The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Spring 2015

Lab #2: Hierarchical Design & Verilog Practice
Issued Wed. 1/14/15; Due Wed. 1/21/15 (11:59pm)

This lab assignment consists of several steps, each building upon the previous. Detailed instructions are
provided, including screenshots of many of the steps. Verilog code is provided for almost all of the designs,
but some portions of the code have been erased; in those cases, it is your task to complete and test your code
carefully. Submission instructions are at the end.

You will learn the following:
* Navigating the ISE development environment
* Designing a hierarchical system, with multiple module types
* Working with buses (multi-bit values)
* Verilog test fixtures and stimuli, including printing and monitoring

* Verilog simulation, including the graphical viewer

In this lab assignment, you will design and test an 8-bit adder-subtractor unit. We will focus on building the
design from the bottom up, giving you practice in hierarchical design. We will start with the design of a full
adder, which will be similar to Lab 1, but with minor modifications. Then, we will string together four full
adders to form a 4-bit ripple-carry adder. Next, we will combine two 4-bit adders to produce an 8-bit adder.
Finally, we will introduce a conditional negation on the second operand to allow the unit to perform addition
or subtraction, depending on a Boolean control input.

Follow the detailed steps described below.
Make a New Project

Launch Vivado, click Create New Project, name it Lab 2, select RTL Project, and select the correct part
number (xc7al00tcsg324-1). In this empty project, click Add Sources > Add or create design sources > Add
Files..., and then enter the path to the fulladder Verilog file from Lab 1, as shown in the picture below. Note:
Be sure to check the box next to Copy source into project, so that a new copy of that file is created in this
project,; otherwise, any edits you make to this file will be reflected back in Lab 1!

r ~N
4. Add Sources %

Add or Create Design Sources

Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your

project. Create a new source file on disk and add it to your project.

Index Name Library Location -l"
w1 fulladder.v xil_defaultib D:/Comp541-Spring15/Lab1/Lab1.srcs/sources_1/new S
| AddFies... || AddDiectories... || CreateFie... |

[7] Scan and add RTL include files into project
Copy sources into project

Add sources from subdirectories

Next > [Finish] [Cancel]

For your reference, below is once again the circuit and Boolean equations for a Full Adder (from Comp411).
In this assignment, we will design the full adder structurally using basic logic gates, exactly following the
topology of the circuit diagram, using only 5 gates (instead of the 6-gate implementation of Lab 1).

AB
-~ T T 'L| =1
e —— V7
farr_y / \ " Cout = Cin(A®B) + AB
ogic / L Sum = C;, ®(ADB)
I . ; _ Cin
/ (\

Edit the definition of fulladder to make it purely structural as follows. A skeleton of the Verilog description is
provided, with some details erased. Your task is to fill in the blanks. Be sure that your Verilog description
exactly matches the circuit above.

module fulladder(
input A,
input B,
input Cin,
output Sum,
cutput Cout
):

wire tl, t2, t3;
xor x1(tl, A, B):;
xor x2(Sum, Cin, @ :
and al(t2, () :
and a2 (i :
or ol (Cout, G :

endmodule

Now, the full adder implementation consists of only 5 gates. Highlight the full adder module under Design
Sources and click Elaborated Design under RTL Analysis. You should see the following schematic diagram:

i X2_i
Cin [10ali 00
9=0 n)) >%—sum
7
AL /| RTL_XOR
10 x1_i RTL_AND T 10 ol_i
B 11 D}O 11 S Cout
RTL_XOR o 0 RTL_OR
RTL_AND

Let us re-use the tester from Lab 1 to test this implementation. Click Add Sources = Add or create simulation
sources. Then, be sure Copy sources into project is checked, Include all design sources for simulation is
checked, and click 4dd Files..., navigate to the path shown in the picture, and select the tester from Lab 1,
fulladder test.v.

-
g{, Add Sources 23

-

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HDL files, to add to your project.
Create a new source file on disk and add it to your project.

Specify simulation set: | &= sim_1 v
Index Name Library Location 'I"
¥e 1 fulladder_test.v xil_defaultlb D:/Comp541-Spring15/Lab1/Lab1.srcs/sim_2/new
Add Files... J [Add Directories... J [Create File...

Scan and add RTL include files into project

/| Copy sources into project

Add sources from subdir

m

ctories
clories

Should be ¥ | Indude all design sources for simulation
checked ¢

< Back Next Finish J [Cancel

Now run the simulator and observe the output waveforms. They should be identical to the results from Lab 1,
reproduced here:

o fulladder.v X | @@ fulladder_test.v X | ¥® fulladder_test.v (2) X | B8 Untitled1 X O e
22.000 ns

Designing a 4-bit ripple-carry adder

Let us now design a 4-bit ripple-carry adder by stringing together four full adders (FAs). The diagram of a 4-
bit adder (again, from Comp411) is shown here for reference.

