Probabilistic System-on-a-Chip Architectures

LAKSHMI N. CHAKRAPANI, PINAR KORKMAZ, BILGE E. S. AKGUL, and
KRISHNA V. PALEM

Georgia Institute of Technology

Parameter variations, noise susceptibility, and increasing energy dissipation of cMos devices have
been recognized as major challenges in circuit and microarchitecture design in the nanometer
regime. Among these, parameter variations and noise susceptibility are increasingly causing cMos
devices to behave in an “unreliable” or “probabilistic” manner. To address these challenges, a shift
in design paradigm from current-day deterministic designs to “statistical” or “probabilistic” designs
is deemed inevitable. To respond to this need, in this article, we introduce and study an entirely
novel family of probabilistic architectures: the probabilistic system-on-a-chip (psoc). psoc architec-
tures are based on cmos devices rendered probabilistic due to noise, referred to as probabilistic
cMos or pcMos devices. We demonstrate that in addition to harnessing the probabilistic behavior
of pcMos devices, psoc architectures yield significant improvements, both in energy consumed as
well as performance in the context of probabilistic or randomized applications with broad utility.
All of our application and architectural savings are quantified using the product of the energy and
performance, denoted (energy x performance): The pcmos-based gains are as high as a substantial
multiplicative factor of over 560 when compared to a competing energy-efficient cmos-based realiza-
tion. Our architectural design is application specific and involves navigating design space spanning
the algorithm (application), its architecture (psoc), and the probabilistic technology (PcMos).

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems; C.1.3 [Processor Architectures]: Other Architecture Styles

General Terms: Performance, Design, Reliability
Additional Key Words and Phrases: Embedded systems, probabilistic computing

ACM Reference Format:

Chakrapani, L. N., Korkmaz, P., Akgul, B. E. S., and Palem, K. V. 2007. Probabilistic system-
on-a-chip architectures. ACM Trans. Des. Autom. Electron. Syst. 12, 3, Article 29 (August 2007),
28 pages. DOI = 10.1145/1255456.1255466 http://doi.acm.org/10.1145/1255456.1255466

This work was supported in part by DARPA under seedling Contract F30602-02-2-0124, the DARPA
ACIP Program under Contract FA8650-04-C-7126 through a subcontract from USC-ISI, and by an
award from Intel Corporation.

Authors’ addresses: L. N. Chakrapani (contact author), P. Korkmaz, B. E. S. Akgul, K. V. Palem, Cen-
ter for Research on Embedded Systems and Technology, Georgia Institute of Technology, Atlanta,
GA 30332; email: Inc@gatech.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 1084-4309/2007/08-ART29 $5.00 DOI 10.1145/1255456.1255466 http://doi.acm.org/
10.1145/1255456.1255466

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

2 J L. N. Chakrapani et al.

1. INTRODUCTION

Sustaining Moore’s law [Intel 2007] through technology scaling into the
nanometer regime poses several challenges. Chief among these are the hur-
dles introduced by noise, parameter variations, and other device perturbations
[Natori and Sano 1998; Sano 2000; Kish 2002]. Such “statistical” or “proba-
bilistic” behavior is inevitable at the device level of individual transistors, and
current-day techniques of addressing these challenges, mainly in the form of
rigorous test methodologies, are unlikely to be adequate for future technology
generations. To accommodate and remedy this statistical behavior at the device
level, it has been speculated that a shift in design paradigm—from current-day
deterministic designs to statistical or probabilistic designs—would be neces-
sary [Borkar et al. 2003]. Quoting the 1TRS road map, “[r]lelaxing the require-
ment of 100% correctness for devices and interconnects may dramatically re-
duce costs of manufacturing, verification, and test. Such a paradigm shift is
likely forced in any case by technology scaling, which leads to more transient
and permanent failures of signals, logic values, devices, and interconnects” [1TRS
2002].

To respond to this critical need, we introduce and study an innovative ap-
proach towards error tolerance and statistical designs in this article: a novel
family of probabilistic architectures which we refer to as probabilistic system-
on-a-chip (or psoc). In our current context, these psoc architectures are based
on cMos devices whose behavior is rendered probabilistic by noise. Such psoc ar-
chitectures not only allow us to tolerate device-level perturbations due to noise,
but also harness noise to perform useful computations.

The surprising fact that “noise” can be harnessed for performing computation
had been demonstrated earlier using abstract computational models [Palem
2003a, 2003b]. Building on these computational models and by using classi-
cal thermodynamics, it has been shown that energy savings can be achieved
while performing meaningful computation by harnessing noise [Palem 2005].
We have validated these results (derived in the domain of computational mod-
els using classical thermodynamics) in the domain of cmos, by innovating and
studying cmos devices whose behavior is rendered probabilistic due to ambi-
ent thermal noise [Cheemalavagu et al. 2004; Korkmaz et al. 2006]. We re-
ferred to such “noisy” or “unstable” cmos devices as probabilistic cMos or PcMoS
devices.

In this article, we demonstrate that pcmos technology not only yields energy
savings at the device level, but also yields significant energy and performance
benefits at the application level. To reiterate, we demonstrate that statistical
behavior at the device level can be tolerated and harnessed to realize low-energy
and high-performance computation. We accomplish this by designing and an-
alyzing psoc architectures which use pcmos technology for a set of applications
based on probabilistic algorithms. In addition, since design considerations for
psoc architectures differ significantly from those of conventional (determin-
istic) system-on-a-chip (soc) architectures, we introduce and employ a novel
algorithm-architecture-technology (A2T) codesign methodology to design effi-
cient psoc implementations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 3

The rest of the article is organized as follows. In Section 2, we provide a his-
torical perspective of the underlying foundational principles of pcMos devices.
We also summarize related work, which includes a summary of theoretical and
engineering aspects of designs which tolerate statistical behavior of cmos logic
primitives. In Section 3, we describe probabilistic system-on-a-chip architec-
tures and the central idea behind their implementation. For completeness, we
briefly discuss pcMmos technology in Section 3.1. The energy and performance
modeling methodology which we adopt to evaluate psoc architectures is de-
scribed in Section 3.3. We then describe our metrics (Section 3.4), which we
use to study the performance of psoc architectures. As mentioned earlier, our
psoc codesign methodology (the (A2T) codesign methodology) differs from con-
ventional codesign methodologies and is central to achieving the energy and
performance benefits reported in this article. This codesign methodology, the
main technology and algorithm characteristics which influence this methodol-
ogy, and the application characteristics of psoc detailed designs are detailed in
Section 4. We present results (Section 4.2), and analyze them to account for and
explain the energy and performance gains observed in Psoc implementations
in Section 4.3. We discuss application optimization and psoc implementation in
detail in Section 5. Finally, we conclude and discuss future research directions
in Section 6.

2. HISTORICAL PERSPECTIVE AND RELATED WORK

The connection between energy and computation can be found explicitly in Lan-
dauer’s explanation of the paradox of Maxwell’s demon. Maxwell’s demon [Leff
and Rex 1990] is a thought experiment first proposed by Maxwell, where an
intelligent being seemingly violates the second law of thermodynamics by per-
forming operations at a molecular level. Landauer demonstrated that any me-
chanical Maxwell’s demon operating under a closed thermodynamic cycle would
dissipate energy, and hence not violate the second law of thermodynamics
[Landauer 1961]. He went on to conjecture that, by extension, any logical step
of computation would consume £ 7' In 2 joules of energy. Bennett’s significant ex-
tension of Landauer’s work showed that only irreversible or nonrecovering mod-
els of computing (where energy, once expended, cannot be or is not recovered)
are subject to this limit (sometimes referred to as Landauer’s limit) and that all
computation can, in theory, be performed reversibly [Bennett 1973] with arbi-
trarily low energy consumption. A further refinement to Landauer’s limit was
proposed by Palem [2005], where it was shown that the energy necessary to com-
pute a bit of information is related to its probability of correctness p. Meindl and
Davis showed that Landauer’s fundamental limit is applicable in the domain of
cMos devices (which perform irreversible switching) [Meindl and Davis 2000].
An extension of Palem’s and Meindl and Davis’s results showed that such a
relationship between energy and probability of correctness holds in the domain
of cmos devices as well [Cheemalavagu et al. 2005]. These insights and results
form the basis of energy-efficient probabilistic computing using pcmos devices.

Utilizing defective logic elements for reliable computing is a concept which
dates back to von Neumann’s seminal work, where he studied techniques like

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

4 . L. N. Chakrapani et al.

NAND multiplexing and majority voting to increase reliability of faulty logic gates
[von Neumann 1956]. The author showed that if the failure probability of gates
is statistically independent and low, computation can be performed reliably with
high probability. Other researchers have improved upon von Neumann’s tech-
niques to calculate the necessary and sufficient amount of redundancy to per-
form Boolean functions [Dobrushin and Ortyukov 1977a, 1977b]. These results
were improved upon by Pippenger, who showed how Boolean functions may be
computed reliably (with constant multiplicative redundancy) by gates suscep-
tible to noise [Pippenger et al. 1991; Pippenger 1989, 1985]. While these earlier
papers provided rigorous theoretical frameworks, practical designs which ex-
ploit redundancy to achieve reliability while utilizing noise-susceptible cMos
gates have been demonstrated as well.

