
COMPUTER 24

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

In the past, developers used additional capacity to de-
velop superscalar CPUs with replicated execution units
and deep pipelines to exploit instruction-level parallel-
ism. However, they only harvested about 25 percent of
the additional chip space that became available per year
by adding new architectural features.2 Moreover, the per-
formance gap between processors and memory limits
the gains possible from further increasing processor fre-
quency. Thus, the design direction currently employed
for performance increases uses available chip space for
multithreaded and multicore CPUs. These designs support
multitasking via parallel programs or running several ap-
plications concurrently.

Designers first introduced multithreaded CPUs, which
employ hardware-level context switching between threads,
to reduce the idle time of resources in complex superscalar
processors. Shortly after this, designers integrated more
than one processor core onto a single chip, and we now
have eight-core processors. Assuming that Moore’s law
holds, we expect a doubling of the number of cores on
chip every two years, leading to CPUs of 16 or more cores
in the near future.

DESIGN SPECTRUM
Multithreaded and multicore CPUs both exploit con-

currency by executing multiple threads, although their
designs target different objectives. Multithreaded CPUs
support concurrent thread execution at the more fine-
grained instruction level, aiming at better utilizing the
resources of CPUs by issuing instructions from multiple

T
his survey compares multicore and multi-
threaded CPUs currently on the market and
examines the underlying design decisions,
performance, power efficiency, and software
concerns in relation to application and work-

load characteristics.
Traditionally, CPUs have doubled in performance

roughly every 18 months because designs grew more
complex and CPU clock speeds increased with advances
in chip fabrication technology. However, there are barriers
to further significant improvements in operating frequency
due to voltage leakage across internal chip components
and heat dissipation limits.

Moore’s law—which projects that the density of circuits
on chip will double every 18 months—still applies and
provides hardware designers with the ability to add more
complexity to a chip.1 This will remain true until CPUs
reach the hard physical limits of circuit density.

Multicore and multithreaded CPUs have
become the new approach to obtaining
increases in CPU performance. Numeric
applications mostly benefit from a large
number of computationally powerful cores.
Servers typically benefit more if chip cir-
cuitry is used for maximizing throughput
via multiple threads per core.

Angela C. Sodan, Jacob Machina, Arash Deshmeh, Kevin Macnaughton,
and Bryan Esbaugh, University of Windsor, Canada

PARALLELISM VIA
MULTITHREADED
AND MULTICORE
CPUS

The number and selection of
integrated components on-chip is
an important design decision.

25MARCH 2010

Multicore CPUs
Hardware multithreading per core has limited scal-

ability—bound by the saturation point of the execution
units and the cost of additional threads—whereas mul-
ticore CPUs promise more potential for scalability. For a
summary of current multicore CPUs, see Table 1 (more
detailed version available at http://cs.windsor.ca/~acsodan/
cpu-tables.htm). Most early multicore chips were con-
structed as a simple pairing of existing single-core chip
designs, as in the Itanium dual-core. These chips retained
much of their predecessors’ architecture, replicating only
the control and execution units and sharing the remain-
ing units per chip: cache, memory controller, secondary
processing units like floating-point units (FPUs), cooling
components, and off-chip pins. However, sharing has dis-
advantages regarding contention of the shared resources.6

Development trends indicate a move toward replicat-
ing additional on-chip components—such as memory
controllers and caches—which may be private or shared.
For example, the IBM Power69 and AMD Opteron each
have private L2 caches and share multiple memory
controllers.

Component integration
The number and selection of integrated components on-

chip is an important design decision. Possible components
to include on-chip are memory controllers, commu-
nication interfaces, and memory. Placing the memory
controller on-chip increases bandwidth and decreases
latency, which explains the recent trend toward integrat-
ing this component.

Some designs support multiple integrated memory con-
trollers to make memory-access bandwidth scalable with
the number of cores, including both the IBM Power6 and
Sun UltraSPARC T2. Integrating a GPU core on-chip is an-
other option announced for next-generation CPUs. A similar
approach is already used in the embedded and mobile mar-
kets, which frequently combine both a general-purpose
core and digital-signal processor core on a single chip.

IBM’s Blue Gene/P10 system relies on a highly integrated
system-on-a-chip design that features four cores, five net-
work interfaces, two memory controllers, and 8 Mbytes of
L3 cache, allowing the system to scale to hundreds of thou-
sands of processors. As another example, the UltraSPARC
T2 integrates memory controllers, I/O, security functions,
and an advanced network interface.

threads. Multicore CPUs achieve thread concurrency at
a higher level, focusing less on utilization per core and
aiming at scalability via replicating cores. These CPUs
are often called chip multiprocessors (CMPs). Most recent
CPU and graphics processing unit designs, like the Sun
UltraSPARC T2, IBM Power6, Intel Xeon, ATI RV770, and
Nvidia GT200 combine both options and have multiple
multithreaded cores.

Multithreaded cores
All multithreaded cores keep multiple hardware threads

on-chip and ready for execution. This is necessary to
make fine-grained switching between threads feasible
and to minimize context-switch costs by hardware-level
multiplexing.

