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Exact Two-Level Minimization of Hazard-Free
Logic with Multiple-Input Changes

Steven M. Nowick and David L. Dill, Member, IEEE

Abstract—This paper describes a new method for exact
hazard-free logic minimization of Boolean functions. Given an
incompletely-specified Boolean function, the method produces
a minimum-cost sum-of-products implementation which is
hazard-free for a given set of multiple-input changes, if such
a solution exists. The method is a constrained version of the
Quine-McCluskey algorithm. It has been automated and applied
to a number of examples. Results are compared with results
of a comparable non-hazard-free method (espresso-exact [33]).
Overhead due to hazard elimination is shown te be negligible.

I. INTRODUCTION

HERE HAS BEEN renewed interest in asynchronous

design because of the potential benefits of improved
system performance, modular design, and avoidance of clock
skew [28], [15], [22], [38], [16], [23], [10], (8], [3], [24], [37],
[2]. However, a major obstacle to correct asynchronous design
is the problem of hazards, or undesired glitches in a circuit
{35]. The elimination of all hazards from asynchronous designs
is an important and difficult problem. Many existing design
methods do not guarantee freedom from all hazards; other
methods are limited by harsh restrictions on input behavior
(single-input changes only) or implementation style (the use
of large, slow inertial delays) to insure correct operation.

The focus in this paper is on a particular class of hazards:
hazards in combinational logic. The design of hazard-free
combinational logic is critical to the correctness of most asyn-
chronous designs. Our goal is the synthesis of combinational
logic which avoids all combinational hazards for a given set
of multiple-input changes.

In the following presentation, our focus is on combinational
circuits which function correctly assuming arbitrary gate and
wire delays. We do not consider circuits which depend on
bounded delay assumptions for correct operation or which
make use of added delay elements to fix or filter out glitches.

The contribution of this paper is a solution to an open
problem in logic synthesis: Given an incompletely-specified
Boolean function and a set of multiple-input changes, pro-
duce an exactly minimized two-level implementation which is
hazard-free for every specified multiple-input change, if such
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a solution exists. The method is a constrained version of the
Quine-McCluskey algorithm [19]. It has been automated and
applied to a number of examples. Results are compared with
results of a comparable non-hazard-free method (espresso-
exact [33]). Overhead due to hazard elimination is shown to
be negligible.

The method solves a general combinational synthesis prob-
lem which arises in many asynchronous design methods. In-
deed, it has already been incorporated into synthesis programs
for three distinct asynchronous design styles: locally-clocked
[25], [29], {28], [31], 3D [38], and UCLOCK [26] methods.

A. Previous Work

Much of the original work on combinational hazards was
limited to the case of single-input change (SIC) transitions.
Methods for detecting and eliminating combinational haz-
ards for single-input changes were developed by Huffman,
McCluskey, and Unger and are described in [35].

Eichelberger [11] extended this work to a particular class
of multiple-input change (MIC) transitions: static transitions.
There are two types of static hazards: function and logic
hazards (see Section III below for definitions). Static func-
tion hazards cannot be removed; static logic hazards can be
eliminated using a sum-of-products implementation containing
every prime implicant. Other methods have been developed for
selective static hazard elimination.

Combinational function and logic hazards for MIC dynamic
transitions were identified in [35], [7], and [4]. Unger [35],
Bredeson and Hulina {7], [6], Beister {4], and Frackowiak [12]
presented conditions to avoid dynamic logic hazards in two-
level and multilevel circuits during multiple-input changes.
They also indicate that these conditions cannot always be
satisfied.

No general two-level hazard-free logic minimization method
has been proposed for incompletely-specified functions al-
lowing multiple-input changes. McCluskey [18] presented an
exact hazard-free two-level minimization algorithm restricted
to SIC transitions. Several hazard-free minimization methods
have been proposed allowing MIC transitions, but each has
limitations.

Bredeson and Hulina [7] introduced an algorithm which
produces hazard-free sum-of-products implementations for
multiple-input changes. However, the algorithm uses sequen-
tial storage elements to implement combinational functions,
where storage elements must satisfy special timing constraints.

Bredeson [6] presented an algorithm for hazard-free multi-
level implementation of combinational functions with MIC
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transitions, using no storage elements. However, the algorithm
does not demonstrate optimality, assumes a fully-specified
function, and attempts to eliminate hazards even for unspeci-
fied transitions; in practice, results may be far from optimal.
The algorithm also cannot generate certain minimal two-level
implementations (if they include nonprime implicants; to be
discussed later).

Closer to our work, Frackowiak [12] presented two ex-
act hazard-free minimization algorithms for sum-of-products
implementations allowing multiple-input changes, assuming a
fully-specified function. Both algorithms eliminate dynamic
hazards for specified transitions. However, the first ignores
static hazards; the second attempts to eliminate static hazards
even for unspecified transitions. Therefore, results may be
either hazardous or suboptimal.

B. Organization of the Paper

The paper is organized as follows. Section II gives basic
definitions. Section III gives background on circuit and delay
models, as well as hazards. Section IV presents conditions
to eliminate hazards for a given MIC transition. Section V
presents conditions to eliminate hazards for a set of MIC
transitions. Section VI describes a new exact hazard-free min-
imization algorithm, and Section VII illustrates the algorithm
on an example. Section VIII discusses the existence of a
hazard-free solution, and Section IX compares the algorithm
with two algorithms of Frackowiak. Section X describes a
program implementation, Section XI presents results, and
Section XII describes conclusions.

II. DEFINITIONS

The following definitions are taken from [32] and [33]
with minor modifications (see also [5] and [19]). Only single-
output fanctions having binary input and output variables are
considered.

