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In the past, developers used additional capacity to de-
velop superscalar CPUs with replicated execution units 
and deep pipelines to exploit instruction-level parallel-
ism. However, they only harvested about 25 percent of 
the additional chip space that became available per year 
by adding new architectural features.2 Moreover, the per-
formance gap between processors and memory limits 
the gains possible from further increasing processor fre-
quency. Thus, the design direction currently employed 
for performance increases uses available chip space for 
multithreaded and multicore CPUs. These designs support 
multitasking via parallel programs or running several ap-
plications concurrently.

Designers first introduced multithreaded CPUs, which 
employ hardware-level context switching between threads, 
to reduce the idle time of resources in complex superscalar 
processors. Shortly after this, designers integrated more 
than one processor core onto a single chip, and we now 
have eight-core processors. Assuming that Moore’s law 
holds, we expect a doubling of the number of cores on 
chip every two years, leading to CPUs of 16 or more cores 
in the near future.

DESIGN SPECTRUM
Multithreaded and multicore CPUs both exploit con-

currency by executing multiple threads, although their 
designs target different objectives. Multithreaded CPUs 
support concurrent thread execution at the more fine-
grained instruction level, aiming at better utilizing the 
resources of CPUs by issuing instructions from multiple 

T
his survey compares multicore and multi-
threaded CPUs currently on the market and 
examines the underlying design decisions, 
performance, power efficiency, and software 
concerns in relation to application and work-

load characteristics.
Traditionally, CPUs have doubled in performance 

roughly every 18 months because designs grew more 
complex and CPU clock speeds increased with advances 
in chip fabrication technology. However, there are barriers 
to further significant improvements in operating frequency 
due to voltage leakage across internal chip components 
and heat dissipation limits.

Moore’s law—which projects that the density of circuits 
on chip will double every 18 months—still applies and 
provides hardware designers with the ability to add more 
complexity to a chip.1 This will remain true until CPUs 
reach the hard physical limits of circuit density.

Multicore and multithreaded CPUs have 
become the new approach to obtaining 
increases in CPU performance. Numeric 
applications mostly benefit from a large 
number of computationally powerful cores. 
Servers typically benefit more if chip cir-
cuitry is used for maximizing throughput 
via multiple threads per core.

Angela C. Sodan, Jacob Machina, Arash Deshmeh, Kevin Macnaughton,  
and Bryan Esbaugh, University of Windsor, Canada

PARALLELISM VIA 
MULTITHREADED 
AND MULTICORE 
CPUS



The number and selection of 
integrated components on-chip is  
an important design decision. 

25MARCH 2010

Multicore CPUs
Hardware multithreading per core has limited scal-

ability—bound by the saturation point of the execution 
units and the cost of additional threads—whereas mul-
ticore CPUs promise more potential for scalability. For a 
summary of current multicore CPUs, see Table 1 (more 
detailed version available at http://cs.windsor.ca/~acsodan/ 
cpu-tables.htm). Most early multicore chips were con-
structed as a simple pairing of existing single-core chip 
designs, as in the Itanium dual-core. These chips retained 
much of their predecessors’ architecture, replicating only 
the control and execution units and sharing the remain-
ing units per chip: cache, memory controller, secondary 
processing units like floating-point units (FPUs), cooling 
components, and off-chip pins. However, sharing has dis-
advantages regarding contention of the shared resources.6

Development trends indicate a move toward replicat-
ing additional on-chip components—such as memory 
controllers and caches—which may be private or shared. 
For example, the IBM Power69 and AMD Opteron each 
have private L2 caches and share multiple memory 
controllers.

Component integration
The number and selection of integrated components on-

chip is an important design decision. Possible components 
to include on-chip are memory controllers, commu-
nication interfaces, and memory. Placing the memory 
controller on-chip increases bandwidth and decreases 
latency, which explains the recent trend toward integrat-
ing this component. 

Some designs support multiple integrated memory con-
trollers to make memory-access bandwidth scalable with 
the number of cores, including both the IBM Power6 and 
Sun UltraSPARC T2. Integrating a GPU core on-chip is an-
other option announced for next-generation CPUs. A similar 
approach is already used in the embedded and mobile mar-
kets, which frequently combine both a general-purpose 
core and digital-signal processor core on a single chip. 

