
of Pacific trade wind slackening predicted under
future climate warming should extend the 20th-
century contraction of theOMZ into this century.
This wind-driven forcing may eventually be
overwhelmed by the stratification-driven deoxy-
genation of the ocean as a whole, as proxies of
anoxia from Pleistocene sediments point to a
larger tropical OMZ and greater N loss during
warm climates (19, 34, 35). The relative influence
of these effects and the time scales over which they
operate on the tropical OMZ remain unknown.
The predominant 20th-century contraction of

the North Pacific OMZ has important implica-
tions for the basin’s N cycle. Over centennial time
scales, the slowing pace of N loss would have re-
duced the NO3

– deficit relative to plankton PO4
3–

requirements throughout surface waters of the
N-limited North Pacific. Recent isotopic analysis
of skeleton material from deep-sea corals near
Hawaii also exhibit a decreasing trend over this
time period, which has been interpreted as a sig-
nal of increasing N inputs from N2 fixation (36).
However, because isotopic and stoichiometric sig-
nals of denitrification are transported from the
anoxic zone into the subtropical gyre (37), the
reported coral trends may originate partly from
the OMZ. Any remaining signal attributable to
N2 fixation would imply that the ecological niche
of diazotrophs in the central gyre is uncoupled
from the major N loss in the OMZ (38), and that
a substantial imbalance of the Pacific N budget
has persisted over the 20th century.
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Amillion spiking-neuron integrated
circuit with a scalable communication
network and interface
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Inspired by the brain’s structure, we have developed an efficient, scalable, and flexible
non–von Neumann architecture that leverages contemporary silicon technology. To
demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores
interconnected via an intrachip network that integrates 1 million programmable spiking
neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via
an interchip communication interface, seamlessly scaling the architecture to a cortexlike
sheet of arbitrary size. The architecture is well suited to many applications that use
complex neural networks in real time, for example, multiobject detection and classification.
With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes
63 milliwatts.

A
long-standing dream (1, 2) has been to
harness neuroscientific insights to build a
versatile computer that is efficient in terms
of energy and space, homogeneously scal-
able to large networks of neurons and

synapses, and flexible enough to run complex

behavioral models of the neocortex (3, 4) as well
as networks inspired by neural architectures (5).
No such computer exists today. The von

Neumann architecture is fundamentally ineffi-
cient and nonscalable for representing massively
interconnected neural networks (Fig. 1) with re-
spect to computation, memory, and communica-
tion (Fig. 1B). Mixed analog-digital neuromorphic
approaches have built large-scale systems (6–8)
to emulate neurobiology by using custom com-
putational elements, for example, silicon neurons
(9, 10), winner-take-all circuits (11), and sensory
circuits (12). We have found that a multiplexed
digital implementation of spiking neurons ismore
efficient than previous designs (supplementary
section S3) and enables one-to-one correspondence
between software and hardware (supplementary
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section S9). Mixed analog-digital as well as cus-
tom microprocessor-based neuromorphic approaches
(13) have built event-driven communication frame-
works (14) to emulate the interconnectivity of the
brain by leveraging the speed of digital electronics.
We have found that event-driven communication
combined with colocated memory and compu-
tation mitigates the von Neumann bottleneck
(15). Inspired by neuroscience (Fig. 2, A to C), our
key architectural abstraction (Fig. 1C) is a network
of neurosynaptic cores that can implement large-
scale spiking neural networks that are efficient,
scalable, and flexible within today’s technology.
From a structural view, the basic building

block is a core, a self-contained neural network
with 256 input lines (axons) and 256 outputs
(neurons) connected via 256-by-256 directed,
programmable synaptic connections (Fig. 2D).
Building on the local, clustered connectivity of
a single neurosynaptic core, we constructedmore
complex networks by wiring multiple cores to-
gether using global, distributed on- and off-chip
connectivity (Fig. 2, E and F). Each neuron on
every core can target an axon on any other core.
Therefore, axonal branching is implemented hier-
archically in two stages: First, a single connec-
tion travels a long distance between cores (akin