Each on-chip thread needs its own state components,
such as the instruction pointer and other control regis-
ters. Thus, the number of on-chip threads determines the
number of required replications of state components and
subsequently the maximum degree of hardware-sup-
ported concurrency and execution-unit saturation. More
threads also improve the possibilities for hiding memory-
access latencies or stalls from branch mispredictions. The
Intel Xeon only needs 5 percent more chip space to support
a second hardware thread.3 Cost growth is approximately
linear up to at least eight threads, but it is clearly super-
linear thereafter.4

The number of on-chip threads per core typically
supported by commercial processors ranges from two
in Intel’s Xeon to eight in Sun’s UltraSPARC T2. One
extreme example, the 128 threads in the Tera/Cray
MTA, represented one of the first practical but not com-
mercially successful designs. The processor needed
the large number of threads to hide memory-access
latencies and compensate for the lack of a cache in its
architecture. Designers used the same technique in the
massively multithreaded Nvidia GT200 GPU, which opts
for minimal caches in favor of additional computational
resources.

Table 1 shows that manufacturers use a variety of ap-
proaches to switching between threads per core, which
range from alternating between the threads to actually
issuing instructions from several threads each cycle.5
Most current CPUs employ the latter approach, which
usually is called simultaneous multithreading (SMT), and
which Intel calls hyperthreading technology (HTT).3 SMT
dispatches predecoded instructions from only a subset
of the on-chip threads per cycle. The number of threads
in this subset also impacts the execution units’ utiliza-
tion, particularly if the threads complement each other’s
use of these units. However, at present, no commercially
available CPU issues from more than two threads per
core and per cycle.

COVER FE ATURE

COMPUTER 26

Table 1. Comparison of features for current commercial multicore CPUs.

Vendor Product Cores

Threads

Clock
(GHz)

Power
(watts

per CPU) Special features
On-chip

interconnect

L2 size per
chip

(Mbytes)m
L2

allocation
L3 size

(Mbytes)o

Per core
on-chip /

executing
Switching
approach

AMD Opteron (3rd
generation)

4, 6 N/A N/A 1.7-3.1 40-105 IMC, 128-bit FPU
per core, dual PM*

Crossbar 2, 3 Private 2, 6

AMD Phenom II 3, 4 N/A N/A 2.4-3.2 65-125 IMC, 128-bit FPU
per core, dual PM*

Crossbar 1.5, 2 Private 6

AMD Turion X2 2 N/A N/A 1.6-2.4 18-35 IMC Crossbar 1, 2 Private N/A

Intel Pentium
Dual Core

2 N/A N/A 1.7-2.7 65 IR 4 Front-side bus** 2, 4 Dynamic N/A

Intel Core 2 Duo
Family

2 N/A N/A 1.8-3.3 65 IR 4 On-chip bus 2, 3, 4, 6 Shared N/A

Intel Core 2 Quad 4 N/A N/A 2.0-3.0 95-105 IR 4, dynamic PM On-chip bus /
front-side bus**

4, 6, 8, 12 Shared per
2 cores

N/A

Intel Itanium
(9000 series)

2 2 /1 Blocked+ 1.4-1.66 75-104 VLIW, IR 6 Direct pathways I: 2
D: 0.5

Private 4, 6, 9, 12 per
core, private

Intel Xeon
(7400 series)

4, 6 2 /2 SMT 2.13-2.66 50-130 IR 4, dynamic PM On-chip bus 6, 9 Shared 8, 12, 16

Intel Core i7 4 2/2 SMT 2.66-3.33 130 Triple channel IMC Crossbar 1 Private 8

IBM Power5 2 2/2 SMT 1.5-1.9 Unpub-
lished

IR 5, IMC Crossbar 1.875 Shared 36 off-chip

IBM Power6 2 2/2 SMT 4.7-5 Unpub-
lished

IR 7, 1 decimal, 2
binary FPUs per core

On-chip bus 8 Private 32 off-chip

IBM Cell BE, PPE 1 2/2 SMT 3.2 110+ General purpose Ring bus 0.5 N/A N/A

IBM Cell BE, SPE 8 N/A N/A 3.2 110+ Simplified for SIMD
support

Ring bus N/A N/A N/A

Sun UltraSPARC T1 4, 6, 8 4/1 Interleaved++ 1.0-1.2 72-79 1 FPU per chip, IMC Crossbar 3 Shared N/A

Sun UltraSPARC T2 4, 6, 8 8/2 Parallel
interleaved∆

1.0-1.6 95-123 IMC and INC, crypto
unit (per core), SOC,
1 FPU per core

Crossbar 4 Shared N/A

Sun UltraSPARC IV+ 2 N/A N/A 1.5-2.1 90 IR 4, IMC On-chip bus 2 Shared 32 off-chip

Sun Sun/Fujitsu
SPARC64 VII

4 2/2 SMT 2.5 135 IR 4, hardware barrier On-chip bus 6 Shared N/A

Sun Rock 16 2/2 SMT 2.1 250 4-core clusters,
IR 4, aggressive
speculation, HTM,
2 FPUs per cluster

Direct pathways /
crossbar (among
clusters)

2 Shared 16 off-chip

Specialized Tilera TILE 64 64 N/A N/A 0.5-0.9 15-22 Simple cores, no FPUs Multilink mesh 4† Shared† N/A