Define sets P = {0,1} and B = {0.1,*}. A Boolean
function, f, of m variables, z1,22, -+, Zn, is defined as a
mapping: f: P* — B. The value “*” in B represents a
don’t-care value of the function.

Each element in the domain P™ of function f is called a
minterm of the function. A minterm is also called an input
state of the function.

The ON-set of a function is the set of minterms for which
the function has value 1. The OFF-set is the set of minterms
for which the function has value 0. The DC-set (don’t-care set)
is the set of minterms for which the function has value ‘“*”.

A literal is a Boolean function of n variables,
Ty,To, - +,Tn, defined as follows. Each variable, z;,
has three corresponding literals: x;,%; and x]. Literal x; =1
for a minterm if and only if variable z; in the minterm has
value 1; literal ¥ = 1 if and only if z; has value 0; and
x} = 1 if z; has value O or 1 (don’t-care literal).

A product term is a Boolean product (AND) of literals. If a
product term evaluates to 1 for a given minterm, the product
term is said to contain the minterm.

A cube is a set of minterms which can be described by a
product term.

A sum-of-products represents a set of products; it is denoted
by Boolean sum of product terms. A sum-of-products is said
to contain a minterm if some product in the set contains the
minterm.

A product Y contains a product X (X CY') if the cube for
X is a subset of the cube for Y. The intersection of products
X and Y is the set of minterms contained in the intersection
of the corresponding cubes.

An implicant of a function is a product term which contains
no minterm in the function’s OFF-set. A prime implicant of a
function is an implicant contained in no other implicant of the
function. An essential prime implicant is a prime implicant
containing an ON-set minterm contained in no other prime
implicant.

A cover of a Boolean function is a sum-of-products which
contains all of the minterms of the ON-set of the function
and none of the minterms of the OFF-set. A cover may also
include minterms from' DC-set. A standard cost function for
covers is assumed where each implicant has the same cost.’

The two-level logic minimization problem is to find a
minimum-cost cover of a function.

III. BACKGROUND AND PROBLEM STATEMENT

A. Circuit and Delay Model

This paper considers combinational circuits which have
arbitrary finite gate and wire delays [21], [18]. In this model,
each wire is described as a connection with an attached delay
element, modeling the total wire delay. Each gate is described
by an instantaneous Boolean operator with a delay element
attached to its output, modeling the total gate delay. These
delays may have arbitrary finite values. Since delay elements
are attached only to wires, this model has been called the
unbounded wire delay model.

A pure delay model is assumed as well [4]. A pure delay can
delay the propagation of a waveform, but does not otherwise
alter it. That is, unlike the inertial delay model [35], this model
conservatively assumes that glitches are not filtered out by
delays on gates and wires.

A delay assignment is an assignment of fixed, finite delay
values to every gate and wire in a circuit.

B. Multiple-Input Changes

A transition cube [4], [6] is a cube with a start point and
an end point. Given input states A and B, the transition cube
[A, B] from A to B has start point A and end point B and
contains all minterms that can be reached during a transition
from A to B. More formally, if A and B are described by
products, with ith literals A; and B;, respectively, then the
ith literal for the product-of [A, B] is the Boolean function
A; + B;. (Note that the sum of complementary literals x and
% is the don’t-care literal, x*.)

The open transition cube [A, B) from A to B is defined as:
[4,B] — {B}.

!'The cost function can be generalized for single-output functions to include
literal-count as a secondary cost (see discussion in [32], p. 14).
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A multiple-input change, or input transition, from input state
A to B is described by the transition cube [A4, B]. There are
three properties which characterize a multiple-input change.
First, inputs change concurrently, in any order and at any time.
(Equivalently, a simultaneous input change can be assumed,
since the inputs may be skewed arbitrarily by wire delays.)
Second, inputs change monotonically: each input changes
value at most once. And, finally, the input change occurs in
fundamental mode: once a multiple-input change occurs, no
further input changes may occur until the circuit has stabilized.

An input transition occurs during a transition interval, t1 <
t < tp, where inputs change at time ¢; and the circuit returns
to a steady state at time tp [4].

An input transition from input state A to B for a Boolean
function f is a static transition if f(A) = f(B); itis a dynamic
transition if f(A) # f(B). In this paper, only static and
dynamic transitions are considered where f is fully defined;
that is, for every X € [A, B}, f(X) € {0,1}.

C. Function Hazards

A function f which does not change monotonically during
an input transition is said to have a function hazard in the
transition. The following definitions are from Bredeson and
Hulina [7] (see also [11], [6], [4], [20]).

Definition: A Boolean function f contains a static func-
tion hazard for the input transition from A to C if and only
if:

) f(A) = f(C); and

2) there exists some input state B € [A,C] such that

f(A) # £(B).

Definition: A Boolean function f contains a dynamic
Sunction hazard for the input transition from A to D if and
only if:

D f(A) # f(D).

2) Thére exist a pair of input states B and C such that

a) B € [A,D] and C € [B, D}; and
b) f(B) = f(D) and f(4) = f(CO).

If a transition has a function hazard, no implementation
of the function is guaranteed to avoid glitches during the
transition, assuming arbitrary gate and wire delays [11], [7].
Therefore, we consider only transitions which are free of
function hazards (cf. [11], [6], and [4]).

Example: The function f of Fig. 1 has a static function
hazard for the multiple-input change from i to k, since f(i) =
f(k) = 1,f(j) = 0, and § € [i,k]. The function has a
dynamic function hazard for the transition from g to j, since
Fl9) =1,£() = 0,h € [g,5],i € [h,3], f(g) = f() = 1 and
f(h) = f(3) = 0. The input transition from k to m is free of
static function hazards, and the input transition from n to p is
free of dynamic function hazards. O

D. Logic Hazards

If f is free of function hazards for a transition from input
A to B, it may still have hazards due to possible delays in
the actual logic realization [35], [7], {4]. In the following
discussion, a signal is called “monotonic” during a transition
interval if it changes at most once.

ab
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Fig. 1. Boolean function with function hazards.