to an axonal trunk) and second, upon reaching
its target axon, fans out into multiple connec-
tions that travel a short distance within a core
(akin to an axonal arbor). Neuron dynamics is
discretized into 1-ms time steps set by a global
1-kHz clock. Other than this global synchroniza-
tion signal, which ensures one-to-one equivalence
between software and hardware, cores operate in
a parallel and event-driven fashion (supplemen-
tary section S1). The fundamental currency that
mediates fully asynchronous (16) intercore
communication and event-driven intracore com-
putation is all-or-nothing spike events that repre-
sent firing of individual neurons. The architecture
is efficient because (i) neurons form clusters
that draw their inputs from a similar pool of
axons (17–19) (Fig. 2A) allowing for memory-
computation colocalization (supplementary sec-
tion S5); (ii) only spike events, which are sparse
in time, are communicated between cores via
the long-distance communication network; and
(iii) active power is proportional to firing ac-
tivity. The architecture is scalable because (i)
cores on a chip, as well as chips themselves, can
be tiled in two dimensions similar to the mam-
malian neocortex (Fig. 2, B and C); (ii) each spike
event addresses a pool of neurons on a target

core, reducing the number of long-range spike
events thus mitigating a critical bottleneck (sup-
plementary section S4); and (iii) occasional de-
fects at the core and chip level do not disrupt
system usability. Last, the architecture is flexible
because (i) each neuron is individually config-
urable, and the neuron model (20) supports a
wide variety of computational functions and
biologically relevant spiking behaviors; (ii) each
synapse can be turned on or off individually,
and postsynaptic efficacy can be assigned relative
strengths; (iii) each neuron-axon connection is
programmable along with its axonal delay; and
(iv) the neurons and synapses can exhibit pro-
grammed stochastic behavior via a pseudo-random
number generator (one per core). The architec-
ture thus supports rich physiological dynamics
and anatomical connectivity that includes feed-
forward, recurrent, and lateral connections.
From a functional view, a core has individually

addressable axons, a configurable synaptic cross-
bar array, and programmable neurons (Fig. 2G).
Within a core, information flows from presyn-
aptic axons (horizontal lines), through the active
synapses in the crossbar (binary-connected cross-
points), to drive inputs for all the connected
postsynaptic neurons (vertical lines). Axons are

SCIENCE sciencemag.org 8 AUGUST 2014 • VOL 345 ISSUE 6197 669

Fig. 1. Computation, communication, and memory. (A) The parallel,
distributed architecture of the brain is different from the sequential, cen-
tralized von Neumann architecture of today’s computers. The trend of in-
creasing power densities and clock frequencies of processors (29) is headed
away from the brain’s operating point. Number and POWER processors are
from IBM, Incorporated; AMD, Advanced Micro Devices, Incorporated;
Pentium, Itanium, and Core 2 Duo, Intel, Incorporated. (B) In terms of
computation, a single processor has to simulate both a large number of
neurons as well as the inter-neuron communication infrastructure. In terms

ofmemory, the von Neumann bottleneck (15),which is caused by separation
between the external memory and processor, leads to energy-hungry data
movement when updating neuron states and when retrieving synapse
states. In terms of communication, interprocessormessaging (25) explodes
when simulating highly interconnected networks that do not fit on a single
processor. (C) Conceptual blueprint of an architecture that, like the brain,
tightly integrates memory, computation, and communication in distributed
modules that operate in parallel and communicate via an event-driven
network.
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activated by input spike events, which are gen-
erated by neurons anywhere in the system and
delivered after a desired axonal delay of between
1 and 15 time steps. Although the brain has a
dedicated wire for each connection, in our archi-
tecture spike events are carried between cores by
time-multiplexed wires (21) that interconnect a
two-dimensional mesh network of routers, each
with five ports (north, south, east, west, and lo-
cal). The routers form the backbone of a two-
dimensional mesh network interconnecting a
64-by-64 core array (Fig. 2H). When a neuron on
a core spikes, it looks up in local memory an
axonal delay (4 bits) and the destination address
(8-bit absolute address for the target axon and
two 9-bit relative addresses representing core
hops in each dimension to the target core). This
information is encoded into a packet that is in-