IBM’s Blue Gene/P10 system relies on a highly integrated 
system-on-a-chip design that features four cores, five net-
work interfaces, two memory controllers, and 8 Mbytes of 
L3 cache, allowing the system to scale to hundreds of thou-
sands of processors. As another example, the UltraSPARC 
T2 integrates memory controllers, I/O, security functions, 
and an advanced network interface.

threads. Multicore CPUs achieve thread concurrency at 
a higher level, focusing less on utilization per core and 
aiming at scalability via replicating cores. These CPUs 
are often called chip multiprocessors (CMPs). Most recent 
CPU and graphics processing unit designs, like the Sun 
UltraSPARC T2, IBM Power6, Intel Xeon, ATI RV770, and 
Nvidia GT200 combine both options and have multiple 
multithreaded cores.

Multithreaded cores
All multithreaded cores keep multiple hardware threads 

on-chip and ready for execution. This is necessary to 
make fine-grained switching between threads feasible 
and to minimize context-switch costs by hardware-level 
multiplexing. 

Each on-chip thread needs its own state components, 
such as the instruction pointer and other control regis-
ters. Thus, the number of on-chip threads determines the 
number of required replications of state components and 
subsequently the maximum degree of hardware-sup-
ported concurrency and execution-unit saturation. More 
threads also improve the possibilities for hiding memory-
access latencies or stalls from branch mispredictions. The 
Intel Xeon only needs 5 percent more chip space to support 
a second hardware thread.3 Cost growth is approximately 
linear up to at least eight threads, but it is clearly super-
linear thereafter.4 

The number of on-chip threads per core typically 
supported by commercial processors ranges from two 
in Intel’s Xeon to eight in Sun’s UltraSPARC T2. One 
extreme example, the 128 threads in the Tera/Cray 
MTA, represented one of the first practical but not com-
mercially successful designs. The processor needed 
the large number of threads to hide memory-access 
latencies and compensate for the lack of a cache in its 
architecture. Designers used the same technique in the 
massively multithreaded Nvidia GT200 GPU, which opts 
for minimal caches in favor of additional computational 
resources.

Table 1 shows that manufacturers use a variety of ap-
proaches to switching between threads per core, which 
range from alternating between the threads to actually 
issuing instructions from several threads each cycle.5 
Most current CPUs employ the latter approach, which 
usually is called simultaneous multithreading (SMT), and 
which Intel calls hyperthreading technology (HTT).3 SMT 
dispatches predecoded instructions from only a subset 
of the on-chip threads per cycle. The number of threads 
in this subset also impacts the execution units’ utiliza-
tion, particularly if the threads complement each other’s 
use of these units. However, at present, no commercially 
available CPU issues from more than two threads per 
core and per cycle.
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Table 1. Comparison of features for current commercial multicore CPUs.

Vendor Product Cores

Threads

Clock 
(GHz)

Power 
(watts 

per CPU) Special features
On-chip 

interconnect

L2 size per 
chip 

(Mbytes)m
L2 

allocation
L3 size 

(Mbytes)o

Per core
on-chip / 

executing
Switching 
approach

AMD Opteron (3rd 
generation)

4, 6 N/A N/A 1.7-3.1 40-105 IMC, 128-bit FPU  
per core, dual PM*

Crossbar 2, 3 Private 2, 6

AMD Phenom II 3, 4 N/A N/A 2.4-3.2 65-125 IMC, 128-bit FPU  
per core, dual PM*

Crossbar 1.5, 2 Private 6

AMD Turion X2 2 N/A N/A 1.6-2.4 18-35 IMC Crossbar 1, 2 Private N/A

Intel Pentium  
Dual Core

2 N/A N/A 1.7-2.7 65 IR 4 Front-side bus** 2, 4 Dynamic N/A

Intel Core 2 Duo 
Family

2 N/A N/A 1.8-3.3 65 IR 4 On-chip bus 2, 3, 4, 6 Shared N/A

Intel Core 2 Quad 4 N/A N/A 2.0-3.0 95-105 IR 4, dynamic PM On-chip bus / 
front-side bus** 

4, 6, 8, 12 Shared per 
2 cores

N/A

Intel Itanium  
(9000 series)

2 2 /1 Blocked+ 1.4-1.66 75-104 VLIW, IR 6 Direct pathways I: 2
D: 0.5

Private 4, 6, 9, 12 per 
core, private

Intel Xeon  
(7400 series)