In the domain of cmos, the “probability of correctness” of a cmos device origi-
nates from the probabilistic nature of charge transport. Several authors demon-
strate methods for improving the noise immunity of logic circuits by adopt-
ing design styles based on Markov random fields [Bahar et al. 2003; Nepal
et al. 2005]. This research seeks to realize reliable deterministic computation
using noise-susceptible cmos devices. Energy efficiency, performance, and im-
plementing probabilistic applications are not the main considerations of this
work.

Using defect-prone components to build reliable computing systems is a
well-researched area. Conventional approaches to fault tolerance have included
designing redundant systems with reliable arbitrators [Siewiorek and Swarz
1998]. Technology scaling and nanotechnology, with their associated reliability
problems, have accelerated research into chip-level fault tolerance and fault
avoidance. Fault-tolerance approaches include techniques like speculative ex-
ecution on faster (but less reliable) logic elements and verification by slower
(and more reliable) logic elements [Jacome et al. 2004]. In contrast to all the
aforementioned work, our approach does not require redundancy. In fact, “de-
fective” switches are utilized for performing meaningful computation in their
normal defective modes of operation.

Thus, we differentiate our work with the theoretical and engineering re-
sults summarized earlier as follows: (i) Our work demonstrates the value of
harnessing the statistical behavior of gates rather than overcoming this be-
havior, while realizing efficient computation; (ii) while achieving useful com-
putation through noise-susceptible cmos devices, considerations of energy ef-
ficiency and performance are the driving and distinguishing themes of our
work; and (iii) to the best of our knowledge, we are the first to present
a concrete architecture, a codesign methodology, metrics, and experimental
results which demonstrate that gains in the context of real-world applica-
tions may be implemented using cmos devices with probabilistic behavior.
We have already demonstrated that pcmos devices afford energy savings at
the device level by tradingoff probability of correctness for energy efficiency
[Cheemalavagu et al. 2005, 2004; Chakrapani et al. 2006]. We now show
application-level energy and performance benefits of Psocs using pcmos technol-
ogy, as well as algorithm-architecture-technology navigation for efficient psoc
designs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 5

3. PROBABILISTIC SYSTEM-ON-A-CHIP ARCHITECTURES

The central idea behind probabilistic system-on-a-chip (psoc) architectures is
to harness the probabilistic behavior of pcmos devices to design architectural
primitives with well-defined statistical behaviors. These primitives, in turn,
implement key (probabilistic) steps of probabilistic algorithms. Probabilistic
algorithms, by definition, are those which “toss coins,” or execute steps whose
outcomes have probabilities associated with them. Examples of such algorithms
include the celebrated test for primality [Rabin 1976; Solovay and Strassen
1977], used as a key building block in RSA public-key cryptosystems. As we
demonstrate in this article, psoc implementations yield impressive energy and
performance benefits at the application level. These energy and performance
benefits arise from two sources: (i) the low-voltage (hence low-energy) character-
istics of pcMos technology; and (ii) harnessing the inherent statistical behavior
of pcMmos devices directly to perform useful computation, rather than overcom-
ing this statistical behavior to achieve determinism—conventional approaches
toward this end are rooted in redundancy or high-voltage operation and in-
evitably lead to energy and (possibly) performance penalties. In this section,
for completeness, we first present a brief overview of pcmos technology. Fol-
lowing this, we describe Psoc architectures and discuss their performance and
energy modeling.

3.1 pcmos Technology

pcMos devices are cMos devices whose behavior is probabilistic. Of the several
possible techniques for realizing pcmos devices (some of which are described
in Palem et al. [2005]), it has been demonstrated that ambient thermal noise
can be used to randomize the behavior of a conventional cMos device [Korkmaz
et al. 2006]. Based on analytical models and HSpice simulation of such devices,
it has been shown for a probabilistic inverter that: (i) the switching energy E of
a cMmos device grows with probability of correctness pintheinterval1/2 < p <1
and furthermore, the rate of growth dominates an exponential [Korkmaz et al.
2006]. This behavior is not “incidental,” but in fact based on well-studied foun-
dational principles [Palem 2005]. In addition, (ii) for a given probability p of
correctness, the noise magnitude (quantified as its rRMs value) and correspond-
ing switching energy E of a cmos device are quadratically related. These two
relationships characterize the behavior of pcmos inverters. While the former
serves as a basis for obtaining energy savings by relaxing the correctness con-
straints on switching, the latter serves as a basis for characterizing and con-
trolling the desired statistical behavior of pcmos devices. We use these pcMmos
switches in architectural building blocks to design psoc architectures which, in
turn, implement applications based on probabilistic algorithms.

3.2 psoc Architectures

As illustrated in Figure 1, psoc architectures are envisioned to consist of two
parts: a host processor which consists of a conventional low-energy embedded
processor, such as the StrongARM sa-1100 [Corp. 1998], coupled to a copro-
cessor which utilizes pcMos technology. As we shall see in this article, such a

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

6 . L. N. Chakrapani et al.

Probabilistic and

4 N
Deterministic part of Accelerated Parts of
Probabilistic Probabilistic
Algorithm y. L Algorithm)
u Memory u
s ~ mal%ped - N
Host Coprocessor(s)
(SA-1100 or ASIC) Based on PCMOS
Technology
N\ / .

Fig. 1. The canonical PSOC architecture.

Probabilistic part of

Probabilistic
Algorithm
4 N (-) 4 N) Probabilistic and
Deterministic Determlmstlul: part Determlnlstlul: part Accelerated Parts
) of Probabilistic of Probabilistic ot
Algorithm Alaorith Algorith of Probabilistic
gorithm gorithm Algorithm
. AN VAN /
Memory
| | I e
e ~N [N ~N 10
Host Conventional
SA-1100 Host SA-1100 Host . Coprocessor(s)
(SA-1100 or ASIC) Based on CMOS
- N /o J . /
(a) (b) (0

Fig. 2. Conventional implementation alternatives for an application.

host-coprocessor architecture affords several benefits. For a comparative study
of the benefits of psoc architectures with current designs, we consider three
choices to be competitors for a Psoc.

—As shown in Figure 2(a), a conventional host-only architecture executes a de-
terministic algorithm where a deterministic counterpart of the probabilistic
algorithm executes completely on the host processor.

—A conventional host-only architecture executes a probabilistic algorithm
where the probabilistic algorithm of interest executes completely on the host
processor. The probabilistic component utilizes well-known pseudorandom
number generators implemented in software [Park and Miller 1988]. This
style of implementation is shown in Figure 2(b).

—As shown in Figure 2(c), a conventional soc has a cmos-based coprocessor
implementing the probabilistic parts of the application, whereas the deter-
ministic parts are executed as software on the host processor.

These cases encompass alternate implementations of the application.
Throughout this study, the coprocessors illustrated in Figures 1 and 2(c) are
realizations using pcMos and cMos, respectively, that are application specific.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 7

3.3 Performance and Energy Modeling of psoc Architectures

Energy consumed (in joules) and performance (in terms of running time in sec-
onds) as the application executes on a particular architecture will be the chief
attributes of interest. Our energy and performance modeling is simulation-
based. However, the energy consumed by pcMmos devices are derived from actual
measurements from a pcmos test chip. As shown in Figure 1, in a psoc architec-
ture, the coprocessors are memory mapped and the communication is modeled
through LoAD and STORE instructions executed by the host. A special instruction
triggers the execution of the application-specific PcMOs coprocessor.

To model the performance of an application executing on such a psoc, we have
modified the Trimaran (http://www.trimaran.org) [Chakrapani et al. 2005] com-
piler and simulator to reflect the ISA of the StrongARM sa-1100 processor. The
simulator records the trace of activity in the sa-1100 host processor, as well as
accesses to the coprocessors. This simulation is combined with the performance
models of the coprocessor, typically obtained through HSpice simulations, to
yield the performance of the application in terms of execution time.

The energy consumed by an application executing on such a psoc is the sum of
energy consumed by the host, the energy consumed by the coprocessor, and en-
ergy consumed due to communication between these components. To measure
the energy of an application executing on such an architecture, we have in-
corporated the analytical model of Jouletrack [Sinha and Chandrakasan 2001]
into the Trimaran simulator. This model is reported by its authors to be within
3% of the energy consumed by the actual sa-1100 processor. Thus, apart from
estimating the performance of an application, the simulator is also used to es-
timate the energy consumed by the StrongARM host. The latencies caused by
the slower pcMos coprocessor are accounted for as well. To estimate the energy
consumed by coprocessors, the latter were designed and synthesized using the
associated energy consumption estimated using HSpice. In addition, the actual
measurement data of fabricated devices also using TSMC 0.25 um technology
and their results are used as well. This, combined with the activity trace of
the coprocessor (recorded by the simulator) yields the energy consumed in the
coprocessor. Our performance and energy modeling techniques for a psoc are
illustrated in Figure 3. Since the applications of interest are probabilistic, at
least 50 distinct executions are used to calculate the energy and performance of
an application of one of the various alternate realizations (listed in Section 3.2).