jected into the mesh, where it is handed from
core to core—first in the x dimension then in the
y dimension (deadlock-free dimension-order rout-
ing) until it arrives at its target core before fanning
out via the crossbar (fig. S2). To implement
feedback connections within a core, where a
neuron connects to an axon on the same core,
the packet is delivered by using the router’s local
channel, which is efficient because it never leaves
the core. To scale the two-dimensional mesh
across chip boundaries where the number of
interchip connections is limited, we used a
merge-split structure at the four edges of the
mesh to serialize exiting spikes and deserialize
entering spikes (Fig. 2I). Spikes leaving the mesh
are tagged with their row (for spikes traveling
east-west) or column (for spikes traveling north-
south) before being merged onto a shared link

that exits the chip. Conversely, spikes entering
the chip from a shared link are split to the ap-
propriate row or column by using the tagged
information.
From a physical view, to implement this

functional blueprint, we built TrueNorth, a fully
functional digital chip (supplementary section
S6) with 1 million spiking neurons and 256
million synapses (nonplastic). With 5.4 billion
transistors occupying 4.3-cm2 area in Samsung’s
28-nm process technology, TrueNorth has ∼428
million bits of on-chip memory. Each core has
104,448 bits of local memory to store synapse
states (65,536 bits), neuron states and parame-
ters (31,232 bits), destination addresses (6656
bits), and axonal delays (1024 bits). In terms of
efficiency, TrueNorth’s power density is 20 mW
per cm2, whereas that of a typical central processing

670 8 AUGUST 2014 • VOL 345 ISSUE 6197 sciencemag.org SCIENCE

Fig. 2. TrueNorth architecture. Panels are organized into rows at three
different scales (core, chip, and multichip) and into columns at four different
views (neuroscience inspiration, structural, functional, and physical). (A) The
neurosynaptic core is loosely inspired by the idea of a canonical cortical
microcircuit. (B) A network of neurosynaptic cores is inspired by the cortex’s
two-dimensional sheet. (C) The multichip network is inspired by the long-
range connections between cortical regions shown from the macaque brain
(30). (D) Structure of a neurosynaptic core with axons as inputs, neurons as
outputs, and synapses as directed connections from axons to neurons.
Multicore networks at (E) chip scale and (F) multichip scale are both created
by connecting a neuron on any core to an axon on anycore with point-to-point
connections. (G) Functional view of core as a crossbar where horizontal lines
are axons, cross points are individually programmable synapses, vertical lines
are neuron inputs, and triangles are neurons. Information flows from axons

via active synapses to neurons. Neuron behaviors are individually program-
mable, with two examples shown. (H) Functional chip architecture is a two-
dimensional array of cores where long-range connections are implemented
by sending spike events (packets) over a mesh routing network to activate a
target axon. Axonal delay is implemented at the target. (I) Routing network
extends across chip boundaries through peripheral merge and split blocks.
(J) Physical layout of core in 28-nm CMOS fits in a 240-mm-by-390-mm
footprint. A memory (static random-access memory) stores all the data for
each neuron, a time-multiplexed neuron circuit updates neuron membrane
potentials, a scheduler buffers incoming spike events to implement axonal
delays, a router relays spike events, and an event-driven controller
orchestrates the core’s operation. (K) Chip layout of 64-by-64 core array,
wafer, and chip package. (L) Chip periphery to support multichip networks.
I/O, input/output.
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unit (CPU) is 50 to 100 W per cm2 (Fig. 1A).
Active power density was low because of our
architecture, and passive power density was low
because of process technology choice with low-
leakage transistors. This work advances a previ-
ous experimental prototype single neurosynaptic
core (22)—scaling the number of cores by 4096
times and reducing core area by 15 times and
power by 100 times. To enable an event-driven,
hybrid asynchronous-synchronous approach,
we were required to develop a custom tool
flow, outside the scope of commercial software,
for simulation and verification (supplementary
section S2).
We used our software ecosystem (supplemen-

tary section S9) to map many well-known algo-
rithms to the architecture (23) via offline learning,
for example, convolutional networks, liquid state
machines, restricted Boltzmann machines, hid-