4, 6 2 /2 SMT 2.13-2.66 50-130 IR 4, dynamic PM On-chip bus 6, 9 Shared 8, 12, 16

Intel Core i7 4 2/2 SMT 2.66-3.33 130 Triple channel IMC Crossbar 1 Private 8

IBM Power5 2 2/2 SMT 1.5-1.9 Unpub-
lished

IR 5, IMC Crossbar 1.875 Shared 36 off-chip

IBM Power6 2 2/2 SMT 4.7-5 Unpub-
lished

IR 7, 1 decimal, 2 
binary FPUs per core

On-chip bus 8 Private 32 off-chip

IBM Cell BE, PPE 1 2/2 SMT 3.2 110+ General purpose Ring bus 0.5 N/A N/A

IBM Cell BE, SPE 8 N/A N/A 3.2 110+ Simplified for SIMD 
support

Ring bus N/A N/A N/A

Sun UltraSPARC T1 4, 6, 8 4/1 Interleaved++ 1.0-1.2 72-79 1 FPU per chip, IMC Crossbar 3 Shared N/A

Sun UltraSPARC T2 4, 6, 8 8/2 Parallel 
interleaved∆

1.0-1.6 95-123 IMC and INC, crypto 
unit (per core), SOC,  
1 FPU per core

Crossbar 4 Shared N/A

Sun UltraSPARC IV+ 2 N/A N/A 1.5-2.1 90 IR 4, IMC On-chip bus 2 Shared 32 off-chip

Sun Sun/Fujitsu 
SPARC64 VII

4 2/2 SMT 2.5 135 IR 4, hardware barrier On-chip bus 6 Shared N/A

Sun Rock 16 2/2 SMT 2.1 250 4-core clusters,  
IR 4, aggressive  
speculation, HTM,  
2 FPUs per cluster

Direct pathways / 
crossbar (among 
clusters)

2 Shared 16 off-chip

Specialized Tilera TILE 64 64 N/A N/A 0.5-0.9 15-22 Simple cores, no FPUs Multilink mesh 4† Shared† N/A

Specialized ARM Cortex-
A9 MPCore

2, 4 N/A N/A 1 <1 Ultrasmall, SOC,  
ultra-low-power 

Multilevel bus 2 Shared N/A

Specialized ATI RV770††7 10 > 1,000‡ / 
10

Interleaved 0.75 160 Simplified for SIMD, 
80 FPUs per core

Crossbar >256 
Kbytes‡

Shared N/A

Specialized Nvidia 
GT200††8

30 1,024 / 8-16 Interleaved 1.295 236 Simplified for SIMD, 
10 FPUs per core

Crossbar 256 Kbytes Shared N/A

IMC = integrated memory controller, IR n = issue rate up to n instructions per cycle, PM = power management, VLIW = very long instruction word, INC = integrated network controller, 
SOC= system on a chip, HTM = hardware transactional memory
m  The L1 cache is private per core in all processors (size ranges from 16 Kbytes to 128 Kbytes) 
 For private L2 caches, the total size is obtained by multiplying the size per core by the number of cores
o  The L3 cache, if present, is shared
* Separate power management for cores and memory controllers
** For data exchange; otherwise not relevant since no integration of memory controller and network controller
+  Blocked multithreading switches to another thread only if the currently executing thread stalls
++  Interleaved multithreading switches among ready-to-run threads every cycle
∆  Two execution pipelines per core, each serving one thread per cycle
†  L2 caches of other cores can be aggregated per application, accessible at L2-like speed
††  The ATI RV770 is used on the Radeon HD 4870, and the NVIDIA GT200 on the GeForce GTX280
‡  Estimates, no vendor specifications available
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cation and partitioning is still necessary.3 Replication is 
essential for execution units that might be subject to high 
contention. Static or dynamic partitioning of a resource 
guarantees each thread exclusive access to its share, 
which constitutes a simple solution to provide fair and 
independent progress of thread execution.

For example, some designs apply partitioning to 
instruction buffers. Static partitioning creates strict 
boundaries, whereas dynamic partitioning can choose 
boundaries flexibly, while keeping a minimum share for 
each of the executing threads. Sharing allows greater 
flexibility in resource usage, but adds extra potential 
for contention and may need some mechanism to pre-
vent monopolization. Most multithreaded designs use 
a combination of sharing, replication, and partitioning. 
The design decision is based on the degree of contention 
among threads for a particular resource, fairness consid-
erations, and cost.