Definition: A combinational circuit for a function f con-
tains a static logic hazard for the input transition from minterm
A to minterm B if and only if:

1) f is function-hazard-free for the input transition.

2) f(4) = f(B).

3) For some delay assignment, the circuit’s output is not

monotonic during the transition interval.

Definition: A combinational circuit for a function f con-
tains a dynamic logic hazard for the input transition from
minterm A to minterm B if and only if:

1) f is function-hazard-free for the input transition.

2) f(A) # f(B).

3) For some delay assignment, the circuit’s output is not

monotonic during the transition interval.

E. Two-Level Hazard-Free Logic Minimization Problem

The two-level hazard-free logic minimization problem can
now be stated as follows:

Given:

A Boolean function f, and a set, T, of specified function-
hazard-free (static and dynamic) input transitions of f.

Find:

A minimum-cost cover of f whose AND-OR implementa-
tion is free of logic hazards for every input transition ¢ € 7.

IV. CONDITIONS FOR A HAZARD-FREE TRANSITION

This section presents conditions to insure that a sum-
of-products implementation is hazard-free for a given input
transition. The next section will consider the problem of
eliminating hazards for a set of input transitions.

Assume that [A, B] is-the transition cube corresponding to
a function-hazard-free transition from input state A to B for
a combinational function f. In the following discussion, it is
assumed that C is any cover of f implemented in AND-OR
logic. (It is further assumed that no product contains a pair
of complementary literals, otherwise additional hazards are
possible [35].) )

The following lemmas present necessary and sufficient
conditions to insure that the AND-OR implementation of f
has no logic hazards for the given specified transition:

Lemma 1: If f has a 0 — 0 transition in cube [A, B],
then the implementation is free of logic hazards for the input
change from A to B.
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Fig. 2. Hazardous and hazard-free covers for a 1 — 1 input transition.

Lemma 2: If f has a 1 — 1 transition in cube [A, B],
then the implementation is free of logic hazards for the input
change from A to B if and only if {A, B} is contained in some
cube of cover C.

The conditions for the 0 — 1 and 1 — O cases are
symmetric. Without loss of generality, we can consider only
a dynamic 1 — O transition, where f(A) = 1 and f(B) = 0.
(A 0 — 1 transition from A to B has the same hazards as a
1 — O transition from B to A.)

Lemma 3: If f has a 1 — O transition in cube {A, B], then
the imple€mentation is free of logic hazards for the input change
from A to B if and only if every cube ¢ € C intersecting
[A, B] also contains A.

Proof: These results follow immediately from pp.
128-129 in [35] and Theorem 3.4 in [12]. See also, Theorem
4 in [7], Lemmas 2 and 3 in [6], Theorem 4.5 in [35], and
4. a

Lemma 2 requires that in a 1 — 1 transition, some product
holds its value at 1 throughout the transition. Lemma 3 insures
that no product will glitch in the middle of a 1 — 0 transition:
all products change value monotonically during the transition.
In each case, the implementation will be free of hazards for
the given transition.

An immediate consequence of Lemma 3 is that, if a dy-
namic transition is free of logic hazards, then every static
subtransition will be free of logic hazards as well:

Corollary 1: If f has a 1 — O transition from input state
A to B which is hazard-free in the implementation, then, for
every input state X € {A, B) where f(X) = 1, the transition
subcube [A, X] is contained in some cube of cover C.

Proof: Since C'is a cover of function f, there exists some
cube ¢ € C which contains X. Since f is hazard-free in the
transition from A to B, then, by Lemma 3, cube ¢ contains A
as well; therefore ¢ contains [A, X]. a

(@) (®)

Fig. 3. Hazardous and hazard-free covers for a 1 — 0 input transition.

Corollary 2: If f has a 1 — O transition from input state
A to B which is hazard-free in the implementation then for
every input state X € [A, B), where f(X) = 1, the static
1 — 1 transition from input state A to X is free of logic
hazards.

Proof: Immediate from Lemma 2 and Corollary 1. O

Lemma 2 and Corollary 1 define the covering requirement
for a hazard-free transition. The cube {4, B] in Lemma 2
and the maximal subcubes [A, X] in Corollary 1 are called
required cubes. These cubes define the ON-set of the function
in a transition. Each required cube must be contained in some
cube of cover C to insure a hazard-free implementation.

Lemma 3 constrains the implicants which may be included
in a cover C. Each 1 — 0 transition cube is called a privileged
cube, since no cube c¢ in the cover may intersect it unless ¢
contains its start point. If a cube intersects a privileged cube
but does not contain its start point, it illegally intersects the
privileged cube and may not be included in the cover.

Hazard Example

Figs. 2 and 3 illustrate the conditions of Lemmas 2 and
3 and the two Corollaries. Each figure shows a multiple-input
change where inputs a and b change from 0 to 1. The transition
is described by a state graph, which represents a portion of
a Karnaugh map for the given transition. A state graph can
be used to describe transitions within a Karnaugh map. For
example, if the top vertex in the state graph of Fig. 2(a)
corresponds to abcd = 0000 in the Karnaugh map of Fig. 1,
then the left, right and bottom vertices of the state graph would
correspond to abed = 1000,0100, and 1100, respectively, in
the Karnaugh map. In this case, the state graph indicates an
input transition from abed = 0000 to 1100.
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Fig. 2 shows a 1 — 1 transition and two covers. The
cover in Fig. 2(a) is hazardous. The cubes in the cover,
M and N, correspond to AND-gates in the final AND-OR
implementation. Initially, the M AND-gate is high and the
N AND-gate is low. During the transition, the M AND-gate
goes low and the N AND-gate goes high. For certain delays,
however, the M AND-gate may go low before the N AND-
gate goes high, and the circuit output will glitch (see timing
diagram).