3.4 Energy and Performance Metrics for pcmos

To highlight and analyze the benefits of pcMos technology, we now introduce
several metrics to study the gains possible from psoc implementations. In par-
ticular, we will consider the energy performance product, or £pp for short, as the
chief metric of interest. The EPP metric has been chosen due to several considera-
tions. It captures the chief characteristics of interest, namely, the energy as well
as the time needed for the execution of an application. In addition, given an ar-
chitectural design to implement an application, the application execution could
potentially be accelerated by replicating architectural blocks to exploit paral-
lelism. In addition, techniques like voltage scaling could be used to tradeoff

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

8 . L. N. Chakrapani et al.

Communication modeled
through Load/Store instructions

Memory mapped 10

Host
(SA-1100 or
Custom ASIC)

Coprocessor(s)
Based on PCMOS
or CMOS

v

Energy model based on JouleTrack Energy models based on HSpice
simulations and chip measurements

Fig. 3. Energy and performance modeling methodology for each component of a psoc.

performance for energy efficiency. It is our intention that the Epp metric would
remain invariant under replication as well as voltage scaling, as improvements
in time would be offset by the increase in energy and vice versa. Hence, EPP
is a valuable metric to compare architectural implementations across differing
technologies. Given the PP of two alternate realizations, they can be compared
by computing the energy performance product gain.

Energy performance product gain: I'z is the ratio of the EPP of the baseline,
denoted by 8, to the EPP of a particular architectural implementation Z. Specif-
ically, 'z is calculated as follows:

Energyy x Timeg 1

©~ Energy; x Timer

Initially, to highlight the benefits of Psoc over the case where there is no copro-
cessor, the baseline will correspond to the case where the entire computation is
executed on the sa-1100 host. For example, in the case of a randomized neural
network application which solves the vertex cover problem, the baseline will be
the case where the sa-1100 host computes both the probabilistic and determin-
istic parts of the application (as illustrated in Figure 2(b)) and Z corresponds
to the case where the core probabilistic step is computed using a pcmos-based
coprocessor and the rest of the computation is performed using an sa-1100 host
(as illustrated in Figure 1). Later, to quantify the benefits of psoc implemen-
tations over conventional cMos-based soc implementations, the baseline will
correspond to the case where the sa-1100 host is coupled to a functionally iden-
tical cmos-based coprocessor (as in Figure (¢)), where the coprocessor computes
the core probabilistic step. Wherever we present EPP gain results, we will ex-
plicitly mention the baseline.

4. THE A%2T CODESIGN FRAMEWORK

As mentioned in the Introduction, the gains obtained by leveraging pcmos tech-
nology are due to a unique codesign methodology that exploits the technology
characteristics of pcmos, as well as algorithm characteristics of the application
drivers, to provide a “good-fit” implementation in the form of a psoc architecture.
Since the codesign methodology is of greater interest than a detailed description

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures .

9

Table I. Algorithms, Applications Based on Them, and Core Probabilistic Step for Each Algorithm

Application Implemented(s) Core Probabilistic
Algorithm Scenarios Application(s) Step
Bayesian Inference SPAM Filters, Windows printer Choose a value for a
[MacKay 1992] Cognitive trouble shooting, variable from a set

applications, Hospital Patient of values based on

Battlefield Management its conditional

Planning [Pfeffer [Beinlich et al. probability

2000] 1989]

Random Neural

Image and pattern

Vertex cover of a

Neuron firing

Network [Gelenbe classification, graph modeled as a
1989] Optimization of Poisson process
NP-hard
problems
Probabilistic Pattern String classification Evaluating the
Cellular Automata classification [Fuks 2002] probabilistic
[Wolfram 2002] transition rule
Hyper-Encryption Security Message encryption Generation of a
[Ding and Rabin random string and
2002] encryption pad
generation from
this string

of the application drivers and their implementation details, the rest of this sec-
tion is organized as follows: We briefly introduce the applications of interest
and their characteristics that play an important role in codesign (a detailed
description of each of the algorithms, the specific partitioning strategy for each
of these applications, and the corresponding psoc implementation details are
presented in Section 5). We then present the energy and performance results
obtained from the psoc implementation and a comparative study using the
metrics introduced in Section 3.4. We analyze these gains and then describe
the algorithm and technology characteristics that influence the codesign, and
future directions for obtaining better gains.

4.1 A Brief Description of the Applications of Interest

We consider applications based on probabilistic algorithms drawn from the
cognitive and security domains. The algorithms include Bayesian inference
[MacKay 19921, probabilistic cellular automata [Fuks 2002], random neural
networks [Gelenbe 1989], and hyperencryption [Ding and Rabin 2002]. These
algorithms will be referred to as BN, Pca, RNN, and HE, respectively. The applica-
tions in which each is utilized are summarized in Table I.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

10 . L. N. Chakrapani et al.

Table II. Maximum and Minimum Epp Gains of
pcMos over Baseline Implementation

I'z
Algorithm Min | Max
BN 3 7.43
RNN 226.5 300
PCA 61 82
HE 1.12 1.12

These ERP gains are where the implementation 7 has a Stron-
gARM sa-1100 host and a pcmos-based coprocessor.

The psoc implementation for each of the algorithms consists of a Strong-
ARM sA-1100 host and an application-specific coprocessor, as mentioned in
Section 3.2. The coprocessor design involves the partitioning of each of these
applications between the host and application-specific pcmos-based coprocessor.
Once partitioned, pcmos-based coprocessors are designed by hand. Though the
exact manner in which these applications are partitioned varies and is not (cur-
rently) automated, all variations thereof follow a common theme. Common to
these applications (and to almost all probabilistic algorithms) is the notion of a
core probabilistic step with its associated probability parameter p. For example,
in one probabilistic cellular automata application [Fuks 2002], this step is the
probabilistic transition of an automaton which decides its next state based on
the current state and a probability parameter p associated with the transition
rule. The core probabilistic step for each application of interest is presented in
Table I. For each of the candidate applications, this core probabilistic step is
identified both by hand and by the rcMos-based coprocessors designed for it.
The deterministic parts of the application (e.g., choosing which transition rule
to apply in the context of probabilistic cellular automata) are implemented as
software executing on the host processor.

4.2 Application-Level Gains of psoc

Table II summarizes the application-level EPP gains of psoc over the baseline
for each application of interest. Gains at the scope of an entire application
range from a factor of about 80 for the pca application to a factor of about
300 in the context of the RNN application. As mentioned earlier, the baseline
implementation for BN, HE, PcaA, and RNN applications is the StrongARM sa-1100
computing the deterministic as well as the probabilistic content, and 7 is a Psoc
executing an identical probabilistic algorithm.

As can be seen from Table II, the application-level gains of each application
vary. For example, in the RNN case, a range of EPP gains are observed when-
ever multiple data points are available. This is attributable to the probabilistic
nature of the applications: Their execution characteristics differ, yielding dis-
parate gains for various input sets and sizes. Next, we analyze the factors
affecting gains in a systematic way.

4.3 An Analysis of Gains Due to pcmos

Intuitively, application-level gains in energy and performance depend on two
factors: (i) the “amount of opportunity” in the application to leverage the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 11

Table III. Application Level Flux, Maximum, and Minimum, epp Gains of
pcMmos Over the Baseline Implementation

I'z
Algorithm | Flux F (as percentage of total operations) Min | Max
BN 0.25%-0.75% 3 7.43
RNN 1.64%-1.97% 226.5 | 300
PCA 4.19%-5.29% 61 82
HE 12.5% 1.12 1.12

These are measurements where the implementation Z has a StrongARM sa-1100 host
and a pcMos-based coprocessor.

pcMos-based coprocessor; and (ii) the amount of gain afforded “per unit of op-
portunity.” Broadly, the factors which influence gain can be classified as either
implementation-independent (which include algorithmic, amount of opportu-
nity, e.g., the inherent in an algorithm) and implementation-dependent charac-
teristics (including technology and architecture characteristics which influence
the amount of gain afforded per unit of opportunity). These algorithmic, archi-
tecture, and technology characteristics in turn influence the codesign method-
ology (hence the name A2T codesign methodology); these considerations are
outlined to follow and the specific effect on psoc design for each application of
interest will be described in Section 5.

