COMP206 Class Project Assigned: November 20, 2002
Prof. Montek Singh Due: December 4, 2002

Instructions:

1. You may work on this project either individually, or in teams of two. If you work in a
group, only one written report should be submitted, with names of both members of
the team.

2. This project consists of two parts. Part I deals with branch prediction. Part II deals
with caching.

3. Each part has several questions, some of which are marked “Eztra Credit.”

e If you are working alone on this project, these extra credit questions are completely
optional for you, but you will receive extra credit if you decide to attempt them.!

e However, if you are working in a team, you must attempt the extra credit questions;
i.e., all questions are compulsory.

IExtra credit earned on the project will be kept separate from your grade on this project, but will help
you partly compensate for a not-so-good performance on homework assigments or midterm exam.



1. (PART I) [65 points] This part deals with branch prediction. Consider the following
C program:

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

hrtime_t _time_start, _time_end;
#define tick() (_time_start = gethrvtime())
#define tock() (_time_end = gethrvtime())

#define elapsed_nanoseconds() (_time_end - _time_start)

#tdefine SIZE 10000
#define THRESH 200

int array[SIZE];

int main()

{
int i, j, k, sum;
for (k = 0; k < 1000; k++) {
for (i = 0; i < SIZE; i++) arrayl[i] = k*drand48(); /* Init loop */
tick();
for (sum = i = 0; i < SIZE; i++) { /* Loop-back branch */
j = arrayli];
if (j >= THRESH) sum &= (THRESH-1); /* Conditional branch */
sum += j;
}
tock();
fprintf(stderr, "", sum);
printf ("%5d \t%1ld\n", k, elapsed_nanoseconds());
}
return O;
+



Explanation: The loop marked /* Init loop */ initializes the array with uniformly
distributed random numbers in the range [0, k).

(a)

(b)
(c)

Briefly explain what the program does, and how. (Hint: The program’s output
consists of two columns, the first column gives k, and the second column gives
the runtime of the innermost loop for that value of k.)

Quantify the predictability of the branch marked /* Conditional branch */ as
a function of k£ and THRESH.

Note that there are two branches in the code—the loop-back branch and the
conditional branch-—and that they alternate in time. Characterize the behavior
of an (m,n) correlating branch predictor as a function of m. In particular, does
choosing a non-zero value of m improve prediction accuracy?

Compile the code on a Sun SPARC machine (e.g., capefear.cs.unc.edu, uncle-
leo.cs.unc.edu, etc.). Use gce as your compiler, and generate four different exe-
cutable by selecting the following optimization switches in gcc:

i. gce -O0 proj.c

ii. gee -O1 proj.c

iii. gce -O2 proj.c

iv. gece -O3 proj.c
Which optimizations are selected by each of these command-line options?

Once you have generated the four different executables, run them using the ptime
utility:

$ /usr/proc/bin/ptime a.out > out

Plot the program output, e.g., by importing the data into a spread-sheet. Try
to use a “scatter plot,” i.e., do not connect the points by lines; simply plot the
points so that the plots look clean.

Analyze the four plots generated above, and give brief explanations. Identify all
trends in the plots and try to account for them.

(Extra Credit) Modify the code to add at least one extra conditional branch. Be
sure that the modified code will indeed have the extra branch, in addition to the
branches already there, even after aggressive code optimization by gcc. That is, it
should be non-trivial for the compiler to “optimize away” your new branch. Try
to be creative in how you select the new branch. In particular, the characteristics
of the new branch should be fairly different from those of the branches already



present in the code, and you must be able to indentify these characteristics from
the runtimes generated by the program.

(h) (Extra Credit) Generate assembly code for the original program code using
appropriate switches for gce. Briefly explain the differences in the runtime plots
obtained above using knowledge of the assembly code generated. You may refer
to the SPARC 9 architecture manual at http://www.sparc.com /resource.htm for
information on the instruction set.

2. (PART II) [35 points] This part deals with reducing cache misses using blocking.

(a) Refer to pages 433-434 of Hennessy/Patterson 3rd ed. The textbook gives an
example of how the matrix multiplication operation can be made to run faster
by using the technique of blocking, which exploits temporal locality. Design an
experiment with the same, or similar, program fragments and quantify the benefit
of this optimization.

(b) Generate plots of runtimes for different blocking factors.
(c) Analyze the plots generated and briefly discuss what you observe.

(d) (Extra Credit) What can you conclude about the size of the cache from your
experiments?