A3 B3
||

A2 B2 Al Bl A0 BO
|| || ||

Cout —

FA

FA FA FA |— Cin

S3

S2 S1 SO

The corresponding Verilog code is shown here, but portions of it have been obscured. Please fill in
appropriately. (You do not need to add any extra lines of code; just fill in the missing details into what is

provided.)

frodule adderédbit(

input [3
input [3

:0] &,
:0] B,

input Cin,
output [3:0] Sum,
ocutput Cout

)

wire C1,

fulladder
fulladder
fulladder
fulladder

endmodule

cz2, C3:

a0 (a[o],
al(a[1l,
a2 (a[21,
a3 (A[3],

B[0], Cin, Sum[O0], C1);

3111, W, sum[(1], @)
8(2], @, sum[2], ;
8(3]1, @, Sum[3], ;

Before you can enter this code, you will need to create a new source file. Click Add Sources > Add or create
design sources, and name it adder4bit.

Generate its schematic (RTL Analysis - Elaborated Design). Tt should look like in the picture below.

Observe that this circuit diagram is topologicaly equivalent to the block diagram above. Observe how the 4-bit
inputs A/3:0] and B/3:0] are drawn, and the places where individual bits are peeled off (little cone shaped
symbols indicate that a single bit is being selected out of a multibit signal). Also observe how individual bits
of the output are combined into a multibit Sum/3:0] output (with mirror-image cones indicating how single
bits feed into a wider signal).

a0

AB:01D>— - ’; Z’”“ -
B[3:0] [=
cn[> S
fulladder al
+
* 1 A . Cout
1 : 8 Sum | Sum(3:0)
aZ Cn
= fulladder
2 A . Cout '
2 B Sum ;T a3
C_n
fulladder 3 A . [Cout
3 B Sum 3
Cin
fulladder

Create your own tester to test your 4-bit adder. Be sure to assign it to a new simulation set (sim_2), and mark
it as active (right-click and choose Make Active). Really, do test your 4-bit adder before moving on!

Designing an 8-bit ripple-carry adder

Now we will design an 8-bit adder using two 4-bit adders. The procedure is very similar: create a new source
file, and this time use “adder8bit” as the name for the module. Use the following Verilog skeleton, and fill in
the missing details.

module adder8bit (
input [7:0] A,
input [7:0] B,
input Cin,
output [7:0] Sum,
output Cout
)z

wire C3;
adder4bit AO(A[3:0], B[3:0], Cin, Sum[3:0], @ :

adder4bit 21 (D D & R N9 :

endmodule

Generate its schematic diagram.

Al
A[7:0 ks
7:01 > 0 Lm A[3:0 9 Cout > Cout
3] #7:‘ B[3:0] Sum(3:0] 3:0 Sum[7:0]
b ___a3:0) Cout Gn

B[7:0] [D—p—-E00 3(;0'1 __I_I_15um 20 adder4bit
Cin[_

adder4bit

Each module that has a “+” sign on it can be expanded to show its internals (i.e., zoom in and zoom out).
Spend a few minutes navigating the hierarchy in this schematic.

Once again, create your own test fixture to test your 8-bit adder. Be sure to assign it to a new simulation set
(sim_3), and mark it as active (right-click and choose Make Active). Really, do test it before moving on!

Designing an 8-bit Adder-Subtractor

Now you will design a circuit that can perform 8-bit additions as well as subtractions. That is, given 4 and B,
the circuit will produce either the sum 4+B, or the difference 4-B, depending on whether the value of a
Boolean input Subtract is 0 or 1, respectively. This circuit was also covered in Comp411, but is repeated here
for reference. Note that there is no C;, and no C,,,.

B7 ITG B|1 I|30
Subtract

lL Ll Ll Ll

A7 A6 .. Al AO
| || |
8-bit adder —
| | | |

Result7 Result6 ... Resultl Result0

Once again, you will create a new source file, with the name add sub 8bit. Use the Verilog template below,
and fill in the missing pieces:

Imodule add sub_8bit(
input [7:0] A,
input [7:0] B,

i input Subtract,

: output [7:0] Result

i):

wire [7:0] ToBornottoB;
wire Cout;

| assign ToBornottoB[7:0] = {8{Subtract}} ~ B[7:0];
adder8bit addg8(A[7:0], ToBornotteB[7:0], ~, S)

i endmodule

In the Verilog description above, a repetition construct is used: {8 {Subtract}} simply means, “repeat the
value of Subtract to produce an 8-bit value that is 00000000 if Subtract is 0, and 11111111 if Subtract is 1.
The operator “*” is a bitwise XOR operator. Therefore, each bit of B is XOR’ed with Subtract, just as in the
circuit diagram above.

Note that while the 8-bit adder has a carry out, the add_sub_8bit module does not send it out! Also, observe
carefully what the carry in of the adder is connected to.