den Markov models, support vector machines,
optical flow, and multimodal classification. These
same algorithms now run without modification
on TrueNorth. To test TrueNorth’s applicability
to real world problems, we developed an addi-
tional multiobject detection and classification
application in a fixed-camera setting. The task
had two challenges: (i) to detect people, bicyclists,
cars, trucks, and buses that occur sparsely in
imageswhileminimizing false detection and (ii)
to correctly identify the object. Operating on a
400-pixel-by-240-pixel aperture, the chip consumed
63 mW on a 30-frame-per-second three-color
video (Fig. 3), which when scaled to a 1920-pixel-
by-1080-pixel video achieved state-of-the-art per-
formance (supplementary section S11). Because
the video was prerecorded with a standard
camera, we were required to convert the pixels
into spike events to interface with TrueNorth. In

a live setting, we could use a spike-based retinal
camera (12) similar to a previously demonstrated
eye-detection application (23). We also imple-
mented a visual map of orientation-selective fil-
ters, inspired by early processing in mammalian
visual cortex (24) and commonly used in com-
puter vision for feature extraction (supplementary
section S10). All 1 million neurons received feed-
forward inputs with an orientation bias from
visual space as well as recurrent connections
between nearby features to sharpen selectivity.
The standard benchmark of a computer ar-

chitecture’s efficiency is energy per operation. In
the domain of configurable neural architectures,
the fundamental operation is the synaptic event,
which corresponds to a source neuron sending
a spike event to a target neuron via a unique
(nonzero) synapse. Synaptic events are the ap-
propriate atomic units because the computation,
memory, communication, power, area, and speed
all scale with number of synapses. By using com-
plex recurrently connected networks (Fig. 4A),
we measured the total power of TrueNorth
under a range of configurations (Fig. 4B) and
computed the energy per synaptic event (Fig.
4C) (supplementary section S7). Power consump-
tion in TrueNorth is a function of spike rate, the
average distance traveled by spikes, and the av-
erage number of active synapses per neuron
(synaptic density). At the operating point where
neurons fire on average at 20 Hz and have 128
active synapses, the total measured power was
72 mW (at 0.775 V operating voltage), corre-
sponding to 26 pJ per synaptic event (consid-
ering total energy). Compared with an optimized
simulator (25) running the exact same network
on a modern general-purpose microprocessor,
TrueNorth consumes 176,000 times less energy
per event (supplementary section S12). Compared
with a state-of-the-art multiprocessor neuromor-
phic approach (13) (48 chips each with 18 micro-
processors) running a similar network, TrueNorth
consumes 769 times less energy per event (supple-
mentary section S12). Direct comparison to these
platforms is possible because, like TrueNorth,
they support individually programmable neurons
and connections, as required to run applications
like our multiobject recognition example. Direct
comparisons with other platforms is not possi-
ble because of different network constraints and
system capabilities (supplementary section S13).
Computation in TrueNorth is measured by using
synaptic operations per second (SOPS), whereas
in modern supercomputers it is floating-point op-
erations per second (FLOPS). Although not a
direct comparison, TrueNorth can deliver 46 bil-
lion SOPS per watt for a typical network and
400 billion SOPS per watt for networks with
high spike rates and high number of active syn-
apses (supplementary section S8), whereas today’s
most energy-efficient supercomputer achieves
4.5 billion FLOPS per watt.
We have begun building neurosynaptic super-

computers by tiling multiple TrueNorth chips,
creating systems with hundreds of thousands of
cores, hundreds of millions of neurons, and
hundreds of billion of synapses. We envisage
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Fig. 3. Real-time multi-
object recognition on
TrueNorth. (A) The
Neovision2 Tower data
set is a video from a
fixed camera, where
the objective is to
identify the labels and
locations of objects
among five classes. We
show an example
frame along with the
selected region that is
input to the chip. (B)
The region is
transduced from pixels
into spike events to
create two parallel
channels: a high-
resolution channel
(left) that represents
the what pathway for
labeling objects and a
low-resolution channel
(right) that represents
the where pathway for
locating salient objects.
These pathways are
inspired by dorsal and
ventral streams in
visual cortex (4). (C)
What and where path-
ways are combined to form a what-
where map. In the what network,
colors represent the spiking activity
for a grid of neurons, where different
neurons were trained (offline)
to recognize different object types.
By overlaying the responses, brighter
colors indicate more-confident labels.
In the where network, neurons were
trained (offline) to detect salient
regions, and darker responses
indicate more-salient regions.
(D) Object bounding boxes reported
by the chip.