The cover in Fig. 2(b) is hazard-free. As required by Lemma
2, the cover contains a product, P, which completely contains
the transition cube. This product corresponds to an AND-gate
in the implementation which holds its value at I throughout
the transition. Therefore, the circuit output is glitch-free (see
timing diagram).

Fig. 3 shows a 1 — 0 transition and two covers. The cover
in Fig. 3(a) is hazardous: cubes R and S both illegally intersect
the transition. First, consider the subtransition where only
input @ changes; the output must remain at 1. Therefore, this
subtransition is a 1 — 1 transition. However, no single product
in the cover contains this subtransition cube, so Corollary 1 is
violated and the subtransition has a static hazard.

Alternatively, consider the case where input b changes first.
This subtransition is free of static hazards, since product @
covers the subtransition. However, a problem remains for the
entire dynamic transition: product R intersects the transition
cube illegally, and so Lemma 3 is violated. This stray product
corresponds to an AND-gate in the implementation. Initially,
this AND-gate is low; it may then go high and then eventually
it will go low. During a 1 — 0 transition, such a glitch on an
AND-gate can propagate as a glitch to the AND-OR circuit
output, so the transition has a dynamic hazard (see timing
diagram).

The cover in Fig. 3(b) is hazard-free. Each 1 — 1 subtran-
sition is completely contained in a product of the cover and
there are no illegal intersections (see timing diagram).

V. HAZARD-FREE COVERS

The previous section described conditions to eliminate haz-
ards in a given input transition. This section describes condi-
tions to eliminate hazards for a set of input transitions.

A hazard-free cover of function f is a cover of f whose
AND-OR implementation is hazard-free for a given set of
specified input transitions. It is assumed below that this set
of input transitions completely defines the function: the circuit
must be hazard-free for each specified transition, and for all
other input states the function is undefined (i.e., don’t-care
value).

The following new theorem describes all hazard-free covers
for function f for a set of multiple-input transitions.

Theorem 1: Hazard-Free Covering Theorem: A sum-
of-products C is a hazard-free cover for function f for a set
of specified input transitions if and only if:

a) No cube of C intersects the OFF-set of f;

b) Each required cube of f is contained in some cube of

C; and
¢) No cube of C intersects any privileged cube illegally.

Proof: The result follows immediately from Lemmas
1-3, Corollary 1, and the definitions of hazard-free cover,
required cubes and privileged cubes. Conditions a)—c) insure
that the function is covered correctly and hazard-free covering
requirements are met for each specified input transition. [

Conditions a) and c) in Theorem 1 determine the implicants
which may appear in a hazard-free cover of a Boolean function
f. Condition b) determines the covering requirement for
these implicants in a hazard-free cover. Therefore, Theorem 1
precisely characterizes the unate covering problem for hazard-
free two-level logic.

In general, the covering conditions of Theorem 1 may not
be satisfiable, given an arbitrary Boolean function and set of
transitions (cf. [35], [4], [12]). This case occurs if conditions
b) and c) cannot be satisfied simultaneously. It is discussed
further in Section VIIL

VI. EXACT HAZARD-FREE LOGIC MINIMIZATION

Many exact logic minimization algorithms are based
on the Quine-McCluskey algorithm [32], {33], [19]. The
Quine-McCluskey algorithm solves the two-level logic
minimization problem. It has three steps:

1) Generate the prime implicants of a function;

2) Construct a prime implicant table; and

3) Generate a minimum cover of this table.

This section describes a two-level hazard-free logic min-
imization algorithm based on a constrained version of the
Quine-McCluskey algorithm. Only certain implicants may be
included in a hazard-free cover, and covering requirements
are more restrictive.

We base our approach on the Quine—-McCluskey algo-
rithm to demonstrate a simple solution to the hazard-free
minimization problem. There now exist much more efficient
algorithms than Quine-McCluskey [32], [33]; the hazard-
elimination techniques described here can be applied to these
methods as well. In the presentation below, we consider only
binary-valued single-output functions. The algorithm can be
extended to multivalued and multioutput functions.

Theorem 1a) and c) define which implicants may appear in a
hazard-free cover of a Boolean function f. A dynamic-hazard-
free implicant, or dhf-implicant, is an implicant which does not
intersect any privileged cube of f illegally (cf. DHA-Implikant
[12]). Only dhf-implicants may appear in a hazard-free
cover. A dhf-prime implicant is a dhf-implicant contained in
no other dhf-implicant. An essential dhf-prime implicant is a
dhf-prime implicant which contains a required cube contained
in no other dhf-prime implicant.

Interestingly, a prime implicant is not dhf-prime if it inter-
sects a privileged cube illegally. A dhf-prime implicant may
be a proper subcube of a prime implicant for the same reason.

Theorem 1b) defines the covering requirement for a hazard-
free cover of f: every required cube of / must be covered,
that is, contained in some cube of the cover.