Save the file, and take a look at the hierarchy; it should look exactly like this when you expand all the nodes:

|) 1—"Desugn Sources (1)
= ve-.. |_sub_8bit (add_sub 8b|t v) (1)
[=)-#® add8 - adder8bit (adderabit
(=}-@® A0 - adder4bit (adder abit.
{8 a0 - fulladder (fulla
w8 al - fulladder (fulla:
{98 a2 - fulladder (A
. -Ave'a3 fulladder (f

@ 22 - fulladder :fﬁ iladder.v)
{48 a3 - fulladder (fulladder.v)

Highlight the add_sub_8bit module under Design Sources, and generate its schematic.

add8
A[7:0]
Al7:0
[(7:00 > B[7:0] —2mlZ0l_1™\ Result{7:0]
Subtract[> =
10(7:0_TOBOMNOttoBO_i adder8bit
0[7:0
op7:0) iz) 2 ——
RTL_XOR

In this diagram, the single XOR gate represents a bitwise operation on 8-bit inputs. Therefore, it is equivalent
to the 8 separate XOR gates.

Verilog Test Bench

Click Add Sources = Add or create simulation sources, and create a new simulation set (sim_4), then create a
new tester filer called addsub_test. Download the tester from the class website, and copy its contents into the
simulation source you just created. (Alternatively, you can choose to Add Files... instead of Create File, and
point to the file you downloaded.)

Read through every line of the test bench, and make sure you understand it! Refer to the online Verilog
reference linked from the class website.

Verilog Simulation

Right-click the simulation set (sim_4) and mark it as active, then run the simulation. Since the default size of

the waveform window is too small, click the “pop out” button (E), and resize the window and select zoom to
fit. Also, since it is hard to make sense of all the 0’s and 1’s, select all the signals under Name (use shift-
select), right-click, choose Radix, and select Signed Decimal. You should now see the simulation outputs in
decimal.

ULy o —_— e K'Y

N A[7:0]
-8 B[7:0]

A s

| Subtract
™ Result[7:0]

Look through them carefully to make sure they are correct.

Now, let us display the bus ToBornottoB that is inside the add_sub_8bit module. Under the Scope pane, select
uut, and you will see the objects and wires inside it in the Objects pane. Click and drag ToBornottoB[7:0]
into the Name column in the waveform window:

Scopes — 0O X Objects — O 2 X
(G g . — " N = " ‘) Name
A5 WEeEGE® E “A\ @ 1;7_'@ é é <.L’\]/,::
Name Design Unit Name Value Data Type N A[7:0]
= G addsub_test addsub_test +-j A[7:0] 00001010 Array M B[7:0]

= G uut add_sub_8bit +-(fj B[7:0] 00110010 Array .

+- §} adds addersbit f) Subtract 1 Logic & Subtract
4 glbl glbl +- 3 Result[7:0 11011000 Array M Result[7:0]
& *~ ToBornottoB 01 |Array | N i[31:0]
@ Cout 0 Logic
™ ToBornottoB[7:0]

Click on Run in the top menu bar, then select Relaunch Simulation. When asked if you want to save the
waveform configuration, click Yes and accept the default file name. This time, once the simulation is
completed, the value of ToBornottoB[7:0] is also displayed in the waveform window. Right-click
ToBornottoB in the name column, and change its radix back to Binary. Also, change the radix of B back to
Binary. Observe that they are identical for the first half of the simulation (since additions are being
performed), and bitwise complements during the second half (since now subtractions are being performed).

This exercise showed you how to examine objects that are not at the top level, but down the hierarchy.

Also, observe that you can click at a particular time instant in the waveform window. The Value column is
updated to show the values of all the signals at that time instant. There are also other buttons available for
zooming in/out, skipping to next transition, etc.

Why does the value of i appear as X for the first 5 ns?

Using Display and Monitor Commands

Scroll to the bottom of the test fixture. You will see commands using $time, $timeformat, and $Smonitor.
The $monitor command tells the simulator to print a message whenever any of its arguments (except for
$time itself) changes value. The output appears in Tc/ Console tab (select able near the bottom of the screen):
scroll up a few lines to the see the output of these “print” statements in the tester.

Please refer to the online Verilog reference website for details on these commands, and make sure you
understand them well! You should also look into the $display and $write commands.

What to submit: A screenshot of the waveform window clearly showing the final simulation result of the
adder-subtractor, i.e., with ToBornottoB[7:0].

* The values of ToBornottoB[7:0] and B[7:0] should be shown in binary.
¢ The values of Result[7:0], A[7:0], Subtract, and i should be shown as signed decimals.

How to submit:
* Send email to: comp541submit-cs@cs.unc.edu, with “Lab 2” in the subject line.

* Attach the simulator screenshot using the filename waveforms . png (or other appropriate
extension).

* Submit your work by 11:59pm on Wednesday, January 21.

