
1 of 3

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Fall 2014

Lab #8: Working with Memories (RAM)

Issued Wed. 10/8/14; Due Wed. 10/22/14 (submit by 11:59pm)

You will learn the following in this lab:

• More practice with top-down hierarchical design (no top-level template provided!)

• Designing a simple memory unit (RAM)

• More practice with state machines (FSM)

• More practice with switch debouncers and 7-segment displays

In this lab assignment, you are to design a system containing a small RAM module and test it by filling it
with values, and repeatedly reading them and modifying them. The data inputs to your system are: (i) an
address to select which memory location is being read/written; and (ii) data to be written into the memory
location (if writing). The output from your system is the data value at the location the memory is being
addressed (i.e., read value), displayed on a 7-segment display.

The following block diagram shows the complete system (called memdemo). Please study it carefully!

debouncer

debouncer

debouncer

debouncer

debouncer
RAM

clock

wr

Dout
Addr

Din

HexTo7Seg

digitselect
=1110

segments

FSM

btnL

btnR

btnU

btnD

btnC

Left

Right

Up

Down

Center

clock

clock

Combinational
logic

D

Addr

clock

2 of 3

The inputs and outputs of the system are as follows:

• clock: Delivered to all of the clocked components inside the system.

• Push buttons: Inputs from the five push buttons on the board, labeled btnL, btnR, btnU, btnD and
btnC (center, sometimes labeled btnS in documentation).

• Addr: A 4-bit value that provides the address of the memory location being referenced. This
value is entered on the board via slider switches #4-7. Thus, this assignment only needs a
memory unit with 16 locations.

• D: A 4-bit value that provides the data for storing into memory. Thus, each word in memory is a
single hex digit [0..F]. This value is entered on the board via the four rightmost slider switches
(#0-3).

• segments: The value read from memory is encoded for output on the 7-segment display.

• digitselect: A constant output value that selects the rightmost character (out of four on Nexys 3,
or eight on Nexys 4) on the 7-segment display.

NOTE: A .ucf file is provided with the appropriate pin bindings for all of the above input/output signals.

The behavior of the system is as follows:

• The user selects the memory location (0 to 15) by sliding the switches corresponding to Addr.

• When the user provides Addr, the memory unit outputs the value stored at that location,
mem[Addr]. This is a 4-bit value that shows up as one character on the segment display.

• If the user presses one of the push-buttons: The value at the reference memory location is
modified. Its new value depends upon which button was pressed, as follows:

o center button: memory value is set to zero

o up button: memory value is incremented by 1

o down button: memory value is decremented by 1

o left button: memory value is bitwise AND’ed with the value D

o right button: memory value is bitwise OR’ed with the value D

o NOTE: For each of these scenarios, the memory write operation should take place when
the button is pressed; subsequently, your state machine should wait until the button is
released before going back to its initial state.

Your design must follow these guidelines:

• The top-level design must correspond to the structure shown in the block diagram, and its Verilog
description must be called module memdemo in file memdemo.v.

• Use the hexto7seg encoder module from Lab 5 Part III.

• Use the debouncer module from Lab 6. You will need five separate instances.

• Code is provided for ram_module. First read it carefully and make sure you understand it.

3 of 3

• For the FSM, first draw a diagram with states and transitions. You should need no more than six
states: one initial state, and one state each to represent each of the five button presses. The FSM
should go back to its initial state once the button is released. This is important! Otherwise,
similar to Lab 6, you will end up writing the memory thousands of times during each button
press. This FSM is easier than that for Lab 6. You will need to scan it (or take a picture) and
submit it along with the other files for this lab. The Verilog description must be in a separate
module (module fsmLab8 in file fsm.v).

• For the combinational logic at the bottom of the block diagram, write a simple piece of code that
generates the correct value to be stored in memory, i.e., either 0, or the current value + 1, or the
current value – 1, or … etc. This should be in a separate module (module comb) in a separate
file (comb.v).

The following files are provided on the website.

• ram.v: This file has the Verilog description of a parameterized RAM module. The parameters
allow three attributes to be specified: number of address bits, number of data bits, and number of
memory locations.

• Lab8.ucf: This file has the pin assignments.

What to submit:

• A picture of the state diagram for the FSM (e.g., fsm.png).

• Your Verilog source for top-level design (memdemo.v), the FSM (fsm.v) and the
combinational logic block (comb.v).

• Show a working demo of your design during the lab session on Oct 24, 2014.

How to submit: Please submit your work by email by 11:59pm, Oct 22, 2014, as follows:

• Send email to: comp541submit-cs@cs.unc.edu

• Use subject line: Lab 8

• Include the four attachments as specified above