Fault tolerance
Dynamic partitioning of cache or other resources can be 

extended to deal with hardware faults more likely to occur 
with higher circuit density.12 Faults can result in electrical 
noise or minor permanent defects in silicon, potentially 
spreading from individual components and resulting in 
the entire chip failing. Some CPUs disable faulty cores 
at fabrication time to increase yields, as a form of static 
partitioning. Additionally, fault tolerance may comprise 
dynamic configurability and partitioning of replicated 
and separable units, such as multiple interchip intercon-
nects and memory controllers in addition to multiple cache 
banks. This leads to supporting different degrees of isola-
tion versus sharing and separation of working components 
from faulty ones. Such solutions greatly increase overall 
availability and provide graceful performance degradation 
in case of faults.12

Interconnects
Another important feature that impacts multicore 

chip performance is the communication among different 
on-chip components: cores, caches, and—if integrated—
memory controllers and network controllers. Initial 
designs used a bus as in traditional multiple-CPU sys-
tems. The trend has now shifted to a crossbar or other 
advanced mechanisms to reduce latency and contention. 
For instance, AMD CPUs employ a crossbar, and the Tilera 

Shared versus private caches
Aside from concurrency, caches are the most important 

feature for enhancing modern CPU performance because 
of the gap between CPU speed and memory-access times. 
The dominant approach to mitigating this gap exploits 
available chip space to provide more on-chip cache 
memory. Some CPU architectures choose a completely 
different path and do not employ a cache at all, hiding 
memory-access latencies via multithreading, as in the 
Tera/Cray MTA, or by using high-speed direct-addressed 
memory, as in the Cell SPE.

The organization of the cache memory is a major con-
sideration. Most current multicore chip designs have a 
private L1 cache per core to reduce the amount of con-
tention for this critical cache level. If the core supports 
multiple hardware threads, the L1 cache is shared among 
the threads per core. The assignment of the L2 cache in 
multicore designs varies. The L2 cache may be either pri-
vate and dedicated to each core, or shared between cores. 
The L3 cache was historically off-chip and shared, but 
newer designs such as the Intel Itanium and quad-core 
AMD Opteron feature on-chip L3 caches.

Whether shared or private caches are more beneficial 
depends not only on tradeoffs regarding the use of chip 
space but also on the application characteristics. Shared 
caches are important if threads of the same application 
execute on multiple cores and share a significant amount 
of data. In this case, a shared cache is more economical 
because it avoids multiple copies of data and cache-to-
cache transfers. However, shared caches can impose high 
demands on the interconnect.6 

Software threads that do not share much data might 
compete for the cache. This makes it difficult to predict the 
service to each thread as it depends on details of memory-
access patterns and memory-access locality as well as on 
the system load. Private caches constitute an easy solution 
to isolating performance and guaranteeing predictable 
service.

As a more flexible approach, a hybrid design provides 
different numbers of cache banks that can be allocated as 
shared or private, depending on the cache needs of the cur-
rently running threads. This approach can support threads 
that share data and threads that do not. The hybrid design 
can be refined to dynamic proportional partitioning, as 
proposed in recent research.11 This makes it possible to 
provide a level of service for each core equal to that of a 
single-core chip with the corresponding amount of provi-
sioned cache resources. 

Shared versus private  
hardware-thread resources

In contrast to multicore designs that tend to replicate 
most resources, sharing is the dominant approach in 
hardware multithreading. However, some level of repli-

A hybrid design provides different 
numbers of cache banks that can 
be allocated as shared or private, 
depending on the cache needs of  
the currently running threads. 
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Core complexity versus number of cores
Traditional CPU optimizations sought to increase the 

serial execution speed of a single thread, adopting tech-
niques such as out-of-order execution, dynamic branch 
prediction, and longer pipelines for higher clock rates. 
The availability of thread-level parallelism in addition 
to instruction-level parallelism raises the major design 
decision of the extent necessary to simplify traditional 
CPU designs to allow the dedication of more circuitry to 
concurrency.

Examples include Sun’s UltraSPARC T1, which reduces 
the number of on-chip FPUs, and Intel’s Atom, which re-
moves out-of-order execution. In the extreme case of IBM’s 
Cell, this leads to a greatly reduced instruction set and no 
dynamic branch prediction or instruction reordering.