RESEARCH | REPORTS

 o
n 

N
ov

em
be

r 
9,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://science.sciencemag.org/


hybrid computers that combine the von Neu-
mann architecture with TrueNorth—both being
Turing complete but efficient for complementary
classes of problems. We may be able to map the
existing body of neural networks algorithms to
the architecture in an efficient fashion. In ad-
dition, many of the functional primitives of a
recent large-scale complex behavioral model (3)
map natively to our architecture, and we foresee
developing a compiler to translate high-level
functional tasks directly into TrueNorth net-
works. We envision augmenting our neurosyn-
aptic cores with synaptic plasticity [see (26) for a
prototype] to create a new generation of field-
adaptable neurosynaptic computers capable of
online learning. Although today TrueNorth is
fabricated by using a modern complementary
metal-oxide semiconductor (CMOS) process, the
underlying architecture may exploit advances in
future memory (27), logic (28), and sensor (12)
technologies to deliver lower power, denser form
factor, and faster speed.
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Fig. 4. Benchmarking power and energy. (A) Example network topology
used for benchmarking power at real-time operation. Nodes represent
cores, and edges represent neural connections; only 64 of 4096 cores are
shown. (B) Although power remains low (<150 mW) for all benchmark
networks, those with higher synaptic densities and higher spike rates
consumemore total power,which illustrates that power consumption scales

with neuron activity and number of active synapses. (C) The total energy
(passive plus active) per synaptic event decreases with higher synaptic
density because leakage power and baseline core power are amortized over
additional synapses. For a typical network where neurons fire on average at
20 Hz and have 128 active synapses [marked as * in (B) and (C)], the total
energy is 26 pJ per synaptic event.
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OIL BIODEGRADATION

Water droplets in oil are
microhabitats for microbial life
Rainer U. Meckenstock,1*† Frederick von Netzer,1 Christine Stumpp,1 Tillmann Lueders,1

Anne M. Himmelberg,1 Norbert Hertkorn,2 Philipp Schmitt-Kopplin,2 Mourad Harir,2

Riad Hosein,3 Shirin Haque,4 Dirk Schulze-Makuch5,6

Anaerobic microbial degradation of hydrocarbons, typically occurring at the
oil-water transition zone, influences the quality of oil reservoirs. In Pitch Lake,
Trinidad and Tobago—the world’s largest asphalt lake—we found that microorganisms
are metabolically active in minuscule water droplets (1 to 3 microliters) entrapped in oil.
Pyrotag sequencing of individual droplet microbiomes revealed complex methanogenic
microbial communities actively degrading the oil into a diverse range of metabolites,
as shown by nuclear magnetic resonance and Fourier transform ion cyclotron resonance
mass spectrometry. High salinity and water-stable isotopes of the droplets indicate a
deep subsurface origin. The 13.5% water content and the large surface area of the
droplets represent an underestimated potential for biodegradation of oil away from the
oil-water transition zone.

P
etroleum hydrocarbons are excellent elec-
tron donors and carbon sources for mi-
croorganisms; therefore, they are readily
degraded under oxic conditions. Albeit ki-
netically slower, anaerobic degradation of

petroleum hydrocarbons also occurs with elec-
tron acceptors such as sulfate, nitrate, and ferric
iron or under methanogenesis (1). Methanogenic
degradation has been detected for oil reservoirs
(2, 3), and although microorganisms are found
throughout entire reservoirs (4), it is currently
understood that the bulk of biodegradation pro-
cesses are taking place at the oil-water transition
zone (4, 5). Because oil wells usually produce pres-
surizedwater/oil suspensions containingdisturbed
microbial communities, such samples provide lim-
ited information on the habitat and processes
in situ.Wehypothesized thatmicrobial life should
be possible in the oil body itself, within water en-
closures containing active microbial communities.

