Lab 2 to test these two modules thoroughly. Tip: In the text fixture, where you declare the unit under
test, uut, you can set the parameter value as follows:

addsub #(width) uut (…)

First test it for 8-bit width. Then, you should try other widths (especially 32 bits) as well.

Part I: Understand the ALU structure and operation

Below is a block diagram of the ALU (from Comp411), along with its 5-bit control. More details are available
in the slides (from Comp411) available on the website. Your task is simply to review this information
carefully and make sure you understand how the 5-bit control signal encodes the operation, and how the
multiplexers select the result. Note: Comparison operations will be incorporated in Part IV.

Part II: Logical and Shifter modules

Use the following code templates to complete the design of the Boolean logic unit and the bidirectional shifter
unit. Put the logical module in a file named logical.v, and the put the shifter in a file named
shifter.v.

You are to use the bitwise Verilog operators corresponding to the four logical operations listed in the table for
the 5-bit control above.

Debugging Note: The final “else” clause in the code template above is not really necessary. You could
modify the code above to eliminate the final if-else construct, or you could keep it and use it as a debugging
aid. In particular, let’s say that there was an error in the encoding of an instruction, and the 2-bit op received
was 1x. This value will not match any of the four cases, and therefore default to final “else” clause. By
assigning a particular “catch-all” value to this situation may help you later on. In more detail, say your catch-
all value is all 1’s (which could be written as {N{1’b1}}), then later on when you are simulating an entire
MIPS processor, you find that the ALU is producing an unexpected result of all 1’s, that could help you
narrow the problem down to one of an invalid op value.

You are to use Verilog operators for the three types of shift operations. Observe that the data type of IN is
declared to be signed. Why? By default most types in Verilog are unsigned. However, for arithmetic-right-
shift to operate correctly, the input must be declared to be of signed type, so that its leftmost bit is considered
to indicate its sign.

For each of these modules, you may try to visualize their structure by running Tools ! View Schematic.

Observe IN is signed

Part III: ALU module (without comparisons)

Use the following code template to design an ALU that can add, subtract, shift, and perform logical operations.

TIP: Be careful in providing the correct left and logical inputs to the shifter from within the ALU
module. Observe first which values of bool1 and bool0 represent sll, srl and sra operations. Then
determine how left and logical should be generated from bool1 and bool0. This is slightly tricky!

Use the test fixture provided on the website to test the full ALU. Please select “signed decimal” as the radix to
display the inputs A and B, and the output R. Please select “binary” as the radix for the ALUfn.

Part IV: Modify the ALU of Part III to include comparisons

Below are two block diagrams of the ALU: the one you implemented in Part III, and a modified one that you
are to implemented now. The latter includes additional functionality: to compare the operands A and B. Both
signed and unsigned comparisons are implemented: less-than signed (LT) and less-than-unsigned (LTU).
Note the differences between the two ALUs (new functionality is highlighted in red). You may refer to the
slides (from Comp411) available on the Comp541 website. Review this information carefully before
proceeding.

The comparison between the two operands, A and B, is performed by doing a subtraction (A-B) and then
checking the flags generated (N, V and C). Observe that the Sub bit of the ALUFN is therefore on. The lower
bit of Bool determines whether the comparison is signed or unsigned. When comparing unsigned numbers, the
result of (A-B) is negative if and only if the leftmost carry out of the adder-subtractor (i.e., the C flag) is ‘0’.
There cannot be an overflow when two positive numbers are subtracted. But when the numbers being
compared are signed (i.e., in 2’s-complement notation), then the result of (A-B) is negative if (i) either the
result has its negative bit (i.e., N flag) set and there was no overflow; or (ii) the result is positive and there was
an overflow (i.e., V flag set). For more details, you may refer to the slides (from Comp411) on the website.

Without Comparisons:

With Comparisons:

To implement the new ALU, first make a new module called comparator in a new Verilog file named
comp.v. Here is a code skeleton:

module comparator(input FlagN, FlagV, FlagC, bool0, output comparison)

 assign comparison = ………

endmodule

Next, modify the ALU module to include an instance of the comparator you just designed, and then modify the
assign R line to make it a 4-way multiplexer instead of the original 3-way multiplexer. (Tip: The very last
“else” case in the nested conditional assignment in Part III could be used now to handle the result of the
comparator!) Keep in mind that the result of the comparator is a single bit ‘0’ or ‘1’, but the ALU’s result is
multibit. So you will see a compiler warning here, but the result will be properly padded with 0’s to the left.

Finally, eliminate the flags N, V and C from the output of the ALU. These flags are only used for comparison
instructions in our version of the MIPS, and since the comparator has now been included inside the ALU, these
three flags are not needed outside the ALU. The flag Z, however, still needs to be an output (since it will be
used by the control unit later on for beq/bne instructions).

Testing: Extend the test fixture provided for Lab 3 Part III to add a couple of comparisons (both signed and
unsigned), and verify that your new ALU is working correctly. Please select “signed decimal” as the radix to
display the inputs A and B, and the output R. Please select “binary” as the radix for the ALUfn.

You should first test your ALU with the width set to 8 bits. Then, you should try to change the width to 32
bits, modifying the test fixture accordingly, and verify that the ALU works correctly. But you only need to
submit your work for 8 bits.

What to submit:

• A screenshot of the ISim window clearly showing the final simulation result for PART IV.

• Your code for the following modules from Part IV: the ALU, comparator, logical and shifter
modules.

How to submit: We are now transitioning to electronic submissions (save a tree!). Please submit your
work by email as follows:

• Send email to: comp541submit-cs@cs.unc.edu

• Attach the following Verilog files: alu.v, comp.v, logical.v, shifter.v.

• Attach the simulator screenshot using the filename waveforms.png (or other appropriate
extension)