Specialized ARM Cortex-
A9 MPCore

2, 4 N/A N/A 1 <1 Ultrasmall, SOC,
ultra-low-power

Multilevel bus 2 Shared N/A

Specialized ATI RV770††7 10 > 1,000‡ /
10

Interleaved 0.75 160 Simplified for SIMD,
80 FPUs per core

Crossbar >256
Kbytes‡

Shared N/A

Specialized Nvidia
GT200††8

30 1,024 / 8-16 Interleaved 1.295 236 Simplified for SIMD,
10 FPUs per core

Crossbar 256 Kbytes Shared N/A

IMC = integrated memory controller, IR n = issue rate up to n instructions per cycle, PM = power management, VLIW = very long instruction word, INC = integrated network controller,
SOC= system on a chip, HTM = hardware transactional memory
m The L1 cache is private per core in all processors (size ranges from 16 Kbytes to 128 Kbytes)
 For private L2 caches, the total size is obtained by multiplying the size per core by the number of cores
o The L3 cache, if present, is shared
* Separate power management for cores and memory controllers
** For data exchange; otherwise not relevant since no integration of memory controller and network controller
+ Blocked multithreading switches to another thread only if the currently executing thread stalls
++ Interleaved multithreading switches among ready-to-run threads every cycle
∆ Two execution pipelines per core, each serving one thread per cycle
† L2 caches of other cores can be aggregated per application, accessible at L2-like speed
†† The ATI RV770 is used on the Radeon HD 4870, and the NVIDIA GT200 on the GeForce GTX280
‡ Estimates, no vendor specifications available

27MARCH 2010

cation and partitioning is still necessary.3 Replication is
essential for execution units that might be subject to high
contention. Static or dynamic partitioning of a resource
guarantees each thread exclusive access to its share,
which constitutes a simple solution to provide fair and
independent progress of thread execution.

For example, some designs apply partitioning to
instruction buffers. Static partitioning creates strict
boundaries, whereas dynamic partitioning can choose
boundaries flexibly, while keeping a minimum share for
each of the executing threads. Sharing allows greater
flexibility in resource usage, but adds extra potential
for contention and may need some mechanism to pre-
vent monopolization. Most multithreaded designs use
a combination of sharing, replication, and partitioning.
The design decision is based on the degree of contention
among threads for a particular resource, fairness consid-
erations, and cost.

Fault tolerance
Dynamic partitioning of cache or other resources can be

extended to deal with hardware faults more likely to occur
with higher circuit density.12 Faults can result in electrical
noise or minor permanent defects in silicon, potentially
spreading from individual components and resulting in
the entire chip failing. Some CPUs disable faulty cores
at fabrication time to increase yields, as a form of static
partitioning. Additionally, fault tolerance may comprise
dynamic configurability and partitioning of replicated
and separable units, such as multiple interchip intercon-
nects and memory controllers in addition to multiple cache
banks. This leads to supporting different degrees of isola-
tion versus sharing and separation of working components
from faulty ones. Such solutions greatly increase overall
availability and provide graceful performance degradation
in case of faults.12

Interconnects
Another important feature that impacts multicore

chip performance is the communication among different
on-chip components: cores, caches, and—if integrated—
memory controllers and network controllers. Initial
designs used a bus as in traditional multiple-CPU sys-
tems. The trend has now shifted to a crossbar or other
advanced mechanisms to reduce latency and contention.
For instance, AMD CPUs employ a crossbar, and the Tilera

Shared versus private caches
Aside from concurrency, caches are the most important

feature for enhancing modern CPU performance because
of the gap between CPU speed and memory-access times.
The dominant approach to mitigating this gap exploits
available chip space to provide more on-chip cache
memory. Some CPU architectures choose a completely
different path and do not employ a cache at all, hiding
memory-access latencies via multithreading, as in the
Tera/Cray MTA, or by using high-speed direct-addressed
memory, as in the Cell SPE.

The organization of the cache memory is a major con-
sideration. Most current multicore chip designs have a
private L1 cache per core to reduce the amount of con-
tention for this critical cache level. If the core supports
multiple hardware threads, the L1 cache is shared among
the threads per core. The assignment of the L2 cache in
multicore designs varies. The L2 cache may be either pri-
vate and dedicated to each core, or shared between cores.
The L3 cache was historically off-chip and shared, but
newer designs such as the Intel Itanium and quad-core
AMD Opteron feature on-chip L3 caches.

Whether shared or private caches are more beneficial
depends not only on tradeoffs regarding the use of chip
space but also on the application characteristics. Shared
caches are important if threads of the same application
execute on multiple cores and share a significant amount
of data. In this case, a shared cache is more economical
because it avoids multiple copies of data and cache-to-
cache transfers. However, shared caches can impose high
demands on the interconnect.6

Software threads that do not share much data might
compete for the cache. This makes it difficult to predict the
service to each thread as it depends on details of memory-
access patterns and memory-access locality as well as on
the system load. Private caches constitute an easy solution
to isolating performance and guaranteeing predictable
service.

As a more flexible approach, a hybrid design provides
different numbers of cache banks that can be allocated as
shared or private, depending on the cache needs of the cur-
rently running threads. This approach can support threads
that share data and threads that do not. The hybrid design
can be refined to dynamic proportional partitioning, as
proposed in recent research.11 This makes it possible to
provide a level of service for each core equal to that of a
single-core chip with the corresponding amount of provi-
sioned cache resources.

