
 1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Fall 2014

Lab #4: Sequential Design: Counters

Issued Wed 9/10/14; Due Wed 9/17/14 (11:59pm)

This lab assignment consists of several steps, each building upon the previous. Detailed instructions are
provided, including screenshots of many of the steps. Verilog code is provided for almost all of the designs,
but some portions of the code have been erased; in those cases, it is your task to complete and test your code
carefully. Submission instructions are at the end.

You will learn the following:

• Specifying sequential circuits in Verilog

• Designing different types of counters

• Including synchronous reset capabilities

• Including start/stop functionality in your counters

• Verilog simulation, and test fixtures with clocks

Part 0: Reading

Since we have not yet covered sequential logic in the lectures, here is a list of the relevant sections of the
textbook that you must read carefully before proceeding with this lab assignment:

Sections 3.2.3 – 3.2.6: Flip-Flops and Registers

Sections 4.4.1 – 4.4.3: Verilog for Flip-Flops and Registers

Section 5.4.1: Counters

 2

Part I: A Mod-4 Counter

Let us begin by designing a modulo-4 counter, i.e., one that counts in the following sequence: 0, 1, 2, 3, 0, 1,
2, 3, 0, … . The counter module will need the following: a 2-bit register to store the current value, a clock
input to pace the counting, and a Reset input to synchronously reset the counter to 0. All changes to the
counter’s value—whether counting up or resetting—take place at the upward clock transition (i.e., positive
edge of clock).

Use the following Verilog specification for the counter:

Note the following:

• The signal “value” is declared as a “reg” type, not a “wire” type. A “reg” type typically allocates a
register, i.e., one flip-flop per bit. (There is a special case that will be discussed in later labs where the
“reg” type does not allocate a register.) In this example, a 2-bit register is allocated for “value”. Thus,
“value” is a sequential type of logic: it has memory and can remember its value between changes.

• The “always” statement is a new type of Verilog behavioral construct. In this example, it states that
whenever there is a positive edge of clock [always @(posedge clock)], the “value” is updated
to either “value+1” (if counting) or to “0” (if resetting).

To test, use the Verilog test fixture provided on the website (CounterMod4_test.v). This test fixture does the
following: waits 5 ns; starts the clock (positive edge at 6 ns, period of 2 ns); simulates the counter for 5 clock
cycles; then asserts the reset signal to reset the counter back to 0; then runs the counter for another 3 clock
cycles. Be sure to go through the test fixture line-by-line and understand what each line does! If you format
all the waveforms to display in decimal, you should see exactly the following:

 3

Part II: A Mod-7 Counter

Your task is to design a mod-7 counter (with a synchronous reset), and test it via simulation. (Use the mod-4
counter from Part I as a starting point, and make appropriate modifications.) In particular, the mod-7 counter
will be different in two respects:

• It needs a 3-bit register for value, instead of the 2-bit register used in Part I.

• It counts in the sequence 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, … . Note: This sequence length is not
a power of 2, so you cannot rely on the counter wrapping around to 0 on its own after reaching 6!

Use the Verilog code given below to implement this counter, and appropriately fill in the details that have been
blacked out.

Simulate the new counter using the Verilog test fixture provided on the website (CounterMod7_test.v). Be
sure you understand every line of the test fixture file! Set the display format to Unsigned Decimal for all the
outputs. Your simulation output should look exactly like this:

Question 1: Why is the value waveform shown as “X” for the first two nanoseconds of this simulation? Why
does it become “0” at 2 ns? In contrast, for Part I, the value waveform starts out as “0”; why?

 4

Part III: A Mod-7 Counter with a Stop signal

Copy your mod-7 counter from Part II to a new file named CounterMod7Reset.v. Your task is to modify the
mod-7 counter to incorporate a Stop signal, which inhibits the counter from counting up at the next (one or
many) upward clock transitions. In particular, if Stop equals “1”, then at the next positive edge of the clock,
the counter’s value does not change. This will be true as long as Stop is high, providing you a means to
“freeze” the counter for as long as you want. Subsequently, when Stop is changed back to “0”, the counter
starts counting again, from where it left off.

NOTES:

• If Stop and reset are both “1”, the counter should reset. That is, reset has higher priority than Stop.

• The assignment to value should still be done using a single statement (value <= …), although you
are allowed to use nested conditionals. You can also split the statement up onto multiple lines for
clarity, but it should remain a single statement.

Use the Verilog test fixture provided on the website (CounterMod7Reset_test.v).

 5

Part IV: Designing an xy-counter.

Design a two-dimensional counter (i.e., xy-counter). This counter steps through a 2D matrix, one row at a
time. The matrix range is [0..width-1, 0..height-1].

• The counter starts at (x, y) = (0, 0) and increments x to go from (0, 0) to (width-1, 0).
• Then it wraps around to the beginning of the next line, (0, 1).
• Similarly, the counter wraps around from the end of the bottom line, (width-1, height-1) back to the

top, (0, 0).
• The counter also has an input called on that tells the counter whether counting is enabled or disabled.

Thus, if on == 0, the counter does not increment on the next positive edge of clock.
• Name this module xycounter, and name the source file xycounter.v.

A Verilog template for xycounter is provided below:

A Verilog test fixture is provided on the website (xycounter_test.v). Fill in the details, simulate using
the text fixture, and verify that the counter behaves as expected. You may try a couple of different sets of
values of width and height (and accordingly, the number of bits needed for x and y). But, you need only
submit the results for the test fixture provided.

 6

What to submit:

• A screenshot of the simulator window clearly showing the final simulation result for PART II
(use filename waveforms2.png, or other appropriate extension). Do not submit Verilog file.

• Your answer to Question 1 in PART II (write it in the body of the email).

• Your code for the counter module in PART III (CounterMod7Reset.v).

• A screenshot of the simulator window clearly showing the final simulation result for PART III
(use filename waveforms3.png).

• A screenshot of the simulator window clearly showing the final simulation result for PART IV
(use filename waveforms4.png).

How to submit: Please submit your work by email as follows:

• Send email to: comp541submit-cs@cs.unc.edu

• Use subject line: Lab 4

• Include the four attachments and the text answer as described above