4.3.1 Implementation-Independent Characteristics Influencing psoc Design
and Gains. As mentioned before, the core probabilistic step of each applica-
tion is implemented in the pcMmos-based coprocessor, and one core probabilis-
tic step will be regarded as one “unit of opportunity.” The core probabilis-
tic step for each application has been presented in Table I. Given this, it is
natural to expect that the higher the opportunity to exploit pcMos technol-
ogy for efficient implementations, the higher the gains. The amount of op-
portunity is formalized through the notion of probabilistic flux F (or flux for
short), where F of an algorithm is defined as the ratio of the core probabilis-
tic steps to the total number of operations of an algorithm during a typical
execution. The “total number of operations” in this context refers to the to-
tal number of cycles consumed by the deterministic instructions executing on
the StrongARM processor. Informally, 7 can be regarded as the ratio of the
number of times a psoc coprocessor will be invoked to the number of times the
host processor is “invoked” (i.e., cycles executed by the host processor). Flux for
various algorithms will be presented in either ratio form or in the form of a
percentage.

With this as background and revisiting Table II, we observe that the
application-level gains application vary. For example, in the BN case, a
range of EPP gains is observed whenever multiple data points are available.
Table IIT presents the flux as well as the min and max gains for each of the
applications.

The variation in gain is attributable to the probabilistic nature of the ap-
plications under consideration. Since these applications are probabilistic, their
execution characteristics (and hence the flux) depend on the input size and the
actual inputs. To understand the effect of flux, let us consider the BN application

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

12 . L. N. Chakrapani et al.

Bayesian Network

EPP Gain

Network Size (and Flux)

Fig. 4. Gain and flux for Bayesian networks of various sizes.

in detail. Figure 4 shows the gain for each network size and the corresponding
flux F.

As expected, as the flux increases from 0.25 % (for a Bayesian network size
of 37) to 0.75 % (for a Bayesian network size of 69), the corresponding gain in-
creases from a factor of 3 to a factor of 7.14. In general, for a specific application,
consider the energy consumed by the baseline implementation. This is a sum
of the energy consumed at the StrongARM host for executing the deterministic
parts of the application Energy,,, s and that consumed at the StrongARM host
for executing the probabilistic part of the application Energy,,. s-

Energyﬁ = Energy o p + Energypmb’ P

Consider Energyg, ; to be the energy consumed by the baseline for executing the
deterministic part of the application. If the average energy consumed per invo-
cation of the host processor (i.e., per cycle of the host processor) is Energy.,cie host
and the number of invocations of the host processor is Cycles,; 5,5, then

Energy 5 Energy g, g+ Energypmby 8

Cyczesdet,host X Energycycle,host + Energyprob,ﬂ .

Consider Energy,, s to be the energy consumed by the baseline for executing
the probabilistic part of the application. Let the energy consumed per invocation
of the core probabilistic step be Energyy,, ;- From the definition of flux F, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 13

Table IV. Epp Gain of pcMos Over sa-1100 and Over cMos
for the Core Probabilistic Step

Application | Gain Over sA-1100 | Gain Over cM0s |

BN 9.99 x 107 2.71 x 108
RNN 1.25 x 108 2.32 x 104
PCA 4.17 x 10* 7.7 x 102
HE 1.56 x 10° 2.03 x 103

number of invocations of the core probabilistic step is 7 x Cycles j,; p0s; and

Energy, = Energyg, s + Energy, g

= Cyczesdet,host X Energycycle,host + Energyprob,ﬂ
= Cyczesdet,host X Energycycle,host +F x Cyczesdet,host X Energyﬂuxo,ﬂ'

Similarly, the energy consumed by the psoc implementation Energy; can be
written as

Energy; = Cyclesgy post X Energy ycie host + F % Cycles gor post < Energypy,
~ Cyczesdet,host X Energycycle,host'

The approximation arises due to the fact that the pcMos-based coprocessor con-
sumes almost negligible energy (this can be seen from Table IV; however, the
actual gains presented here consider the energy of the coprocessor as well, and
the approximation is used purely for explanation purposes). Similarly, we can
derive an expression for performance, and for a specific application the gain I'z
can be characterized as

Energyg x Timeg

I'r =
o Energy; x Timez

‘F E ux. T. ux
(1+ x Energyy ,,3)X(1+F>< imep 7,3>. @)

Energycycle,host Timecycle,host

Harking back to Section 4.3, we notice that the gains depend on flux F, an
implementation-independent algorithmic characteristic which determines the
“amount of opportunity.” Also, the gains depend on Energyy,, s and Timegyy g,
which are implementation, dependent technology and architecture charac-
teristics. Counterintuitively, the gains also depend on Energy.,c nos: and
Timecycie host, Which capture the efficiency of the host processor! This will be
further explored in Section 4.4.

For the Bayesian network application, Figure 5 shows how I'; varies with
the flux. The line is analytically calculated using Eq. (2), and the points corre-
spond to actual values measured using the simulations. Two particular points
of interest, whose flux correspond to Bayesian network sizes of 37 and 69 nodes,
respectively, are also shown in the figure. It can be seen that the simulation re-
sult matches closely with that of the analytical model. Similarly, Figure 6 shows
the variation of I'y with the flux for a randomized neural network application.
Again, the line is calculated analytically and the points correspond to gains
obtained from simulation. Thus, the flux F of an algorithm is an important

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

14 o L. N. Chakrapani et al.

11 T T T

" Variation of EPP Gain With Flux
10 |

17 Nodes

EPP Gain

10 Nodes

3 / 37 Nodes T
2 1 1 1 1 1 1 1 1

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Flux

Fig. 5. Variation of gain with respect to flux for a Bayesian network.

320

(Modeled) Variation of EPP Gain With Flux

300 - Size = 100 }

280 |- Size = 80
Size =40
260
Size = 30
240

EPP Gain

220
Size =10
200

180

160 1 1 1 I
0.015 0.016 0.017 0.018 0.019 0.02

Flux

Fig. 6. Variation of gain with respect to flux for a randomized neural network.

characteristic that determines the gains derived from a psoc implementation.
Hence, given an algorithm, it is advantageous to maximize opportunity (in
this context, increase the amount of probabilistic steps whenever possible) and
given an application, to leverage higher gains, it is advantageous to leverage an

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 15

EPP Gain

1.05e-06
Time Saved Per Unit Flux 1.1e-06

1.15e-06 Ze.07
1.2e-06 ®>"" Energy Saved Per Unit Flux (in Joules)

Fig. 7. For a fixed flux, variation of gain with respect to energy saved per unit flux and time saved
per unit flux by using pcmos.

algorithm with the highest “probabilistic content,” or flux. These considerations
influence the selection and optimization of the algorithm used for a particular
application in our A2T codesign methodology.

4.3.2 Implementation-Dependent Characteristics Influencing psoc Design
and Gains. Application-level gains not only depend on the flux of an appli-
cation, but on the energy and performance gains afforded per unit of opportu-
nity. Table IV presents the EPP gain of a pcMos-based coprocessor for the core
probabilistic step of each of the applications of interest. The second column in
the table corresponds to the case where g is the sa-1100 host without any co-
processor and the third column to the case where 8 is a sA-1100 host coupled to
a conventional cMos-based coprocessor. As can be seen from the table, a pcMmos-
based coprocessor is over five orders of magnitude better in terms of Epp when
compared to an sa-1100 processor, and over three orders of magnitude when
compared to a cMos-based coprocessor while executing the core probabilistic
step of the HE application.

For a given flux, the application-level gain will increase with an increase in
the energy, as well as performance gain, per unit flux. To illustrate, let us revisit
the Bayesian network application and the gain I'z, where 7 is a psoc and the
baseline is a StrongARM sa-1100 host without a coprocessor. In particular, let
us consider the case where the size of Bayesian network is 37 nodes and the
corresponding flux is 0.25%. Now, the higher the efficiency of pcmos (in the form
of lesser energy and faster execution) per invocation of the core probabilistic
step, the higher the gain. In other words, the more energy and time saved
per invocation of the core probabilistic step, the higher the gain afforded by
the psoc implementation. Figure 7 illustrates a variation of 'y with respect

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

16 . L. N. Chakrapani et al.

to the cycles per unit flux and energy per unit flux expended by the baseline
implementation. The point where the surface intersects the z axis presents the
performance and energy consumption per unit flux, which corresponds to a gain
of 3, and the point plots the performance and energy consumption per unit flux
for a Bayesian network of size 37.

With this as background and revisiting Table IV, we observe that the energy
and performance gain afforded per unit of flux vary across applications. This
is an artifact of both the functionality of the core probabilistic step as well as
the characteristics of pcMmos technology. The characteristics of pcMos technology
which influence the energy and performance gains per core probabilistic step
are enumerated in the following:

—PCMOS energy-efficiency. pcMos-based switches are extremely efficient for im-
plementing logical operations with probabilities associated with their out-
comes. For example, the energy consumed for one probabilistic inversion (i.e.,
alogical NOT operation with an associated probability of correctness p) opera-
tion is 0.4 pico-joules [Cheemalavagu et al. 2005], whereas emulating similar
functionality using a hardware-based implementation of the Park-Miller al-
gorithm consumes 2,025 times this much energy. As expected, more complex
core probabilistic operations afford high gains per unit flux.