The two-level hazard-free logic minimization problem,
therefore, is to find a minimum-cost cover of a function us-
ing only dhf-prime implicants where every required cube is
covered.
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TABLE 1
STEP 0: ALGORITHM MAKE-SETS

Algorithm Make-Sets (set T of input transitions):
reg-set = {}; off-set = {}; priv-set = {};
for each transition ¢t of T
A = svart point of t; B = end point of t;
t-cube = [A,B];

case (t)

0 — 0 transition:
add t-cube to off-set;

1 — 1 transition:
add t-cube to reg-set;

1 — 0 (or 0 — 1) transition:
add each maximal ON-set subcube to req-set;
add each maximal OFF-set subcube to off-set;
add t-cube and its start-point A to priv-set;

return (req-set, off-set, priv-set).

Our hazard-free minimization algorithm has the following
steps:

1) Generate the dhf-prime implicants of a function;

2) Construct a dhf-prime implicant table; and

3) Generate a minimum cover of this table.

Step 0: Make Sets: Before generating dhf-prime impli-
cants, three sets must be constructed: the reg-set, the off-set,
and the priv-set. The req-set contains the required cubes for
function f; it also defines the ON-set of the function. The off-
set contains cubes precisely covering the OFF-set minterms.
The priv-set is the set of privileged cubes along with their
start points.

These sets are generated by a simple iteration through every
specified transition of the given function, using Algorithm
Make-Sets (see Table I). If the function has a 0 — 0 change
for a transition, the corresponding transition cube is added to
the off-set. If the function has a 1 — 1 change, the transition
cube is added to the reg-set. If the function has a 1 — 0
transition (or symmetrically, a 0 — 1 transition), then the
maximal ON-set cubes are added to req-set and the maximal
OFF-set cubes are added to off-set. In addition, the transition
cube and its start point are added to the priv-set, since this
transition cube cannot be illegally intersected. (A 0 — 1
transition from input state x to y is considered tobe a 1 — 0
transition from input state y to z, so it has “start point” y.)

Step 1. Generate DHF-Prime Implicants: The dhf-
prime implicants for function f are generated in two steps.
The first step generates the prime implicants of f from the req-
set (which defines the on-set) and the off-set, using existing
techniques {32], [33]. The second step transforms these prime
implicants into dhf-prime implicants using algorithm PI-to-
DHF-PIL. This algorithm is a simpler version of Algorithm
B in [12]. The algorithm iteratively refines the set of prime
implicants into the set of dhf-prime implicants. In practice,
many prime implicants are also dhf-prime implicants (see
Section XI). Also, there are fast existing algorithms to generate
the prime implicants of a function [33], [17].

Pseudo-code for the algorithm is given in Table 1I. Variable
tmp-set is initialized to the set of prime implicants. The
algorithm iteratively removes each implicant, p, from tmp-set.
If p has no illegal intersections with any cube of priv-set, it is
a dhf-implicant; it is placed in dhf-pi-set.

TABLE 11
StEP 1: ALGORITHM PI-TO-DHF-PI
Algorithm PI-to-DHF-PI (pi-set, priv-set)
tmp-set = pi-set; dhf-pi-set = {};

while (not empty (tmp-set))
remove a cube p from tmp-set;
if (p has no illegal intersections with any cube of priv-set)
add p to dhf-pi-set;
else
/* p illegally intersects a priv-set cube; */
/* reduce p to avoid intersection */
¢ = any cube of priv-set which p intersects illegally;
for (each input variable v which appears as a don’t-care
literal in p and as literal v or v’ in ¢)
p-red = the maximal subcube of p where v is set
to the complement of its value in c;
add p-red to tmp-set;
delete all cubes in dhf-pi-set contained in other cubes;
return (dhf-pi-set).

If p illegally intersects some privileged cube c in priv-set,
then cube p is split, or reduced, in every possible way by a
single variable to avoid intersecting c. The reduced cubes are
returned to tmp-set. In general, these reduced cubes may have
new illegal intersections: a reduced cube, p-red, may illegally
intersect a priv-set cube, c, even if p legally intersects c.

The algorithm terminates when tmp-set is empty. The re-
sulting cubes in dhf-pi-set are all dhf-implicants. In addition,
it is easily proved that the algorithm generates all dhf-prime
implicants. Subcubes of other cubes in dhf-pi-set are removed
by single-cube containment; the result is the set of dhf-prime
implicants.

As an optimization, implicants can be eliminated that con-
tain no required cubes. If a dhf-implicant contains no required
cubes, it can always be removed from a cover to yield a lower-
cost solution. (Note that a dhf-prime implicant may intersect
the ON-set and yet contain no required cube; see Experimental
Results, Section XI.)

Step 2. Generate DHF-Prime Implicant Table: A dhf-
prime implicant table is constructed for the given function.
The rows of the table are labeled with the dhf-prime implicants
used to cover the columns. The columns are labeled with the
required cubes which must be covered. The table sets up the
two-level hazard-free logic minimization problem as a unate
convering problem.

Step 3. Generate a Minimum Cover: The dhf-prime
implicant table is solved in three steps, using simple standard
techniques. More sophisticated techniques can also be applied
(32], [33], [5], [19].

First, essential dhf-prime implicants are extracted using
standard techniques.

Second, the flow table is iteratively reduced. Rows and
columns of the table may be removed using row-dominance
and column-dominance operations, respectively. These op-
erations may lead to further opportunities for (secondary)
essential dhf-prime implicant removal. The operations are
iterated until there is no further change.

Finally, if the table is still non-empty, a covering problem
remains (cyclic covering problem). 1t is solved using an ex-
haustive algorithm called Petrick’s method [19] (mincov [33]
can be used as well). Each column lists implicants which cover
a required cube. The column is translated into a Boolean sum
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(c) (d)

Fig. 4. Hazard-free minimization example: Step 0. (a) Karnaugh map with
input transitions. (b) req-set cubes. (c) off-set cubes. (d) priv-set cubes.

of rows; the covering problem for the table can be stated as
a Boolean product of these sums. This product is multiplied
out to generate all possible solutions. A minimal solution is
then selected.