Other chips increase complexity to maximize the 
per-core performance, such as the POWER6 chip, which 
offers highly optimized integer units and FPUs, including 
a decimal FPU. Mainframe processors additionally need 
to support heavy transaction processing; thus, IBM’s z10 
extends the POWER6 architecture with advanced branch 
prediction and cache management.

Greater issue-width also increases peak performance, 
with the POWER5 architecture issuing five instructions 
per cycle and AMD chips issuing only three. CPUs that 
focus on per-thread performance also generally have 
much higher clock rates than those that focus on many-
threaded support. This contrast can be seen in the 5.0-GHz 
clock rate of the IBM POWER6 and the 3.73-GHz rate of 
the Pentium Extreme Edition, compared to the highly 
multithreaded UltraSPARC T2, which has a core frequency 
of 1.6 GHz.

However, using extra chip space to enhance per-
thread performance results in nonlinear gains, with 
experience suggesting that performance only doubles 
when complexity is quadrupled.1 The “Performance of 
Multithreaded and Multicore CPUs” sidebar provides 
performance comparisons for different designs using 
standard benchmarks.

An important consideration for per-application per-
formance is that serial programs cannot exploit chip 
concurrency. Even in parallel programs, some parts of 
the algorithm must run sequentially, and Amdahl’s law 
states that the maximum speed of an algorithm is deter-
mined by the percentage of its sequential part. Balancing 
core complexity and number of cores, while considering 
diminishing returns from higher per-thread performance, 
can be formalized as an extension of this law,1,13 and that, 
along with other considerations, leads to the following 
conclusions: 

•	 Larger numbers of simple cores are preferable as long 
as the application’s serial part is very small; otherwise, 
more complex cores have proven beneficial.13

TILE64 implements a fast nonblocking multilink mesh. 
However, the interconnect can become expensive: An  
8 × 8 crossbar on-chip can consume as much area as five 
cores and as much power as two cores.6

With only private caches on-chip, data exchange be-
tween threads running on different cores historically 
necessitated using the off-chip interconnect. Shared 
on-chip caches naturally support data exchange among 
threads running on different cores. Thus, introducing a 
level of shared cache on-chip—commonly L2, or in the 
more recent trend, L3—or supporting data-exchange short-
cuts such as cache-to-cache transfer helped reduce off-chip 
traffic. However, more on-chip cache levels force the on-
chip interconnect to support even greater complexity and 
bandwidth requirements.

As data processing increases with more thread-level 
parallelism, demands also typically increase on the off-
chip communication fabric for memory accesses, I/O, or 
CPU-to-CPU communication. To address these require-
ments, off-chip communication is trending from bus-based 
to packet-based, point-to-point interconnects. AMD first 
implemented this concept as HyperTransport, followed by 
Intel’s QuickPath Interconnect. The off-chip interconnect 
and data-coherency support also impact the scalability of 
multiple CPU servers.

Specialized designs
Some multicore processors are tailored to very 

specific workloads. The Azul Vega series of compute ap-
pliances uses multicore chips with up to 48 cores, each 
including special execution units designed to increase 
performance of Java operations. Designers optimized 
the Tilera TILE64’s CPU for data processing with 64 low-
powered simple processing cores. Its increased dataflow 
capacity makes it well suited for embedded systems, 
such as telecommunications routers. Although the IBM 
Cell was originally designed for gaming, it also proved 
useful for data processing applications in bioinformatics 
and astrophysics.

GPUs represent an extreme example of specialized 
multicore design. Modern GPUs have 10 or more cores, 
each optimized for SIMD data processing done via hun-
dreds or thousands of simplified threads per core. This 
makes them suitable for highly numeric processing such 
as video rendering, genomics, scientific modeling, or 
cryptography.

An important consideration for 
per-application performance is that 
serial programs cannot exploit chip 
concurrency.
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•	 Benefits can shift toward more 
complex cores due to growing chip-
space demands for the interconnect 
among larger numbers of cores and 
limited application scalability due 
to lack of sufficient parallelism, 
synchronization overhead, or load 
imbalance.

•	 Applications that can exploit much of 
the theoretical peak performance—
such as floating-point-intensive or 
highly instruction-parallel numeric 
applications—might experience 
higher returns from added complex-
ity than typically expected.