We collected undisturbed oil samples from
Pitch Lake, the world’s largest natural asphalt
lake, in La Brea, Trinidad and Tobago (6) (fig.
S1A). When oil samples were spread on alumi-
num foil, small bubbles were visible beneath the
oil surface. Many bubbles contained gas and
collapsed upon puncturing, whereas some con-
tained entrapped water droplets of 1 to 3 ml.
Sampling and microscopic inspection of single
water droplets showed that they indeed harbored
microorganisms, some of which were actively
motile under the microscope (fig. S1B). This
observation substantiated that microbial life can
exist in such microliter-scale water droplets en-
trained in oil, contrary to a previous hypothesis
that the low water activity would impose water
stress, making such environments too extreme for
microbial life (7). However, the water activity in
the droplets is much higher than in the sur-
rounding oil. Furthermore, a dissolved ion analy-
sis of bulk water showed that there were no
obvious limitations for life caused by the lack of
essential nutrients such as ammonia (95 mg/l) or
phosphate (5 mg/l).
Bacterial communities of single water droplets

and of bulk oil showed a diverse composition
(Fig. 1). Pyrotags were dominated by members of
the orders Burkholderiales and Enterobacteriales.
Other prominent lineages present in the water
droplets were the Bacteriodales, Rhodospirillales,
Sphingomonadales, and to a lesser extent
Thermotogales and Nitrosomonadales. The taxa
identified in the water droplets were typical for
oil samples (e.g., the Burkholderiales) and largely

consistent with an earlier characterization of
solid samples from the Trinidad Pitch Lake (7)
and also from a similar type of oil seep in
California (8). A recent metagenomic investiga-
tion of samples from 10 oil reservoirs also iden-
tified similar taxa to be predominant (9). The
repeated detection of 16S ribosomal RNA gene
sequences of presumably aerobic, hydrocarbon-
degrading populations such as the Burkholderiales
in anoxic oil reservoirs might indicate heretofore
unrecognized physiological features of these taxa.
The sequences clustering within the Enterobac-
teriales in our study were of mostly unclassified
affiliation.
Archaea were detectable in 7 of 12 analyzed

droplets and consisted almost exclusively of known
methanogens within the Methanosarcinales and
Methanomicrobiales. These taxa indicate that
acetotrophic and hydrogenotrophic methano-
genesis play a role in the biodegradation of the
pitch. In addition to these methanogenic archaea,
halotolerant or halophilic Halobacteriales were
also present in all archaea-positive water drop-
lets, albeit at lower relative abundance. These
organisms indicate a high salt origin of the water
droplets, presumably from the formation water
of the reservoir. The presence of methanogens
suggests that methanogenesis was an important
terminal electron-accepting process in the water
droplets. The emitted gas on Pitch Lake, however,
was dominated by thermogenic methane, with
only a minor contribution of biogenic origin, as
indicated by stable isotope ratios of carbon [–46.6 T
0.2 per mil (‰)] and hydrogen (–169.4 T 4.6‰) of
methane extracted from the oil and respective
reports in the literature (7, 10).
To determine the origin of the water droplets,

we analyzed the dissolved ion composition as
well as water-stable isotopes of bulk water sam-
ples from the oil. Both methods require water
samples of >100 ml and were therefore possible
for water droplets extracted from the oil but not
from single droplets. The water exhibited a near-
neutral pH of 7.2 with salt concentrations similar
to sea water (500 mM Na+, 536 mM Cl–); these
findings exclude rainfall or fresh surface water as
a direct source of the droplets. Furthermore, sur-
face water cannot disperse into the heavy oil
phase without severe mechanical shearing. The
elevated salt concentrations rather suggest a sub-
surface origin of the dropletswith either seawater
or brine influence, indicating that theymust have
been entrapped in the oil already in the reservoir
or during the ascent.
A deep subsurface origin of the water droplets

was also strongly supported by stable isotope
analysis of the bulk water phases (Fig. 2). The
18O/16O and 2D/1H stable isotope ratios of the
bulk water separated by gravitation and by
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