—PcMoOS specialization. Apart from efficient operation, pcMos devices can be
“tuned” to the desired probability parameter of any probabilistic step S. For
example, pcMOs-based primitives can be built for probabilistic inversion with
a probability of correctness p = 0.75. Further details as to how the probability
of correctness can be controlled are presented in Cheemalavagu et al. [2005].

Corresponding implementations in software or a conventional cMos incur a
penalty for nontrivial probabilities (p # 0.5). This is because to achieve, say,
a probability parameter p = 0.75, typical implementations would generate
a number uniformly at random, say between 0 and 216, and compare it with
216 0.75. This involves dilation of 1 bit to 16 bits captured by the notion of the
dilation factor D. Hence, core probabilistic steps with nontrivial probabilities
afford higher gains per unit flux.

—PcMoS replication due to specialization. Whereas specialization to a particular
probability parameter p has the advantage of avoiding the penalties asso-
ciated with tuning and dilation, separate pcMos building blocks need to be
implemented for probabilistic operations that are similar, and differ only in
their probability parameter. For example, two different pcmos-based primi-
tives need to be built for two probabilistic inversion operations with probabil-
ity p = 0.75 and p = 0.80, respectively. This replication of pcMos primitives
due to specialization is captured by the metric spread factor, denoted by S,
and is a count of such distinct probability parameters used by an application.
Spread factor guides application optimization by reducing the distinct prob-
ability parameters used by an application, and architecture optimization by
choosing a nonspecialized implementation if the spread factor is too high.

—PcMoOS operating frequency. Though pcmos devices are extremely (energy)
efficient, the operating frequencies of our current implementations are
low [Cheemalavagu et al. 2005], at about 1 MHz. This characteristic acts as

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 17

a potential limitation to the peak rate (with which probabilistic steps can be
executed on the pcMos-based coprocessor. Given this limitation, the peak rate
(with which a probabilistic step S needs to execute on the coprocessor so that
the host processor is not stalled) is a characteristic of interest. This peak
rate will henceforth be referred to as the application demand rate for the
probabilistic step S. Intuitively, the application demand rate is dependent on
algorithm characteristics and the operating frequency of the host processor.
Ifthe application demand rate for a probabilistic step S is higher than the op-
erating frequency of the pcMos building block which executes the step S, the
host processor will need to stall until the probabilistic steps finish execution.
This is analogous to memory stall cycles in modern microprocessors where
there is a mismatch between the frequency of operation of the data path
and the memory subsystem. This limitation can be remedied through par-
allelism, that is, by replicating the pcmos building block which executes the
step S. The number of replications is captured through the replication factor
R. The replication factor is a characteristic that guides both application and
architecture optimization. On the application side, program transformations
can be performed to better interleave probabilistic with deterministic steps
(which execute on the host processor) so that the peak application demand
rate is reduced. In addition, since the current implementation of pcmos
devices does not allow them to be switched off when not needed (akin to
clock gating techniques in conventional microarchitecture design), increased
replication, while decreasing the time consumed to execute an application,
might increase the energy consumption. This tradeoff needs to be taken into
account while replicating pcmos building blocks.

—Psoc communication costs. There is an inherent cost of communication
between the host processor and pcMos-based coprocessor, which can poten-
tially reduce the gains. When partitioning the application, this should be
considered as well.

4.4 A Comparison of psoc with Conventional soc Designs

So far, we have demonstrated the utility of pcmos technology and psoc imple-
mentations of selected applications by presenting the energy and performance
gains of pcMos-based psoc designs over a conventional host-only style of imple-
mentation. A more ambitious and interesting comparison would be with that of
a conventional soc design where a functionally identical coprocessor is designed
with conventional cmos technology. With a conventional cmos-based soc as the
baseline, the gain 'z, where Z is a pcmos-based psoc for a HE as well as a pca
application, is 1.

This is in spite of high flux and gains per core probabilistic step in the cor-
responding applications. To explain this, let us revisit Eq. (2). We note that
the gains depend on the flux F, namely, the gains per core probabilistic step
(approximately Energyg,, ; and Timep,y,) which were studied and analyzed in
the preceding sections. More importantly, the gains depend on Energy.,ci ost
and Timecycie nost @S well, which indicates that if the computation that is exe-
cuted on the sA-1100 host dominates the energy and time consumption of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

18 . L. N. Chakrapani et al.

entire application, then the gains from a pcMos-based Psoc will be low. Hence,
even though the proportion of core probabilistic steps in the entire application
is high, as well as the gains per core probabilistic step, using a pcmos-based
coprocessor has almost no impact in trems of application-level time and energy
consumption. Thus, the gains through pcmos—the limits being substantial, as
shown in Table IV—can be truly achieved only if the amount of effort spent in
the coprocessor is comparable, in terms of EPP units, to that spent in the host.

To verify this hypothesis, a baseline soc architecture in which the host pro-
cessor and coprocessor are both custom asic architectures is considered. With
this notion, moving away from a StrongARM host processor to one realized
from custom asic logic, the amount of energy and running time spent in the
host are considerably lower. Thus, and perhaps counterintuitively, increasing
the efficiency of the competing approach enhances the value of pcMos gains at
the application level. In the context of the HE application, and with this change
to the baseline, the gain I'7 increases to 9.38; almost an order of magnitude.
Similarly, when a baseline with a custom asic host is used, the I'7 value in the
context of the probabilistic cellular automata application increases to 561. In
all of these comparisons, the cMos-based coprocessor operated at an optimal
frequency, that is, the frequency which yields the lowest energy consumption
without degrading application performance. In addition, cMos-based coproces-
sors are assumed to leverage techniques like clock gating with no overhead. In
this respect the gain estimates are conservative. We view this fact as being ex-
tremely favorable for psoc-based designs, since as host processors become more
efficient in future technology generations, the gains of Psoc over conventional
soc architectures increase.

5. THE SUITE OF APPLICATIONS, PARTITIONING, OPTIMIZATION,
AND psoc IMPLEMENTATION

In this section, we describe in detail the applications, their partitioning, opti-
mization, and psoc implementation.

—Bayesian networks (BN). Bayesian inference [MacKay 1992] is a statisti-
cal inference technique. Hypotheses, their corresponding probability weights;
and evidences are central components of this technique. The probability weight
p associated with a hypothesis H is interpreted as the degree of belief in the
hypothesis. Evidences support (or discount) a hypothesis, thereby increasing
(or decreasing) the associated probability weight, and hence the degree of be-
lief in the hypothesis. Hypotheses whose probability weights approach 1 are
most likely and those whose probability weights approach 0 are very unlikely.
A Bayesian network can be used to perform Bayesian inference. A Bayesian
network is a directed acyclic graph G of nodes V which represent variables and
edges E C V x V, which in turn represent dependence relations between the
variables. Each node v, € V can be associated with a value from a finite set of
values Z,. The set X, will be referred to as the set of possible values associated
with v,.

Without loss of generality, let v, ve,vs, ..., v be the & parents of v,. Let 3,
be the set of possible values associated with vy; similarly, let X, Z3, ..., X be

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 19

Module A tile in a module

______ 3
D D m‘Switch‘Switch‘Switch‘Switch‘Switch‘ Switch ‘

7-bit Buffer —

read
enable

18poosp

‘ buffer

Fig. 8. The coprocessor architecture for a psoc implementing Bayesian inference.

associated with vg, vs, ..., v, respectively. Each value o € T, has a conditional
probability p(o/o’ € X) associated with it, where X, = 1 x ¥g9 x X3--- Z. In
essence, o’ is the string of values of the variables represented by the 2 parents
of the node vy, and X is the set of all possible strings. Variables whose values
are known a priori are called evidences, and based on evidences, other vari-
ables can be inferred. Based on network topology and conditional probabilities
associated with the variables, various cognitive tasks can be performed. The
particular Bayesian networks considered in this study are a part of the follow-
ing applications: a hospital patient monitoring system [Beinlich et al. 1989]
and a printer trouble shooting application for the Windows operating system.

—Partitioning, optimization, and Psoc implementation. We choose the like-
lihood weighting algorithm [Pfeffer 2000] for Bayesian inference. To illus-
trate, consider a node v, € V with X, = {0,1,2}. As before, let £, be the
set of all possible strings of values associated with the parents of x. Let
0 < p(0/a’), p(1/5’), p(2/5’) < 1, where p(0/c’) + p(1/c’) + p(2/c’) = 1, be
the conditional probabilities associated with 0,1,2 € X,, respectively, given
that o’ is the string formed by the outputs of parents of the node v,. The infer-
ence process performs a random experiment with three possible outcomes 0, 1,
or 2 with the associated probability p(0/c’), p(1/c’), or p(2/c”), respectively.