However, in addition to per-application 
performance, the overall workload must 
be considered as well. Per-application 
performance is important if the load 
consists of only a few applications or if 
there are performance-critical applica-
tions. Otherwise, good utilization can 
easily be obtained from workloads with 
many serial jobs and parallel applications 
scaled to only a fraction of the number of 
cores.1 This can lead to high throughput, 
and—via reduced waiting times—also to 
good turnaround times, which are com-
mercial servers’ design goals, such as 
database and webservers.

To strike a balance between per-
thread performance and throughput, the 
former might be enhanced if more chip 
resources can be allocated dynamically, 
such as for speculative execution. This is 
likely to benefit applications with many 
data dependencies and cache misses.

Sun’s preproduction Rock processor 
implements this idea by optionally using 
the two hardware threads per core to ex-
ecute one application thread.14 A simpler 
approach, already applied in some mul-
tithreaded CPUs, allocates partitioned 
resources to one thread if run in single-
task mode, as implemented in the Intel 
Xeon and Pentium Extreme Edition.3

As another possibility, chip designs 
can incorporate some diversity regarding 
the cores’ complexity, such as in IBM’s 
Cell processor. A few higher-complexity 
cores might run sequential parts of de-
manding applications. Though they are 
not yet commercially available, research 

S ingle-thread performance: Systems based on Intel Core i7 (ASUSTeK i7-965 
results of Feb. 2009) processors rank highest in the SPECfp2006  and SPECint2006 

benchmarks (http://spec.org), achieving 68 percent higher integer speed and 84 
percent higher floating-point speed (supported by its memory controller), compared 
to AMD’s Opteron (HP Opteron 2384 results of Dec. 2008). Additionally, Intel’s Core 
i7 currently has the best score for SPECfp and SPECint throughput.

Regarding throughput for the numeric SPECfp applications, the Opteron is 
only slightly better using highly optimized code than Sun’s UltraSPARC T2 (Fujitsu 
T5120 results of Jan. 2009), but has a 26 percent advantage using standard opti-
mizations. However, the UltraSPARC T2 (Sun T5440 results of Oct. 2009) 
outperforms the Opteron (HP Opteron 8393 results of May 2009) in the multi-
threaded SPECweb2005 benchmark for webserver throughput and response 
times, by serving 36 percent more Web requests over the same time span.

Considering different loads, simulation studies with database applications,1 
specifically OLTP and DSS, showed up to 40 percent shorter response times for 
the POWER5 compared to the UltraSPARC T1 if serving an unsaturated load. How-
ever, for saturated loads, the UltraSPARC T1 achieved up to 70 percent greater 
throughput.

Multiple-thread performance: The benefits from multiple hardware threads 
partially depend on whether the application employs multithreading or multi-
processing. Enabling dual-thread hyperthreading on the Intel Xeon processor 
resulted in a 33 percent performance gain versus single-thread execution2 for the 
OpenMP version of the NAS3 CG benchmark. By comparison, decreases in perfor-
mance were observed for the multiprocess version of the NAS FT benchmark. The 
OpenMP version of the FT benchmark suffered 8 percent performance loss versus 
single-thread execution,2 whereas the standard multiple-process version of FT 
suffered a larger loss at 50 percent, which was mostly attributed to memory con-
tention from intensive interprocess communication.4

Multiple-core performance: The AMD Opteron dual-core processors exam-
ple demonstrated performance gains from multiple cores, showing 37 percent 
improved performance utilizing the second core when measured by the standard 
multiple-process NAS CG and FT benchmarks.5 The same study also showed that 
one dual-core chip performed only 5.8 percent slower in the CG benchmark, and 
only 9 percent slower in the FT benchmark, than two chips using a single core, 
while being much more power- and cost-efficient. Another study with pure multi-
process applications running on large clusters with up to 4,096 CPUs obtained 
benefits of between 20 and 50 percent from using a second core.6
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indicates that processors comprising many simplified 
cores and a few high-performance cores could provide 
the greatest total processing power for a given chip space 
and power budget.13,15 However, these CPUs may be more 
difficult to design and program.

Cost and power consumption
Performance no longer dominates design objectives: 

Chip fabrication costs and fault tolerance, power ef-
ficiency, and heat dissipation have all become critical 
considerations. 