Shared versus private
hardware-thread resources

In contrast to multicore designs that tend to replicate
most resources, sharing is the dominant approach in
hardware multithreading. However, some level of repli-

A hybrid design provides different
numbers of cache banks that can
be allocated as shared or private,
depending on the cache needs of
the currently running threads.

COVER FE ATURE

COMPUTER 28

Core complexity versus number of cores
Traditional CPU optimizations sought to increase the

serial execution speed of a single thread, adopting tech-
niques such as out-of-order execution, dynamic branch
prediction, and longer pipelines for higher clock rates.
The availability of thread-level parallelism in addition
to instruction-level parallelism raises the major design
decision of the extent necessary to simplify traditional
CPU designs to allow the dedication of more circuitry to
concurrency.

Examples include Sun’s UltraSPARC T1, which reduces
the number of on-chip FPUs, and Intel’s Atom, which re-
moves out-of-order execution. In the extreme case of IBM’s
Cell, this leads to a greatly reduced instruction set and no
dynamic branch prediction or instruction reordering.

Other chips increase complexity to maximize the
per-core performance, such as the POWER6 chip, which
offers highly optimized integer units and FPUs, including
a decimal FPU. Mainframe processors additionally need
to support heavy transaction processing; thus, IBM’s z10
extends the POWER6 architecture with advanced branch
prediction and cache management.

Greater issue-width also increases peak performance,
with the POWER5 architecture issuing five instructions
per cycle and AMD chips issuing only three. CPUs that
focus on per-thread performance also generally have
much higher clock rates than those that focus on many-
threaded support. This contrast can be seen in the 5.0-GHz
clock rate of the IBM POWER6 and the 3.73-GHz rate of
the Pentium Extreme Edition, compared to the highly
multithreaded UltraSPARC T2, which has a core frequency
of 1.6 GHz.

However, using extra chip space to enhance per-
thread performance results in nonlinear gains, with
experience suggesting that performance only doubles
when complexity is quadrupled.1 The “Performance of
Multithreaded and Multicore CPUs” sidebar provides
performance comparisons for different designs using
standard benchmarks.

An important consideration for per-application per-
formance is that serial programs cannot exploit chip
concurrency. Even in parallel programs, some parts of
the algorithm must run sequentially, and Amdahl’s law
states that the maximum speed of an algorithm is deter-
mined by the percentage of its sequential part. Balancing
core complexity and number of cores, while considering
diminishing returns from higher per-thread performance,
can be formalized as an extension of this law,1,13 and that,
along with other considerations, leads to the following
conclusions:

•	 Larger numbers of simple cores are preferable as long
as the application’s serial part is very small; otherwise,
more complex cores have proven beneficial.13

TILE64 implements a fast nonblocking multilink mesh.
However, the interconnect can become expensive: An
8 × 8 crossbar on-chip can consume as much area as five
cores and as much power as two cores.6

With only private caches on-chip, data exchange be-
tween threads running on different cores historically
necessitated using the off-chip interconnect. Shared
on-chip caches naturally support data exchange among
threads running on different cores. Thus, introducing a
level of shared cache on-chip—commonly L2, or in the
more recent trend, L3—or supporting data-exchange short-
cuts such as cache-to-cache transfer helped reduce off-chip
traffic. However, more on-chip cache levels force the on-
chip interconnect to support even greater complexity and
bandwidth requirements.

As data processing increases with more thread-level
parallelism, demands also typically increase on the off-
chip communication fabric for memory accesses, I/O, or
CPU-to-CPU communication. To address these require-
ments, off-chip communication is trending from bus-based
to packet-based, point-to-point interconnects. AMD first
implemented this concept as HyperTransport, followed by
Intel’s QuickPath Interconnect. The off-chip interconnect
and data-coherency support also impact the scalability of
multiple CPU servers.

Specialized designs
Some multicore processors are tailored to very

specific workloads. The Azul Vega series of compute ap-
pliances uses multicore chips with up to 48 cores, each
including special execution units designed to increase
performance of Java operations. Designers optimized
the Tilera TILE64’s CPU for data processing with 64 low-
powered simple processing cores. Its increased dataflow
capacity makes it well suited for embedded systems,
such as telecommunications routers. Although the IBM
Cell was originally designed for gaming, it also proved
useful for data processing applications in bioinformatics
and astrophysics.

GPUs represent an extreme example of specialized
multicore design. Modern GPUs have 10 or more cores,
each optimized for SIMD data processing done via hun-
dreds or thousands of simplified threads per core. This
makes them suitable for highly numeric processing such
as video rendering, genomics, scientific modeling, or
cryptography.

An important consideration for
per-application performance is that
serial programs cannot exploit chip
concurrency.

29MARCH 2010

•	 Benefits can shift toward more
complex cores due to growing chip-
space demands for the interconnect
among larger numbers of cores and
limited application scalability due
to lack of sufficient parallelism,
synchronization overhead, or load
imbalance.

•	 Applications that can exploit much of
the theoretical peak performance—
such as floating-point-intensive or
highly instruction-parallel numeric
applications—might experience
higher returns from added complex-
ity than typically expected.