In our psoc architecture, Bayesian inference will be performed by three pcmos
switches A, B, and C which correspond to 0, 1, and 2, respectively. The inputs
for these switches are fixed at 0 and the probability of correctness associated
with A, B, C is by design p(0/c’), 15’2(6“;2,), and 1, respectively. Thus, when the
switches are inspected in the order < A, B, C >, that value which corresponds
to the leftmost switch whose output is the value 1 is the value inferred by the
node. In the psoc design, the set of switches {A, B, C} will be referred to as a
row. A row of switches is associated with each member of the set X/, hence at
least |X| rows are required for a node v,. This set of rows associated with a
node v, will be referred to as a module which corresponds to the node v,.

As shown in Figure 8, the pcmos module which corresponds to a node v, im-
plements a table. Rows in this module are indexed by a particular string ¢’ of

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

20 . L. N. Chakrapani et al.

values associated with the parents of v,. The number of columns in the module
is |2, |, where each column corresponds to a value from the set Z,; in our ex-
ample, |2, | = 3 (and in the figure, it is 7). A switch in the module, identified by
<row, column>, is a specialized pcmos switch whose probability of correctness
is computed as indicated previously. Finally, a conventional priority encoder
is connected to the outputs of a row to determine the final result of the ran-
dom experiment; it performs the function of inspecting the values of a row and
choosing the final output associated with v,. The random experiment (used for
inference) in this probabilistic algorithm is implemented in the pcMos copro-
cessor (which consists of several modules), with the remainder implemented as
software executing on the host.

—Random neural network (RNN). Following Gelenbe [1989], a random neural
network consists of neurons and connections between the neurons. Information
is exchanged between neurons in the form of bipolar signal trains. Neurons
have associated potentials which are defined to be the sums of incoming signals.
These potentials, in turn, influence the rate of firing. A random neural network
can be modeled as an undirected graph G of nodes (i.e., neurons) V and directed
edges (i.e., connections) E C V x V. Each node has an associated potential v
which is incremented (decremented) by incoming (outgoing) firings. The firings
occur at a constant rate with exponentially distributed intervals. When a node
fires, its potential is decremented by one and the polarity and destination of
the firing are determined by probability parameters p; and pg, respectively.
Through a suitable combination of network topology, probability parameters,
and firing rates, several optimization problems can be solved. The particular
neural network considered in this study is used to heuristically determine the
vertex cover of a graph due to Gelenbe and Batty [1992].

—Partitioning, optimization, and psoc implementation. The Poisson process
which models the “firing” of a neuron is implemented in the PcMoOs coproces-
sor with the rest of the computation (distributing the firings, updating the
potentials) implemented to execute on the host processor. To realize the Pois-
son process characterizing a neuron firing, the Bernoulli approximation of a
Poisson process [Feller 1984] is used. As an example of a methodological step
in our A2T codesign approach, since the rate at which neuron firings need to
be modeled exceeds the rate at which pcmos-based switches can compute, the
pcMos-based devices which model the Poisson process are replicated to match
the required rate. In the interest of efficiency and as another example of our A%T
methodology, the application is restructured to reduce the replication factor R,
by interleaving the modeling of neuron firings (in the pcmos-based coprocessor)
and the processing of these firings (in the host processor), thus distributing the
firings more evenly over the course of the entire application’s execution. This
has the effect of reducing the peak application demand bandwidth.

—Probabilistic cellular automata. These are a class of cellular automata
used to model stochastic processes. Cellular automata consist of cells with local
(typically nearest-neighbor) communication. Each cell is associated with a state
and a simple transition rule which specifies the next state of a state transition

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 21

Transition rule Implementation

-
/ Specialized PCMOS Inverters
‘ Switch‘Switch }Switch‘Switch ‘SWitch‘Switch‘Switch }Switch ‘

\
;\\8x1 Multiplexor,
A

Fig. 9. The custom asic host and Pcmos coprocessor architecture for a psoc implementing a proba-
bilistic cellular automata algorithm.

(_-_- -

Cells ,

‘State ‘State ‘State ‘ State’. - o

Buffer

s|[89 Jey}o Jo}
suonejuswa|dw)| 8Nt uonsuel |

based on its current state and those of its neighbors. In the probabilistic string
classification algorithm [Fuks 2002], the state of each cell is either 0 or 1. The
next state of a cell depends on its current state and those of its left and right
neighbors. Thus, there are 8 possible transition rules where each rule has two
possible outcomes: 0 or 1. In addition, the transition rules are probabilistic: For
a transition rule t;, there is a (0 < i < 7) probability that the output state of
the rule is 0, denoted by p; o, and the probability that the output state is 1 is
denoted by p; 1.

—Partitioning, optimization, and Psoc implementation. Each transition rule
is implemented by a pcMmos inverter whose input is 0. The ith inverter corre-
sponds to the ith transition rule and the probability of correctness associated
with the ith inverter is p; 1. The control-intensive part of choosing the transition
rule (based on the state of a cell and those of its neighbors) and updating the
states is implemented on the host processor. Since the rate at which the tran-
sition rules need to be evaluated exceeds the frequency of operation of rcMmos
devices (choosing the transition rule and updating the current state can be exe-
cuted very quickly on the sa-1100 host), this structure is replicated many times.

In addition, a custom cMos-based asic can be designed to implement the
deterministic part of the algorithm. As shown in Figure 9, the aAsic consists of
an n-bit buffer and n 8 x 1 multiplexers, one for each cell. The “select” input
of the jth multiplexer 0 < j < n + 1 is the current state of the jth cell and
the states of its left and right neighbors. The inputs of multiplexers are from
pcMOs inverters specialized to the corresponding probability parameters. The
transitions are stopped as soon as all the cells have identical states. This is
detected by an n-input or and an n-input AND gate. The energy of this custom
AsIc is obtained through HSpice simulations with the energy of pcMmos inverters
obtained from actual chip measurements.

6. CONCLUDING REMARKS

So far, we have demonstrated how the statistical behavior of noise-susceptible
switches can be harnessed for useful and efficient implementation of a range

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

22 . L. N. Chakrapani et al.

of applications. In this section, we explore other implementation and manufac-
turing concerns and sketch directions for future work.

6.1 Other Applications of Interest

Thus far, we have considered instances from the domain of embedded and prob-
abilistic applications. Applications, in general, can be partitioned into three
categories: (i) applications which benefit from (or harness) probabilistic behav-
ior at the device level naturally (which is the main category of interest in this
article); (ii) applications that can tolerate (and tradeoff) probabilistic behavior
at the device level (but do not need such behavior naturally); and (iii) appli-
cations which cannot tolerate probabilistic behavior at all. It is interesting to
note that pcMos technology can be effectively utilized for the second category of
applications as well. Applications from the domain of digital signal processing
provide a natural tradeoff between energy consumed and quality of solution,
which can be characterized in the form of a signal-to-noise ratio (sNr). For fur-
ther details about implementing Dsp applications using pcMmos technology, the
reader is referred to George et al. [2006].

6.2 Towards Design Automation

As mentioned in Section 3, the central idea behind probabilistic system-on-a-
chip architectures is to design architectural primitives with statistical behavior.
These primitives, in turn, implement key (probabilistic) steps of probabilis-
tic algorithms. The energy and performance gains presented arise from two
sources: (i) the low-energy operation of pcMos-based switches; and (ii) leverag-
ing the statistical behavior of pcMos switches to implement probabilistic steps
in probabilistic algorithms. The latter can be formalized to design more efficient
architectural primitives for probabilistic steps of probabilistic algorithms.

Consider any probabilistic step in a probabilistic algorithm. The abstract
model of a probabilistic step is a probabilistic truth table, where for each in-
put every possible output is realized with an associated probability. Figure 10
illustrates the probabilistic truth table for one such step in Bayesian inference.
The column marked x yz depicts the 3-bit input and columns marked ab repre-
sent the 2-bit output, with the probability of obtaining that output presented
in parenthesis. Intuitively, realizing such probabilistic truth tables using prob-
abilistic switches is inherently more efficient with pcmos switches than with
conventional (deterministic) cMos switches (where the probabilistic operation
has to be “emulated” using pseudorandom number generators). Given such a
truth table, a methodology to automate the design of a Boolean circuit can be
innovated. A preliminary (by hand) design for a Boolean circuit which realizes
such a probabilistic truth table has been presented in Figure 11.