As cores are simplified, power consumption decreases 
linearly,1 which is a major advantage of multicore CPUs. 
Increased power efficiency and reduced heat genera-
tion permit the integration of more cores into a single 

CPU, with the tradeoff that the power budget for the in-
terconnect increases with the number of cores.6 Power 
usage affects the choice between multicore designs and 
single-core multithreaded designs: The former are more 
power-efficient, but hybrid designs with multiple SMT 
cores achieve nearly the same performance per watt as 
pure CMP designs.4 Multicore CPUs also provide more 
options for power management because CMP cores can 
be individually power-tuned by being powered off or run 
at a lower frequency when system load is light.1 Power 
tuning is critical in mobile computing, but servers can 
also benefit greatly. 

From an overall system perspective, increasing electric-
ity costs demand more power efficiency from processors 
and other system components, with the additional benefit 
of reduced cooling costs. Though the CPU accounts for 
only 25 to 45 percent of the power a server consumes,16 
projected electricity costs for a four-year term approach 
the system’s purchase price. In the case of high-perfor-
mance computing machines, building customized cooling 
solutions can cost as much as the computer itself.17 Addi-
tionally, the reduced power consumption permits higher 
rack density in server rooms.

Optimizing for performance per watt and per dollar 
also enables massively scalable architectures. An extreme 
example is IBM’s Blue Gene/L or the Blue Gene/P, which 
runs at 850 Mhz. Designed for simplicity, low fabrication 
cost, high integration, and scalability, the Blue Gene/P 
architecture reached 450 teraflops by employing 40,960 
CPUs. The fastest, most power-efficient17 architecture—
according to the Top500 (http://top500.org) list of June 

2009—per parallel application is IBM’s hybrid QS22/LS21, 
used in the Roadrunner supercomputer at Los Alamos 
National Labs. This architecture also held the highest rank 
in the Green500 (http://green500.org) list of November 
2008. These top rankings were made possible by employ-
ing the power- and cost-efficient Cell as the main compute 
processor.

THE SOFTWARE CHALLENGE
In the future, exponential growth in CPU performance 

will primarily be obtainable from more hardware threads 
and cores. However, hardware concurrency can only be 
exploited with multiple serial programs or with parallel-
ized applications.18 Because of the limited opportunities for 
further per-thread performance enhancements, serial code 
should be carefully optimized. Throughput can be im-
proved even on personal computers with serial programs, 
if the additional cores run operating system or background 
tasks such as security software or virus scans, or are used 
to support virtualization. However, these arguments only 
hold for small numbers of cores, whereas the trend is 
toward many-core CPUs.

Server software may already be multithreaded for 
higher throughput by interleaving requests and po-
tentially exploiting multiple CPUs. However, most 
commodity software is not prepared for concurrency.18,19 
Possibilities for automatically extracting parallelism are 
currently limited, and parallelism typically must be ex-
pressed explicitly. Thus, Herb Sutter considers changing 
toward parallel programming for commodity machines 
to be the next revolution after the introduction of object-
oriented programming.18 Writing correct and efficient 
parallel programs is a major challenge that calls for 
better tools and more abstract programming models 
to make thread programming safer and more conve-
nient. Solutions can draw upon experiences obtained in 
high-performance computing, with the greatly enlarged 
market providing the stimulus for further improvement 
in HPC techniques.20 

Widely used in HPC, commodity software developers 
could adopt the OpenMP shared-memory programming 
model (http://openmp.org/wp). Another promising direction 
is transactional memory,21 which borrows the transaction 
concept from databases and simplifies data-access coor-
dination through automatic checkpointing and rollback 
mechanisms. Sun’s Rock14 is the first CPU that supports 
this model in hardware for common cases. Rather than 
investing additional time for parallel-software develop-
ment, a more economical approach uses preparallelized 
compilers and libraries like the Basic Linear Algebra Sub-
programs (BLAS) library.22

The need for better tools and programming models 
also affects HPC. Currently, even if data could be shared, 
many parallel programmers exclusively use processes, 

In the future, exponential growth  
in CPU performance will primarily  
be obtainable from more hardware  
threads and cores.
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grammability of multicore/multithreaded chips, as they 
impact the transfer rate of data to and from the cores. 
There is currently no technology in sight to drastically in-
crease the pin count. New transport technologies—such 
as HyperTransport and QuickPath Interconnect—in-
crease the effective throughput per pin, but cannot keep 
pace with exponential core growth. Since more cores 
must be kept busy with instructions and data, the future 
for many-core designs may be limited. These concerns 
can be mitigated by hiding memory-access latencies via 
hardware multithreading and increasing the amount of 
memory on-chip.