However, in addition to per-application
performance, the overall workload must
be considered as well. Per-application
performance is important if the load
consists of only a few applications or if
there are performance-critical applica-
tions. Otherwise, good utilization can
easily be obtained from workloads with
many serial jobs and parallel applications
scaled to only a fraction of the number of
cores.1 This can lead to high throughput,
and—via reduced waiting times—also to
good turnaround times, which are com-
mercial servers’ design goals, such as
database and webservers.

To strike a balance between per-
thread performance and throughput, the
former might be enhanced if more chip
resources can be allocated dynamically,
such as for speculative execution. This is
likely to benefit applications with many
data dependencies and cache misses.

Sun’s preproduction Rock processor
implements this idea by optionally using
the two hardware threads per core to ex-
ecute one application thread.14 A simpler
approach, already applied in some mul-
tithreaded CPUs, allocates partitioned
resources to one thread if run in single-
task mode, as implemented in the Intel
Xeon and Pentium Extreme Edition.3

As another possibility, chip designs
can incorporate some diversity regarding
the cores’ complexity, such as in IBM’s
Cell processor. A few higher-complexity
cores might run sequential parts of de-
manding applications. Though they are
not yet commercially available, research

S ingle-thread performance: Systems based on Intel Core i7 (ASUSTeK i7-965
results of Feb. 2009) processors rank highest in the SPECfp2006 and SPECint2006

benchmarks (http://spec.org), achieving 68 percent higher integer speed and 84
percent higher floating-point speed (supported by its memory controller), compared
to AMD’s Opteron (HP Opteron 2384 results of Dec. 2008). Additionally, Intel’s Core
i7 currently has the best score for SPECfp and SPECint throughput.

Regarding throughput for the numeric SPECfp applications, the Opteron is
only slightly better using highly optimized code than Sun’s UltraSPARC T2 (Fujitsu
T5120 results of Jan. 2009), but has a 26 percent advantage using standard opti-
mizations. However, the UltraSPARC T2 (Sun T5440 results of Oct. 2009)
outperforms the Opteron (HP Opteron 8393 results of May 2009) in the multi-
threaded SPECweb2005 benchmark for webserver throughput and response
times, by serving 36 percent more Web requests over the same time span.

Considering different loads, simulation studies with database applications,1
specifically OLTP and DSS, showed up to 40 percent shorter response times for
the POWER5 compared to the UltraSPARC T1 if serving an unsaturated load. How-
ever, for saturated loads, the UltraSPARC T1 achieved up to 70 percent greater
throughput.

Multiple-thread performance: The benefits from multiple hardware threads
partially depend on whether the application employs multithreading or multi-
processing. Enabling dual-thread hyperthreading on the Intel Xeon processor
resulted in a 33 percent performance gain versus single-thread execution2 for the
OpenMP version of the NAS3 CG benchmark. By comparison, decreases in perfor-
mance were observed for the multiprocess version of the NAS FT benchmark. The
OpenMP version of the FT benchmark suffered 8 percent performance loss versus
single-thread execution,2 whereas the standard multiple-process version of FT
suffered a larger loss at 50 percent, which was mostly attributed to memory con-
tention from intensive interprocess communication.4

Multiple-core performance: The AMD Opteron dual-core processors exam-
ple demonstrated performance gains from multiple cores, showing 37 percent
improved performance utilizing the second core when measured by the standard
multiple-process NAS CG and FT benchmarks.5 The same study also showed that
one dual-core chip performed only 5.8 percent slower in the CG benchmark, and
only 9 percent slower in the FT benchmark, than two chips using a single core,
while being much more power- and cost-efficient. Another study with pure multi-
process applications running on large clusters with up to 4,096 CPUs obtained
benefits of between 20 and 50 percent from using a second core.6

References
 1. N. Hardavellas et al., “Database Servers on Chip Multiprocessors: Limitations

and Opportunities,” Proc. 3rd Biennial Conf. Innovative Data Systems Research
(CIDR 07), 2007, pp. 79-87.

 2. M. Curtis-Maury et al., “Integrating Multiple Forms of Multithreaded Execu-
tion on Multi-SMT Systems: A Study with Scientific Applications,” Proc. Int’l
Conf. Quantitative Evaluation of Systems (QUEST 05), IEEE Press, 2005, pp.
199-208.

 3. D. Bailey et al., The NAS Parallel Benchmarks 2.0, tech. report NAS-95-020,
NASA Ames Research Center, Moffett Field, CA, 1995; www.nas.nasa.gov/
News/Techreports/1995/1995.html.

 4. T. Leng et al., “An Empirical Study of Hyper-Threading in High Performance
Computing Clusters,” Linux HPC Revolution, 2002.

 5. S.R. Alam et al., “Characterization of Scientific Workloads on Systems with
Multi-Core Processors,” Proc. IEEE Int’l Symp. Workload Characterization
(IISWC 06), IEEE Press, 2006, pp. 225-236.

 6. R. Brightwell, K.D. Underwood, and C. Vaughan, “An Evaluation of the Impacts
of Network Bandwidth and Dual-Core Processors on Scalability,” Proc. Int’l
Supercomputing Conf. (ISC 07), 2007, pp. 1-12.