6.3 Reducing Multiple Voltage Levels

In the designs described in this work, the probability p of correctness needs
to be varied on an application, specific basis. In addition, an application may
use several distinct probability parameters. This, as described in Section 4.3.2,
increases the spread factor due to replication caused by specialization. In

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 23

Input Output with corresponding probability parameters
Xyz ab

000 00 (0.98) 01 (0.01) 10 (0.01)
001 00 (0.01) 01 (0.98) 10 (0.01)
010 00 (0.01) 01 (0.01) 10 (0.98)
011 00 (0.98) 01 (0.01) 10 (0.01)
100 00 (0.98) 01 (0.01) 10 (0.01)
101 00 (0.69) 01 (0.30) 10 (0.01)

Fig. 10. The probabilistic truth table for a node in a Bayesian network with 37 nodes.

i p=0.01 *T\]
y —|>07E
! p=0.01 L|><f
b

p=0.98

\xz Multiplexor

JUU %T ij v

<N X

p=0.98

N

X =<

p=0.01

y —— >

p=0.30

x

N

Fig. 11. The Boolean circuit which implements the inference step for one node in a Bayesian
network with 37 nodes.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

24 . L. N. Chakrapani et al.

addition, since the probability parameter p is controlled by varying the volt-
age, a high spread-factor implies that several distinct voltage levels are needed
to operate the pcMos devices in the chip. As pointed out elsewhere, supplying
distinct voltage levels on a chip requires voltage regulators which are costly in
terms of area as well as energy. We make two observations towards address-
ing this problem: (i) Distinct probability parameters are a requirement of the
application, and the application’s sensitivity to probability parameters is an
important aspect to consider. In other words, if an application uses probability
parameters p1, ps, ps, it might be the case that the application-level quality of
solution is not degraded much when only p1, ps are used. However, this can be
determined only experimentally. (ii) Given probability parameters p; and ps,
through logical operations, other probability parameters might be derived. For
example, if the probability of obtaining the same a 1 from one pcmos device is
p and the probability of obtaining the same from a second prcmos device is ¢, a
logical AND of the output of the two pcMos devices produces a 1 with probability
p.q. Using this technique, in the context of an application (the case of Bayesian
inference is used here), the spread factor may be reduced by producing several
probability parameters using a few probability parameters. The formulation of
such an optimization problem is described next.

Consider a tree (the composition tree) with directed edges G = (V, E), where
V is a set of vertices and E C (V x V) a set of directed edges. This tree describes
the set of logical operations required to derive the probability parameters re-
quired by an application.

Let V=TUCUO,where INC=CnNO =1INn0 = ¢ and |O| = 1. Let
I be the set of input vertices, C the set of computing vertices, and o € O the
output vertex. The input vertices are pcMos devices, the computing vertices are
logical operations, and the output of the output vertices yields the probability
parameters required by the application. Given an edge e = (u,v) € E, where
u,v € V, the value associated with the edge, val(e), is the value associated with
the vertex u. In other words, val(e) = val(u), where e = (u, v).

—Set I: For any vertex v € I, val(v) € K.

—Set O: For the vertex o € O, val(v) = val(e) where e is the incoming edge
incident on o.

—Set C: Any vertex v € C is of one of three types AND, oR, NOT. For all vertices
of type AND, OR, the in-degree is two and out-degree is one. For all vertices of
type NoT, the in-degree is one and out-degree is one.

—For any vertex v € C and v of type AND with incoming edges e;, e, the value
associated with v, val(v) = val(e;) x val(e;).

—For any vertex v € C and v of type or with incoming edges e;, e, the value
associated with v, val(v) = 1 — (1 — val(e;)) x (1 — val(e;)).

—For any vertex v € C and v of type NoT with incoming edge e;, the value
associated with v, val(v) = 1 — val(e;).

Consider a set P such that P = {p1, ps, p3, ..., pr}, where p; € R* and
@ are such that @ = {q1,92,9s3,...,q:}, where q; € R". Let P be called

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 25

Table V. Application-Required Probability Parameters and Composition Tree for
Generating Them using Two Voltage Levels

Application-Required Probability Parameters Composition Tree

0.05 [1(0.4)AND(0.5)]AND(0.5)]AND(0.5)
0.10 [(0.4)AND(0.5)]1aND(0.5)
0.15 [(0.5)anD[NOT(0.4)]]1aND(0.5)
0.20 (0.4)AND(0.5)

0.25 (0.5)aND(0.5)

0.30 (0.5)anD[NOT(0.4)]

0.35 [NoT[(0.5)aND[NOT(0.4)]]ANDO.5
0.40 0.40

0.45 [NoT[[(0.4)AND(0.5)]1aND(0.4)]]
0.50 0.50

the set of input probabilities and @ be called the set of application-required
probabilities.

A composition tree G; is said to compute ¢q; € @ with input probabilities P
if for each input vertex v of G, val(v) € P and the value of the output vertex of
G, namely, val(o) ~ q;, where x ~ y if for some ¢, y — ¢ < x < y + €. In other
words, when elements from the set P are input to the composition tree G;, the
value of the output vertex is ~ g;.

For a composition tree G;, which computes g; given P, G; is defined to be the
minimal composition tree if AG; such that G} computes g;, so long as P and the
number of vertices in G; is less than the number of vertices in G;. Henceforth,
a “composition tree” will refer to the minimal composition tree.

To compute the application-required probability parameters from a set of
input probability parameters, the total cost includes the costs of pcmos devices,
that of the logic in the composition tree, and that introduced due to multiple
(though reduced) probability parameters of the input.

The cost of computing ¢g; which is given a set of input probabilities P, denoted
by Cp(q;), is the number of vertices in composition tree G; which computes g;,
given P. The cost of computing the the set @, given P, is denoted by Cp(Q)
and is X, Cp(g;). The cost of the set of input probabilities, denoted by Cp, is
Cp =k x |P|, where k is some constant.

Question. Given @, compute P and the composition trees such that Cp 4+ Cp
is minimum over all possible P.

This optimization problem might be solved using a combination of linear
programming and heuristics. As an illustration, an (unoptimized) hand imple-
mentation for deriving 20 probability parameters from two input probability
parameters is described in Table V (note that the other 10 probability param-
eters can be obtained by the NoT gates of those in the table).

6.4 Future Directions

For any implementation of applications which leverage probabilistic algo-
rithms, its quality is an important aspect to consider, apart from the energy and
running time. In conventional implementations of probabilistic algorithms—

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

26 . L. N. Chakrapani et al.

which usually leverage hardware- or software-based implementations of
pseudorandom number generators to supply pseudorandom bits which serve
as coin tosses—it is a well-known fact that random bits of low quality af-
fect application behavior, from the correctness of Monte Carlo simulations
[Ferrenberg et al. 1992] to the strength of encryption schemes. To ensure that
application behavior is not affected by low-quality randomization, the quality
of random bits produced by a particular strategy should be assessed rigorously.
The problem of quality assessment of random sequences has been well studied
and is rooted in the very concept of “randomness”. Kolmogorov considers a finite
sequence to be random if there is no appreciably shorter sequence that describes
it fully, in some unambiguous mathematical notation (from Good [1972]). How-
ever, the problem of determining the shortest sequence which describes a finite
sequence of numbers is, in general, undecidable [Chaitin 1977]. A more practi-
cal definition of pseudorandomness was introduced by Yao, where, informally,
a sequence is pseudorandom if there is no polynomial-time algorithm which
can distinguish that sequence from a truly random one [Yao 1982]. However,
it is impractical to test for pseudorandomness, since there is an infinite num-
ber of polynomial-time algorithms. Hence, the current strategy is to leverage
statistical tests to test for the quality of randomness. To study the statistical
properties of pcMos devices in a preliminary way, we have utilized the random-
ness tests from the NIST suite [NIST 2007] to assess the quality of random bits
generated by pcmos devices. Preliminary results indicate that pcmos affords a
higher quality of randomization; a future direction of study is to quantify the
impact of this quality on the application-level quality of solution.

A second direction of inquiry is automating design of psoc architectures. As
mentioned in Section 6.2, the description of the probabilistic steps of a proba-
bilistic algorithm can be formalized through a probabilistic truth table. Given
a conventional (deterministic) truth table, a corresponding Boolean circuit (of
AND, OR, and NOT gates) can be created and minimized (e.g., the Karnaugh map
technique [Mano 2001]) and such a synthesis and minimization step is auto-
mated in conventional CAD tools. A similar formalism and methodology for
automating the synthesis of Psoc architectures based on probabilistic truth ta-
bles can be developed.

In general, we can consider three categories of applications: (i) applications
which benefit from (or harness) probabilistic behavior at the device level; (ii)
those that can tolerate probabilistic behavior at the device level; and (iii) those
which cannot tolerate statistical behavior. In this article, we have described
and evaluated our methodology for implementing the first category of appli-
cations. Moving away from applications that leverage probabilistic algorithms
(and in turn harness the probabilistic behavior of pcMos devices), we can visit
the domain of applications that tolerate probabilistic behavior. Specifically, ap-
plications which can tradeoff energy and performance for the application-level
quality of solution can be investigated. In this context, applications in the do-
main of digital signal processing are good candidates, where the application-
level quality of solution is naturally expressed in the form of a signal-to-noise
ratio. For the last category, we envision an approach based on redundancy, as
well as error correction and recovery techniques.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

Probabilistic System-on-a-Chip Architectures . 27

REFERENCES

BanAr, R. I., MuNDY, J., AND CHEN, J. 2003. A probabilistic-based design methodology for nanoscale
computation. In Proceedings of the IEEE |ACM International Conference on Computer-Aided
Design. 480-486.