VII. HAZARD-FREE MINIMIZATION EXAMPLE

The Karnaugh map from Fig. 1 is reproduced in Fig. 4 (the
function is slightly modified from Example 3.4 of [12]). Set
T = {t1,ta.t3,t4} contains four specified function-hazard-
free input transitions. Each transition f; is described by a
transition cube C; with start point mmn;:

ti: myp=ab'dd Cy =ad

ty: my = ab cd Cy =ab'c
ty: my = a'bd’ Cy=a'd
ty: my = a'bed Cy=c

4 4 4

The input trapsitions are shown in Fig. 4(a). The start point
of each transition is described by a dot, and the transition cube
is described by a dotted circle.

Step 0. Make Sets: The reg-set, off-set and priv-set
are generated using Algorithm Make-Sets, as illustrated in
Fig. 4(b).

ti: reg-cube-1 = ac’ ty: req-cube-4 = a'c
to:  off-cube-1 = ab'c

ts:  reg-cube-2 = o'c'd

req-cube-5 = bed
off -cube-3 = acd’
reg-cube-3 = a’be’ off -cube-4 = ab'c
off -cube-2 = a'b'd'd

. 17
priv-cube-1 = a'c

priv-cube-2 = ¢
priv-start-2 = a’bed

priv-start-1 = a’bc’d’

(@) (b)

2

cube-{

(d)

(e) (f)

Fig. 5. Hazard-free minimization example: Step 1. (a) Prime implicants with
no illegal intersections. (b) Prime implicant p6 has illegal intersection. (¢) First
reduction of p6 (with new illegal intersection). (d) Final reduction of p6 (no
illegal intersections). (e) Prime implicant p7 has illegal intersection. (f) Final
reduction of p7 (no illegal intersections).

The final three sets produced by the algorithm are:
req-set = {ac’,a’d'd',a’bc’,a’ ¢, bed},
off-set = {ab'c,d't' ' d,acd’, ab' ¢},

priv-set = {{d'bc’d’,a’'), (a'bed, ¢ }.

Step 1. Generate DHF-Prime Implicants: First, prime
implicants are generated from the req-set and off-set:

p=cd ps =d'c
po =a'b pe = bd
py = b pr =a'd
ps =ac

Prime implicants are transformed into dhf-prime implicants
using Algorithm Pl-to-DHF-PI. The steps of the algorithm
are illustrated in Fig. 5. Prime implicants p; through p; do not
illegally intersect priv-set cubes priv-cube-1 or priv-cube-2. As
shown in Fig. 5(a). prime implicant p; intersects priv-cube-1
and contains its start point. Prime implicants p, intersects both
priv-cube-1 and priv-cube-2 and contains both start points.
Prime implicants p4 intersects neither priv-set cube. Similarly,
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TABLE III
HazarRD-FREE MINIMIZATION ExampLE: Step 2
required cubes

dhf-prime implicants [ ac’ | a’c’d’ | @'bc’ | a’c | bed
p=c'd X

pa=a’b X
pa=be’ X
pa=ac’ X

ps=d'c X
pe1=bed X

30

I
BN

&

%

(a) (b)

Fig. 6. Hazard-free minimization example: Step 3. (a) Minimum hazard-free
cover (5 products). (b} Minimum non-hazard-free cover (4 products).

ps and ps have no illegal intersections. These prime implicants
are therefore dhf-prime implicants.

However, prime implicant pg illegally intersects priv-cube-
1, since it intersects the cube (bd N a’'¢’ # ¢) but does
not contain its start point (a’bc’d’” & bd; see Fig. 5(b)). The
algorithm splits pg into two subcubes: pg; = bed and pgr =
abd (see Fig. 5(c)). Cube ps; has no iilegal intersections.
However, pgo illegally intersects priv-cube-2 (even though pg
legally intersects priv-cube-2; see Fig. 5(b)). Cube pgs is again
reduced to pga; = abc’'d, which has no illegal intersections
(see Fig. 5(d)).

Similarly, prime implicant p; illegally intersects priv-cube-
2, since a'd'Ne # ¢ and a’bed € a’d’ (see Fig. 5(e)). Cube pr7
is reduced to p7; = a’c’d’, which has no illegal intersections
(Fig. 5(f)).

The resulting set of dhf-implicants is:

{p1.p2.p3,P1. D5, P61, P61, P71 }-

After deleting cubes contained in other cubes, the resulting
set of dhf-prime implicants is:

{p1,p2,p3, P4, P35, P61}

Step 2. Generate DHF-Prime Implicant Table: The
dhf-prime implicant table for the example is shown in
Table IIl. The columns correspond to the required cubes
generated in Step O; the rows correspond to the dhf-prime
implicants generated in Step 1.

Step 3. Generate a Minimum Cover: A minimum cover
is generated for the dhf-prime implicant table. The essential
dhf-prime implicants are: py, ps,ps. and pg. Either ps or p3
can be selected to cover the remaining uncovered required
cube, a’bc’. The function therefore has two minimum hazard-
free covers, each containing 5 products: {p1.pa4,Ps. P61, P2}
and {p1,ps.ps,Pe1.P3}.

The latter cover is shown in Fig. 6(a). This cover is irre-
dundant but non-prime, since it contains dhf-prime implicant
pe: which is a proper subcube of prime implicant pg.

(3

prive
cabe~ |

01

1] s

priv—
cubr~2
10

(©) )

Fig. 7. Boolean function with no hazard-free cover. (a) Karnaugh map with
new input transition, t5 . (b) To avoid hazards, req-cube-6 must be covered. (c)
and (d) Every implicant which covers reg-cube-6 has an illegal intersection.