PERFORMANCE OF MULTITHREADED
AND MULTICORE CPUS

COVER FE ATURE

COMPUTER 30

indicates that processors comprising many simplified
cores and a few high-performance cores could provide
the greatest total processing power for a given chip space
and power budget.13,15 However, these CPUs may be more
difficult to design and program.

Cost and power consumption
Performance no longer dominates design objectives:

Chip fabrication costs and fault tolerance, power ef-
ficiency, and heat dissipation have all become critical
considerations.

As cores are simplified, power consumption decreases
linearly,1 which is a major advantage of multicore CPUs.
Increased power efficiency and reduced heat genera-
tion permit the integration of more cores into a single

CPU, with the tradeoff that the power budget for the in-
terconnect increases with the number of cores.6 Power
usage affects the choice between multicore designs and
single-core multithreaded designs: The former are more
power-efficient, but hybrid designs with multiple SMT
cores achieve nearly the same performance per watt as
pure CMP designs.4 Multicore CPUs also provide more
options for power management because CMP cores can
be individually power-tuned by being powered off or run
at a lower frequency when system load is light.1 Power
tuning is critical in mobile computing, but servers can
also benefit greatly.

From an overall system perspective, increasing electric-
ity costs demand more power efficiency from processors
and other system components, with the additional benefit
of reduced cooling costs. Though the CPU accounts for
only 25 to 45 percent of the power a server consumes,16
projected electricity costs for a four-year term approach
the system’s purchase price. In the case of high-perfor-
mance computing machines, building customized cooling
solutions can cost as much as the computer itself.17 Addi-
tionally, the reduced power consumption permits higher
rack density in server rooms.

Optimizing for performance per watt and per dollar
also enables massively scalable architectures. An extreme
example is IBM’s Blue Gene/L or the Blue Gene/P, which
runs at 850 Mhz. Designed for simplicity, low fabrication
cost, high integration, and scalability, the Blue Gene/P
architecture reached 450 teraflops by employing 40,960
CPUs. The fastest, most power-efficient17 architecture—
according to the Top500 (http://top500.org) list of June

2009—per parallel application is IBM’s hybrid QS22/LS21,
used in the Roadrunner supercomputer at Los Alamos
National Labs. This architecture also held the highest rank
in the Green500 (http://green500.org) list of November
2008. These top rankings were made possible by employ-
ing the power- and cost-efficient Cell as the main compute
processor.

THE SOFTWARE CHALLENGE
In the future, exponential growth in CPU performance

will primarily be obtainable from more hardware threads
and cores. However, hardware concurrency can only be
exploited with multiple serial programs or with parallel-
ized applications.18 Because of the limited opportunities for
further per-thread performance enhancements, serial code
should be carefully optimized. Throughput can be im-
proved even on personal computers with serial programs,
if the additional cores run operating system or background
tasks such as security software or virus scans, or are used
to support virtualization. However, these arguments only
hold for small numbers of cores, whereas the trend is
toward many-core CPUs.

Server software may already be multithreaded for
higher throughput by interleaving requests and po-
tentially exploiting multiple CPUs. However, most
commodity software is not prepared for concurrency.18,19
Possibilities for automatically extracting parallelism are
currently limited, and parallelism typically must be ex-
pressed explicitly. Thus, Herb Sutter considers changing
toward parallel programming for commodity machines
to be the next revolution after the introduction of object-
oriented programming.18 Writing correct and efficient
parallel programs is a major challenge that calls for
better tools and more abstract programming models
to make thread programming safer and more conve-
nient. Solutions can draw upon experiences obtained in
high-performance computing, with the greatly enlarged
market providing the stimulus for further improvement
in HPC techniques.20

Widely used in HPC, commodity software developers
could adopt the OpenMP shared-memory programming
model (http://openmp.org/wp). Another promising direction
is transactional memory,21 which borrows the transaction
concept from databases and simplifies data-access coor-
dination through automatic checkpointing and rollback
mechanisms. Sun’s Rock14 is the first CPU that supports
this model in hardware for common cases. Rather than
investing additional time for parallel-software develop-
ment, a more economical approach uses preparallelized
compilers and libraries like the Basic Linear Algebra Sub-
programs (BLAS) library.22

The need for better tools and programming models
also affects HPC. Currently, even if data could be shared,
many parallel programmers exclusively use processes,

In the future, exponential growth
in CPU performance will primarily
be obtainable from more hardware
threads and cores.

31MARCH 2010

grammability of multicore/multithreaded chips, as they
impact the transfer rate of data to and from the cores.
There is currently no technology in sight to drastically in-
crease the pin count. New transport technologies—such
as HyperTransport and QuickPath Interconnect—in-
crease the effective throughput per pin, but cannot keep
pace with exponential core growth. Since more cores
must be kept busy with instructions and data, the future
for many-core designs may be limited. These concerns
can be mitigated by hiding memory-access latencies via
hardware multithreading and increasing the amount of
memory on-chip.

In regard to software limits, relatively few applications
can use very high concurrency for performance increases.
Throughput increases by executing many serial jobs or
several moderately parallel applications can be obtained
on servers, though commodity machines may not benefit.
Otherwise, the success of many-core designs highly de-
pends on proper programming tools, libraries, and models
becoming available.