BEeINLICH, 1., SUERMONDT, G., CHAVEZ, R., AND CoOPER, G. 1989. The ALARM monitoring system: A
case study with two probabilistic inference techniques for belief networks. In Proceedings of the
2nd European Conference on Al and Medicine. 247-256.

Bennert, C. H. 1973. Logical reversibility of computation. IBM oJ. Res. Devel. 17, 525-532.

BORKAR, S., KARNIK, T., NARENDRA, S., TSCHANZ, J., KESHAVARZI, A., AND DE, V. 2003. Parameter varia-
tions and impact on circuits and microarchitecture. In Proceedings of the 40th Design Automation
Conference. 338—-342.

CHarmiN, G. 1977. Algorithmic information theory. IBM J. Res. Devel. 21, 350-359.

CHARRAPANT, L. N., AKcuL, B. E. S., CHEEMALAVAGU, S., KoRKMAZ, P., PALEM, K. V., AND SESHASAYEE, B.
2006. Ultra efficient embedded SOC architectures based on probabilistic CMOS technology. In
Proceedings of the 9th Design Automation and Test in Europe (DATE). 1110-1115.

CHAKRAPANT, L. N., GYLLENHAAL, J., MEI W. Hwu, W., MAHLKE, S. A., PaLEm, K. V., aAND RaBBan, R. M.
2005. Trimaran: An infrastructure for research in instruction-level parallelism. In Proceedings
of the 17th International Workshop on Languages and Compilers for Parallel Computing. Lecture
Notes in Computer Science, vol. 3602. Springer, 32—41.

CHEEMALAVAGU, S., KorkMAZ, P., aAND PaLEM, K. V. 2004. Ultra low-energy computing via probabilis-
tic algorithms and devices: CMOS device primitives and the energy-probability relationship. In
Proceedings of the International Conference on Solid State Devices and Materials (Tokyo, Japan),
402-403.

CHEEMALAVAGU, S., KorkMaz, P., PaLem, K. V., Akcur, B. E. S., aAND CHaKRAPANI, L. N. 2005. A
probabilistic CMOS switch and its realization by exploiting noise. In Proceedings of the IFIP
International Conference on Very Large Scale Integration.

Corr, I. 1998. SA-1100 microprocessor technical reference manual.

Ding, Y. Z. aND RaBiN, M. O. 2002. Hyper-Encryption and everlasting security. In Proceedings
of the 19th Annual Symposium on Theoretical Aspects of Computer Science. Lecture Notes In
Computer Science, vol. 2285. Springer, 1-26.

DoBrusaiN, R. L. anp Orrvukov, S. I. 1977a. Lower bound for the redundancy of self-
correcting arrangements of unreliable functional elements. Problems Inf. Transmis. 13, 3, 59—
65.

DogBrusHIN, R. L. anD OrtYUKOV, S. I. 1977b. Upper bound on the redundancy of self-correcting
arrangements of unreliable elements. Problems Inf. Transmis. 13, 3, 201-20.

FELLER, W. 1984. An Introduction to Probability Theory and its Applications. Wiley Eastern
Limited.

FERRENBERG, A. M., Lanpau, D. P., AND Wong, Y. J. 1992. Monte Carlo simulations: Hidden errors
from “good” random number generators. Phys. Rev. Let 69, 3382—-3384.

Fuks, H. 2002. Non-Deterministic density classifiation with diffusive probabilistic cellular au-
tomata. Phys. Rev. E, Statis. Nonlinear Soft Matter Phys. 66.

GELENBE, E. 1989. Random neural networks with negative and positive signals and product form
solution. Neural Comput. 1, 4, 502-511.

GELENBE, E. AND BATTY, F. 1992. Minimum graph covering with the random neural network model.
In Neural Networks: Advances and Applications, vol. 2.

GEORGE, J., MARR, B., AkcuL, B. E. S., aND PaLEm, K. 2006. Probabilistic arithmetic and energy
efficient embedded signal processing. In International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES).

TRrRiMARAN. 2007. Trimaran: An infrastructure for research in instruction-level parallelism.
http://www.trimaran.org.

InTEL. 2007. Moore’s law. http://www.intel.com/technology/silicon/mooreslaw/.

irrs. 2002. International technology roadmap for semiconductors 2002 update.

JacomE, M., HE, C., DE VECIANA, G., AND Buansky, S. 2004. Defect tolerant probabilistic design
paradigm for nanotechnologies. In Proceedings of the 41st Annual Conference on Design Automa-
tion. 596-601.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

28 . L. N. Chakrapani et al.

KisH, L. B. 2002. End of Moore’s law: thermal (noise) death of integration in micro and nano
electronics. Phys. Lett. A 305, 144-149.

Korrmaz, P., AkcuL, B. E. S., Caakrapant, L. N., axp Parem, K. V. 2006. Advocating noise as
an agent for ultra low-energy computing: Probabilistic CMOS devices and their characteristics.
Japanese J. Appl. Phys. 45, 4B (Apr.), 3307-3316.

LANDAUER, R. 1961. Irreversibility and heat generation in the computing process. IBM J. Res.
Devel. 3,183-191.

LErF, H. AND REX, A., eds. 1990. Maxwell’s Demon: Entropy, Information, Computing. Princeton
University Press, Princeton, NdJ.

MacKay, D. 1992. Bayesian interpolation. Neural Comput. 4, 3.

Mano, M. M. 2001. Digital Design. Prentice Hall, Upper Saddle River, NJ.

MEINDL, J. AND Davis, J. 2000. The fundamental limit on binary switching energy for terascale
integration (tsi). IEEE J. Solid-State Circ. 35, 10 (Oct.), 1515-1516.

Natori, K. AND Sano, N. 1998. Scaling limit of digital circuits due to thermal noise. J. Appl.
Phys. 83, 5019-5024.

NEeraL, K., Bauar, R. 1., Munpy, J., PaTTERsoN, W. R., AND Zasravsky, A. 2005. Designing logic
circuits for probabilistic computation in the presence of noise. In Proceedings of the 42nd Design
Automation Conference. 485-490.

PaLem, K. V. 2003a. Energy aware algorithm design via probabilistic computing: From algorithms
and models to Moore’s law and novel (semiconductor) devices. In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embedded Systems (San Jose, CA), 113—
117.

Parem, K. V. 2003b. Proof as experiment: Probabilistic algorithms from a thermodynamic per-
spective. In Proceedings of the International Symposium on Verification (Theory and Practice)
(Taormina, Sicily).

PaLem, K. V. 2005. Energy aware computing through probabilistic switching: A study of limits.
IEEE Trans. Comput. 54,9, 1123-1137.

PavLem, K. V., CHEEMALAVAGU, S., KorKMAZ, P., AND AKGUL, B. E. 2005. Probabilistic and introverted
switching to conserve energy in a digital system. US Patent 20050240787.

Pagrxk, S. AND MILLER, K. W. 1988. Random number generators: Good ones are hard to find. Com-
mun. ACM 31.

PrEFFER, A. 2000. Probabilistic reasoning for complex systems. Ph.D. thesis, Stanford Univeristy.

PrepENGER, N. 1985. On networks of noisy gates. In Proceedings of the 26th Annual IEEE Sym-
posim on Foundations of Computer Science, 30-38.

PrpPENGER, N. 1989. Invariance of complexity measures for networks with unreliable gates.
J. ACM 36, 531-539.

P1pPENGER, N., STAMOULIS, G. D., AND TsITSIKLIS, J. N. 1991. On a lower bound for the redundancy
of reliable networks with noisy gates. IEEE Trans. Inf. Theory 37, 3, 639-643.

RaBiy, M. O. 1976. Probabilistic algorithms. In Algorithms and Complexity, New Directions and
Recent Trends, J. F. Traub, ed. 29-39.

Nist. 2007. Random number generation and testing. http:/csrc.nist.gov/rng/.

Sano, N. 2000. Increasing importance of electronic thermal noise in sub-0.1mm Si-MOSFETSs.
IEICE Trans. Electron. E83-C, 1203-1211.

SIEWIOREK, D. P. AND Swarz, R. S. 1998. Reliable Computer Systems: Design and Evaluation. AK
Peters, Ltd.

SINHA, A. AND CHANDRAKASAN, A. 2001. JouleTrack: A web based tool for software energy profiling.
In Proceedings of the 38th Conference on Design Automation. 220-225.

Sorovay, R. AND STrasseN, V. 1977. A fast Monte-Carlo test for primality. SIAM J. Comput..

voN NEUMANN, J. 1956. Probabilistic logics and the synthesis of reliable organizms from unreliable
components. Automata Studies, 43-98.

Worrram, S. 2002. A New Kind of Science. Wolfram Media.

Yao,A. 1982. Theory and application of trapdoor functions. In Proceedings of the 23rd Symposium
on the Foundations of Computer Science, 80-91.

Received September 2006; revised March 2007; accepted March 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 29, Publication date: August 2007.