A minimal non-hazard-free cover is shown in Fig. 6(b).
The cover contains fewer products than the hazard-free cover,
but has a logic hazard: prime implicant pg illegally intersects
priv-cube-1. As a result. pg causes a dynamic hazard in the
corresponding input transition, ¢3.

VIII. EXISTENCE OF A SOLUTION

For certain Boolean functions and sets of transitions, the
hazard-free covering problem has no solution [35], [4]. In
this case, the dhf-prime implicant table will include at least
one required cube which is not covered by any dhf-prime
implicant.

Example: Consider the function used in the previous
section, but augment its set T = {t1,10,t3,t4} of specified
input transitions with a new transition:

t5: ms = abc'd Cy = abd.

The input transitions are indicated in the Karnaugh map of
Fig. 7(a). The req-set now has an additional required cube:
req-cube-6 = abd. The off-set and priv-set are unchanged
from the example of Section VII, and the function has the
same dhf-prime implicants as well.

Fig. 7(b)—(d) illustrates the covering problem. To insure no
static hazard for transition 5, the required cube reg-cube-6
must be contained in some product. However, every product
which contains req-cube-6 also illegally intersects a privileged
cube, priv-cube-1 or priv-cube-2. That is, any attempt to
eliminate the static hazard in transition 5 will produce a
dynamic hazard in one of the transitions, ¢3 or t;.

Table IV shows the resulting dhf-prime implicant table. This
table has no solution: no dhf-prime implicant contains required
cube abd.
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TABLE IV
DHF-PrIME IMPLICANT TABLE HAvING No SoLuTION
required cubes
dhf-prime implicants || ac' | o'dd’ | a’bc’ | o’c | bed | abd
p=cd X
pa=a'b X
pa=bc’ X
pa=ac X
ps=d’c X
pe1=bed X

cd (]

i

© (@

Fig. 8. Comparison with Frackowiak’s method. (a) Karnaugh map with
input transitions. (b) Cover using Frackowiak’s Algorithm A (4 products).
(¢) Minimum hazard-free cover (5 products). (d) Cover using Frackowiak’s
Algorithm A’ (6 products).

IX. COMPARISON WITH FRACKOWIAK’S WORK

It is useful to compare our approach with the related
work of Frackowiak [12]. Frackowiak presents two hazard-
free minimization algorithms for two-level implementations
allowing multiple-input changes. The algorithms assume that
functions are fully-specified.

Both algorithms eliminate dynamic hazards for a set of
specified transitions. However, the first method (Algorithm
A) ignores static hazards. The second method (unnamed, but
here called Algorithm A') attempts to eliminate static hazards
for every static transition, even if unspecified. Therefore re-
sults may be either hazardous (Algorithm A) or suboptimal
(Algorithm A).

In more detail, Algorithm A first generates all dhf-prime
implicants, then attempts to cover every ON-set minterm (not
required cube) using a dhf-prime implicant. The algorithm
finds a minimum cover which is hazard-free for a given set of
dynamic transitions, if a solution exists. Since required cubes
are not covered, no attempt is made to eliminate static hazards.

Algorithm A’ attempts to eliminate both dynamic and static
hazards. The algorithm extends an earlier result by Eichel-
berger {11]. Eichelberger proved that, to eliminate all static
logic hazards for a fully-specified function, a cover must

01

™
uM/‘/

() (b)

Fig. 9. Hazard-free minimization of an incompletely-specified Boolean func-
tion. (a) Karnaugh map with input transitions. (b) Minimum hazard-free cover
(4 products).

include all prime implicants. In constrast, Frackowiak’s goal
is, first, to eliminate hazards for a given set of dynamic
transitions and, second, to eliminate as many static hazards
as possible. His solution is to include all dhf-prime implicants
in the cover. Since only dhf-primes are used, every specified
dynamic transition will be hazard-free (if a solution exists).
Furthermore, by using all dhf-prime implicants, as many
remaining static hazards as possible are eliminated.

Algorithm A’ and our algorithm are both guaranteed to find
a hazard-free cover, if one exists. However, since Algorithm A’
includes all dhf-prime implicants in the solution, the resulting
cover may be far from minimal. In fact, judging from the
non-hazard-free case [32], the number of primes for even
small examples may be huge; in this case, Algorithm A’ is
not practical. In contrast, our algorithm finds a minimum-cost
hazard-free solution.

Example: The Kamaugh map of Fig. 8(a) describes a
fully-specified Boolean function. The function has four spec-
ified input transitions. Each transition t; is described by its
transition cube C; and start point m;:

ti: my =a'bdd Ci=dd
to: mo =a'bcd Cy=c

ts: msg=da'bed Cs=dd
ty: my=abcdd Cy =ac'.

A minimal cover using Frackowiak’s Algorithm A has 4
products (see Fig. 8(b)). It is hazard-free for dynamic transi-
tions 2 and ¢4, but has a static logic hazard for transition ¢3.

A minimum hazard-free cover, using our method, is shown
in Fig. 8(c). The cover has 5 products and is hazard-free for
every specified transition.’