Currently available CPUs incorporate different choices
in regard to their design and use of chip space. Design
considerations not only include determining the number
of cores and threads but also the core complexity, inter-
connect, cache sizes, and the degree to which components
are shared. Since design choices involve tradeoffs, holistic
design is necessary, driven by target applications and ad-
ditional optimization criteria like power consumption, heat
dissipation, failure tolerance, and cost.6

In regard to the decision between cores and hardware
threads, for commodity computing the sweet spot seems
to lie in hybrid designs. A small number of on-chip threads
can be added for relatively little additional circuitry and
can significantly increase throughput. However, dimin-
ishing returns in performance and increasing circuitry
costs limit the gain from hardware threads.4 Thus, chip
space beyond a few hardware threads is generally better
exploited for more cores, cache, or other components.
Hybrid CPUs have also been shown to be almost as energy
efficient as pure multicore designs.28

T
he balance between cores and hardware
threads shifts for servers, which demand
maximized throughput and benefit more from
larger numbers of hardware threads per core.
Servers generally run a large set of nonnumeric

programs, typically involving more latency that can be
hidden using multithreading. Conversely, numeric appli-
cations rarely benefit from hardware multithreading,
instead performing better on many-core designs.

Considering that each CPU has made different optimiza-
tion choices, the consumer is left to decide which is best
suited to a specific application mix.

despite the performance benefits of employing software
multithreading on shared memory symmetric multipro-
cessing (SMP) nodes. HPC clusters with many-core nodes
may require using hybrid thread/process programming
models for higher efficiency and scalability. Fortunately,
users tend to prefer multithreading and may find the
additional step toward incorporating it easier than
the initial step taken from serial to multiprocessing.23
Moreover, HPC applications will need to exhibit a higher
degree of parallelism than before to exploit hardware
concurrency offered by multicore CPUs. This may only
be possible to a certain extent as application scalability
is limited unless problem sizes are increased.20 Another
limiting factor is that the performance benefit of addi-
tional cores is less than that of additional CPUs, except
when threads share data. Thus, multicore CPUs are not
the new SMP.20

The software challenge also affects commodity com-
pilers that may need to address simplified or specialized
cores like in the Cell or a GPU. Whereas in the past, the
hardware itself to a large extent extracted instruction-level
parallelism, simplified cores now demand more compiler
effort for reordering instructions, inserting static branch
prediction hints, and vectorizing data processing to exploit
SIMD instructions.

Regarding the operating system, traditional CPU
schedulers needed modifications to accommodate the
heterogeneity and performance differences in the hierar-
chy of CPUs, cores, and hardware threads. Additionally,
research has shown that scheduling with the goal of mini-
mizing resource contention is important if the machine is
fully loaded.

The challenge then is to match applications with
complementary resource needs whenever resources are
shared—such as moderately cache-intensive applications if
caches are shared or integer- and floating-point-dominant
applications if FPUs are shared.24,25 Since threads of the
same application are likely homogeneous, better options
for matchmaking may be obtainable with threads of dif-
ferent applications. For HPC clusters, this option has not
been used much to date since contention effects among
programs with large numbers of interdependent processes
are hard to estimate and need to be predicted before jobs
are launched onto the machine. Recent research showed
acceptably low contention effects for most program com-
binations on 64-cluster nodes with potential to obtain high
prediction accuracy.26,27

PROSPECTIVE DIRECTIONS FOR
MULTITHREADED AND MULTICORE CPUS

We expect that chip designs, according to Moore’s
law, will grow to large numbers of cores and hardware
threads. However, off-chip communication and pin limits
put significant constraints on the scalability and pro-

COVER FE ATURE

COMPUTER 32

 20. J. Dongarra et al., “The Impact of Multicore on Computa-
tional Science Software,” CTWatch Quarterly, Feb. 2007,
pp. 3-10.

 21. J. Larus and C. Kozyrakis, “Transactional Memory,” Comm.
ACM, July 2008, pp. 80-88.

 22. L.S. Blackford et al., “An Updated Set of Basic Linear Al-
gebra Subprograms (BLAS),” ACM Trans. Mathematical
Software, vol. 28, no. 2, 2002, pp. 135-151.

 23. A.C. Sodan, “Message Passing vs. Shared-Data Pro-
gramming—Wish vs. Reality,” Proc. 19th Int’l Symp.
High-Performance Computing Systems (HPCS 05), IEEE CS
Press, 2005, pp. 131-139.

 24. A. Snavely and D.M. Tullsen, “Symbiotic Jobscheduling for
a Simultaneous Multithreading Processor,” Proc. 5th Int’l
Conf. Architectural Support for Programming Languages
and Operating Systems (ASPLOS 00), ACM Press, 2000, pp.
234-244.

 25. J. Nakajima and V. Pallipadi, “Enhancements for Hyper-
Threading Technology in the Operating System—Seeking
the Optimal Scheduling,” Proc. Usenix 2nd Workshop on
Industrial Experiences with Systems Software, Usenix, Dec.
2002, pp. 25-38.

 26. A.C. Sodan and L. Lan, “LOMARC—Lookahead Matchmak-
ing for Multi-Resource Coscheduling on Hyperthreaded
CPUs,” IEEE Trans. Parallel and Distributed Computing, Nov.
2006, pp. 1360-1375.