In regard to software limits, relatively few applications 
can use very high concurrency for performance increases. 
Throughput increases by executing many serial jobs or 
several moderately parallel applications can be obtained 
on servers, though commodity machines may not benefit. 
Otherwise, the success of many-core designs highly de-
pends on proper programming tools, libraries, and models 
becoming available.

Currently available CPUs incorporate different choices 
in regard to their design and use of chip space. Design 
considerations not only include determining the number 
of cores and threads but also the core complexity, inter-
connect, cache sizes, and the degree to which components 
are shared. Since design choices involve tradeoffs, holistic 
design is necessary, driven by target applications and ad-
ditional optimization criteria like power consumption, heat 
dissipation, failure tolerance, and cost.6 

In regard to the decision between cores and hardware 
threads, for commodity computing the sweet spot seems 
to lie in hybrid designs. A small number of on-chip threads 
can be added for relatively little additional circuitry and 
can significantly increase throughput. However, dimin-
ishing returns in performance and increasing circuitry 
costs limit the gain from hardware threads.4 Thus, chip 
space beyond a few hardware threads is generally better 
exploited for more cores, cache, or other components. 
Hybrid CPUs have also been shown to be almost as energy 
efficient as pure multicore designs.28

T
he balance between cores and hardware 
threads shifts for servers, which demand 
maximized throughput and benefit more from 
larger numbers of hardware threads per core. 
Servers generally run a large set of nonnumeric 

programs, typically involving more latency that can be 
hidden using multithreading. Conversely, numeric appli-
cations rarely benefit from hardware multithreading, 
instead performing better on many-core designs.

Considering that each CPU has made different optimiza-
tion choices, the consumer is left to decide which is best 
suited to a specific application mix. 

despite the performance benefits of employing software 
multithreading on shared memory symmetric multipro-
cessing (SMP) nodes. HPC clusters with many-core nodes 
may require using hybrid thread/process programming 
models for higher efficiency and scalability. Fortunately, 
users tend to prefer multithreading and may find the 
additional step toward incorporating it easier than 
the initial step taken from serial to multiprocessing.23 
Moreover, HPC applications will need to exhibit a higher 
degree of parallelism than before to exploit hardware 
concurrency offered by multicore CPUs. This may only 
be possible to a certain extent as application scalability 
is limited unless problem sizes are increased.20 Another 
limiting factor is that the performance benefit of addi-
tional cores is less than that of additional CPUs, except 
when threads share data. Thus, multicore CPUs are not 
the new SMP.20

The software challenge also affects commodity com-
pilers that may need to address simplified or specialized 
cores like in the Cell or a GPU. Whereas in the past, the 
hardware itself to a large extent extracted instruction-level 
parallelism, simplified cores now demand more compiler 
effort for reordering instructions, inserting static branch 
prediction hints, and vectorizing data processing to exploit 
SIMD instructions.

Regarding the operating system, traditional CPU 
schedulers needed modifications to accommodate the 
heterogeneity and performance differences in the hierar-
chy of CPUs, cores, and hardware threads. Additionally, 
research has shown that scheduling with the goal of mini-
mizing resource contention is important if the machine is 
fully loaded. 

The challenge then is to match applications with 
complementary resource needs whenever resources are 
shared—such as moderately cache-intensive applications if 
caches are shared or integer- and floating-point-dominant 
applications if FPUs are shared.24,25 Since threads of the 
same application are likely homogeneous, better options 
for matchmaking may be obtainable with threads of dif-
ferent applications. For HPC clusters, this option has not 
been used much to date since contention effects among 
programs with large numbers of interdependent processes 
are hard to estimate and need to be predicted before jobs 
are launched onto the machine. Recent research showed 
acceptably low contention effects for most program com-
binations on 64-cluster nodes with potential to obtain high 
prediction accuracy.26,27

PROSPECTIVE DIRECTIONS FOR 
MULTITHREADED AND MULTICORE CPUS

We expect that chip designs, according to Moore’s 
law, will grow to large numbers of cores and hardware 
threads. However, off-chip communication and pin limits 
put significant constraints on the scalability and pro-
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