
 1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Fall 2014

Lab #7: VGA Display Timing Generator

Issued Wed 10/1/14; Due Wed 10/8/14 (submit by 11:59pm)

You will learn the following in this lab:

• Designing counters that count to bounds that are not powers of 2

• Designing counters that count at a fraction (power of 2) of clock frequency

• Understanding how VGA displays work

• Generating timing signals that can drive a VGA display monitor (using a 2D xy-counter)

• Understanding how color values are encoded using 8 bits

• Understanding how parameter and `define are used in Verilog to specify parameters and
constants

Part 0: Modify the counter from Lab 6 to display 4-digit decimal numbers

This modified version should still have four digits, but each digit wraps around to 0 once it reaches 9. Thus,
the behavior of a digit should be as follows:

• A digit is incremented on the next positive edge of clock only if all of the digits to its right are
currently at ‘9’. The rightmost digit is incremented on each clock tick.

• Incrementing is done as follows: If a digit is at ‘9’, its new value is ‘0’, else one is added to its value.

Name the Verilog file bcdcounter.v. For this part, we are not interested in counting down, only counting
up is required. Also, pause/resume behavior is not needed (but you can leave it in if you’d like to).

Parts 1-3 below involve building a VGA Display interface.

Part 1: Designing a VGA Timing Circuit.

Study the VGA timing specification in the board manual (Nexys 3 manual pp. 15-17, or Nexys 4 manual pp.
13-17). Also, look at the website for VGA specifications whose link is provided on the class website.

Use the template provided to design a VGA timer. First, let’s design a “toy” display that has 10 columns and 4
rows. The specifications for this are given in the file display10x4.v. Note the following:

• Understand the use of `include to include another source file.
• Understand the use of `define to define text substitutions. The right-hand side of a `define does

a literal text substitution for the value being defined (like a search-and-replace!).
• Understand the use of the parameter statement, and how default values are specified, as well as

new values specified during instantiation can override the defaults.

A Verilog template for vgatimer is provided on the website, and copied below:

 2

Use the test fixture provided (vgatimer_test.v) to test your VGA timing circuit. When you first run the
simulator, it will simulate only until 1 microsecond (shown as 1.00us above the waveforms). This time is
sufficient only to see the first horizontal sync pulse, so we will lengthen the simulation time. But for now,
your simulation output should look exactly like the following.

Observe carefully the start and stop times of the hsync and activevideo pulses in terms of the x values of
the counter, and make sure you do not have an off-by-one error!

 3

Next, we will lengthen the simulation duration to 6 microseconds. Change the simulation time
shown above the waveforms to show 5.00us, and then click the “play-hourglass” icon
immediately to its left, which tells the simulator to add another 5 microseconds to the
simulation. You should see the simulation time shown at the bottom right of the screen
change to 6 microseconds (6 million picoseconds).

Now let us try to find the vertical sync pulse. Click on vsync signal (either in the Name column or on
its waveform), and then clock on the “find next transition” icon, which should automatically scroll to
the start of the vertical sync pulse. You can click on this icon again to find the end of the pulse. You
can also click on the “find previous transition” icon immediately to its left to go back to the start of the pulse.
Use the zoom in and zoom out buttons so you see the entire vertical sync pulse within the window. You
should see the following waveforms.

Once again, observe carefully the start and stop times of the vsync and activevideo pulses in terms of
the x and y values of the counter, and make sure you do not have an off-by-one error!

Part 2: Driving the display.

Let us now use this VGA timing generator, and drive the display. We do not yet have anything nice to display.
So, let us display some random color values, in a pattern that is easy to recognize if it is correctly displayed.

A Verilog template for vgadisplaydriver is provided on the website and copied below. Be sure to edit it
to match the board you are using.

 4

Simulate using the test fixture provided on the website, vgadisplaydriver_test.v. Verify that the
simulation output is exactly as expected, according to the values in the display10x4.v file. If you
simulate to 5 microseconds, you should see exactly the following output waveforms.

Do not proceed if your waveforms do not match the above figure exactly. An off-by-one error could easily
cause of lack of synchronization between your circuit and the monitor.

Once your 10x4 display driver is working correctly, select a real set of timing values by using the file
display640x480.v (or display800x600.v) instead. Program the design onto the board, connect the
VGA monitor and see if everything works!

 5

Part 3: Show an interesting pattern,

Modify the vgadisplaydriver to show a different pattern, something interesting. Lines, stripes,
checkerboards and diagonals are all fine. Try higher-order bits of x and y to derive RGB values. You can also
use arithmetic and Boolean operators.

What to submit:

• The four Verilog sources for Parts 0, 1, 2 and 3: bcdcounter.v, xycounter.v, vgatimer.v, and
vgadisplaydriver.v.

• Show a working demo of your design for Part 0 and Part 4 during the lab session on Friday,
October 10.

How to submit: Please submit your work by email by 11:59pm, Oct 8, 2014 as follows:

• Send email to: comp541submit-cs@cs.unc.edu

• Use subject line: Lab 7

• Include the four attachments as specified above