 27. A.C. Sodan et al., Benefits of Semi Time Sharing and Trading
Time vs. Space in Computational Grids, tech. report 08-020,
Univ. of Windsor, Dept. of Computer Science, May 2008.

 28. R. Sasanka et al., “The Energy Efficiency of CMP vs. SMT
for Multimedia Workloads,” Proc. 18th Ann. Int’l Conf. Su-
percomputing (ICS 04), ACM Press, 2004, pp. 196-206.

Angela C. Sodan is an associate professor in the Depart-
ment of Computer Science at the University of Windsor,
Canada. She received a PhD in computer science from the
Technical University of Berlin, Germany. Sodan is a senior
member of the IEEE. Contact her at acsodan@uwindsor.ca;
http://cs.uwindsor.ca/~acsodan.

Jacob Machina is a graduate student in the Department of
Computer Science at the University of Windsor. Contact
him at machina@uwindsor.ca.

Arash Deshmeh is a graduate student in the Department
of Computer Science at the University of Windsor. Contact
him at deshmeh@uwindsor.ca.

Kevin Macnaughton is a graduate student in the Depart-
ment of Computer Science at the University of Windsor and
works as a systems programmer in IT Services at the Uni-
versity of Windsor. Contact him at macnaug@uwindsor.ca.

Bryan Esbaugh is a graduate student in the Department
of Computer Science at the University of Windsor and
works as integration and electronic warfare lead in the
HCM Program at Lockheed Martin Canada. Contact him at
esbaugh@uwindsor.ca.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

Acknowledgments
We thank Tracy Carver of AMD, Jaime Moreno of IBM, Denis
Sheahan of Sun, and Xinmin Tian of Intel for their helpful
feedback and for validation of our CPU/GPU data.

References
 1. S. Borkar, “Thousand Core Chips—A Technology Perspec-

tive,” Proc. 44th Design Automation Conference (DAC 07),
ACM Press, 2007, pp. 746-749.

 2. T. Duff, “A Conversation with Kurt Akeley and Pat Hanra-
than,” ACM Queue, Mar./Apr. 2008, pp. 11-17.

 3. D. Marr et al., “Hyper-Threading Technology Architecture
and Microarchitecture,” Intel Technology J., vol. 6, no. 1,
2002, pp. 4-15.

 4. J. Burns and J.L. Gaudiot, “SMT Layout Overhead and Scal-
ability,” IEEE Trans. Parallel and Distributed Systems, Feb.
2002, pp.142-155.

 5. T. Ungerer, B. Robic, and J. Šilc, “A Survey of Processors
with Explicit Multithreading,” ACM Computing Surveys,
Mar. 2003, pp. 29-63.

 6. R. Kumar, V. Zyuban, and D.M. Tullsen, “Interconnections
in Multicore Architectures: Understanding Mechanisms,
Overheads, and Scaling,” Proc. 32nd Ann. Int’l Symp. Com-
puter Architecture (ISCA 05), ACM Press, 2005, pp. 408-419.

 7. M. Mantor, “Entering the Golden Age of Heteroge-
neous Computing”; http://ati.amd.com/technology/
streamcomputing/IUCAA_Pune_PEEP_2008.pdf.

 8. D. Kanter, “NVIDIA’s GT200: Inside a Parallel Proces-
sor”; www.realworldtech.com/page.cfm?ArticleID=
RWT090808195242.

 9. H.Q. Le et al., “IBM POWER6 Microarchitecture,” IBM J. Re-
search and Development, vol. 51, no. 6, 2007, pp. 639-662.

 10. IBM Blue Gene Team, “Overview of the IBM Blue Gene/P
Project,” IBM J. Research and Development, Jan.-Mar. 2008,
pp. 199-220.

 11. K.J. Nesbit, J. Laudon, and J.E. Smith, “Virtual Private
Caches,” Proc. Int’l Symp. Computer Architecture (ISCA
07), IEEE CS Press, 2007, pp. 57-68.

 12. N. Aggarwal et al., “Isolation in Commodity Multicore Pro-
cessors,” Computer, June 2007, pp. 49-59.

 13. M.D. Hill and M.R. Marty, “Amdahl’s Law in the Multicore
Era,” Computer, July 2008, pp. 33-38.

 14. D. Dice et al., “Early Experiences with a Commercial Hard-
ware Transactional Memory Implementation,” Proc. 14th
Int’l Conf. Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 09), ACM Press,
2009, pp. 157-168.

 15. R. Kumar et al., “Heterogeneous Chip Multiprocessors,”
Computer, Nov. 2005, pp. 32-38.

 16. L.A. Barroso and U. Hoelzle, “The Case for Energy-Propor-
tional Computing,” Computer, Dec. 2007, pp. 33-37.

 17. W.-C. Feng and K.W. Cameron, “The Green500 List: En-
couraging Sustainable Supercomputing,” Computer, Dec.
2007, pp. 50-55.

 18. H. Sutter, “The Free Lunch Is Over—A Fundamental Turn
Toward Concurrency in Software,” Dr. Dobb’s J., Mar. 2005;
www.gotw.ca.

 19. M. Creeger, “Multicore CPUs for the Masses,” ACM Queue,
Sept. 2005, pp. 64-ff.