Finally, a minimal cover using Frackowiak’s Algorithm
A’ is shown in Fig. 8(d). The cover is hazard-free for ev-
ery specified transition but has 6 products; it is therefore
suboptimal. ‘ Od

A final distinction between our work and Frackowiak’s, is
that we allow incompletely-specified functions:

Example: The Karnaugh map of Fig. 9(a) describes an
incompletely-specified Boolean function. The function has six

2 Interestingly, this solution is prime but redundant, since it contains prime

implicant a’d’. In contrast, the solution for the previous example (Fig. 6(a))
was non-prime but irredundant.
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TABLE V
RESULTS OF ALGORITHM PI-TO-DHF-PL
dhf-

prime prime

implicants implicants

% %

name infout | total illegal | total non-prime
dean-ctrl 20/19 | 1676 4 997 7
oscaci-ctrl 14/5 | 192 3 140 2
sesi-ctrl 12/5 280 1 190 2
pe-send-ifc 7/3 22 5 20 5
chu-ad-opt 4/3 6 0 4 0
vanbek-opt 4/3 7 0 6 0
dme 5/3 | 9 0 6 0
dme-opt 5/3 7 0 [ 0
dme-fast 5/3 10 0 7 0
dme-fast-opt | 5/3 15 0 14 0
specified input transitions:

tlt m); = a'b’c’d 01 = a'c/

to: mg =a't'dd Cy=b'dd
ta: mg=d'bed Cs=dc
ty: my = abed’ Cy = abd'
ts: ms = abed Cs = abe

’
te: me = abed Cs =acd'.

A minimum cover, using our method, is shown in Fig. 9(b).
The cover has 4 products and is hazard-free for every specified
input transition.

X. PROGRAM IMPLEMENTATION

We have implemented the logic minimization algorithms of
Section VI. Our program is written in Lucid Common Lisp
and is run on a DECStation 3100. However, it makes use of
espresso [5], [33] to perform part of its computation: prime
implicant generation. The advantage of this approach is that
we can benefit from highly optimized existing tools.

The program generates sets for a function (Step 0) and writes
the ON-set and OFF-set into a file in PLA format. We then
use espresso-Dprimes to generate all prime implicants. The
resulting PLA file is read in by the program, which computes
the sets of dhf-prime implicants (Step 7). The program then
constructs a dhf-prime implicant table and solves it (Steps 2
and 3).

The logic minimization program has been used as the
the final component in an existing synthesis program for
asynchronous controllers [25], [28]. It has recently been in-
corporated into two other asynchronous synthesis programs
as well [38], [26]. These synthesis methods produce combi-
national functions which are guaranteed to have hazard-free
two-level implementations. In particular, each method imposes
constraints during state minimization to insure that a hazard-
free solution will exist for the resulting Boolean functions (for
a detailed discussion, see [25]).

XI. EXPERIMENTAL RESULTS

Our hazard-free logic minimization program was run on
a set of examples. The largest example is a cache controller
having 20 inputs and 19 outputs (dean-ctrl) [27]. The program
was also run on two SCSI controller designs (oscsi-ctrl and

TABLE VI
CoMPARISON OF HAZARD-FREE LOGIC MINIMIZATION WITH espresso-exact
Total
Products
Hazard-
Hazard- % free
free espresso- | Over- Run-
name infout | Method  exact head  time(s)
dean-ctrl 20/19 215 202 6 83
oscsci-ctrl 14/5 59 58 2 9
scsi-ctrl 12/5 60 59 2 11
pe-send-ifc 7/3 15 15 0 1
chu-ad-opt 4/3 4 4 0 1
vanbek-opt 4/3 6 6 0 1
dme 5/3 4 4 0 1
dme-opt 5/3 4 4 0 1
dme-fast 5/3 5 5 0 1
dme-fast-opt | 5/3 8 8 0 1

scsi-ctrl) [31]. The examples were generated from state ma-
chine specifications using the locally-clocked synthesis method
[25]. Specifications were given in “burst-mode” {29], [25],
a notation to describe asynchronous Mealy machines allow-
ing multiple-input changes. Several examples have appeared
previously in the literature using other concurrent description
languages (STG’s [10}], [36], CSP [9]).

Table V describes the results of Algorithm PI-to-DHF-
PI. The algorithm transforms prime implicants into dhf-prime
implicants. Prime implicants which contain only don’t-care
minterms are not included, since these implicants will never
appear in an exact solution.

Illegal prime implicants are those which are illegally in-
tersect some privileged cube, and therefore are not dhf-prime
implicants. In every case, no more than 5% of the original
prime implicants are illegal and must be further reduced.

After reduction, at most 7% of the dhf-prime implicants
are not prime. It is also interesting that a number of prime
implicants are discarded by the algorithm (see dean-ctrl).
These implicants contain ON-set minterms but contain no
required cubes. Since these implicants do not contribute to
the hazard-free covering solution, they can be removed.

Table VI presents the exact hazard-free solutions for the
examples. It also gives an indication of the penalty associated
with hazard elimination in our algorithms. In every case,
the overhead for hazard-elimination is no more than a 6%
increase in the number of products as compared with outputs
synthesized using espresso-exact [33].

Runtimes were quite reasonable for all examples tested.
Even for the cache controller example, with 20 inputs and
19 outputs, total runtime was 83 s.

XII. CONCLUSIONS

This paper considers the two-level hazard-free minimization
problem for several reasons: the general problem has not
previously been solved; minimal two-level solutions are im-
portant for optimal PLA implementations; and solutions serve
as a good starting point for hazard-non-increasing multilevel
logic transformations. In particular, multilevel transformations
which introduce no hazards are discussed in {35]. This set of
transformations has been significantly extended by Kung [14].
Finally, hazard-free technology mapping algorithms have been
developed by Siegel et al. [34].
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The problem of implementing hazard-free two-level logic
was described as a constrained covering problem on Karnaugh
maps. We presented an automated algorithm for solving the
two-level hazard-free logic minimization problem and showed
its effectiveness on a set of examples. An important feature
of the algorithm is that it involves only localized changes to
existing algorithms. As a result, we can use existing algorithms
for prime implicant generation (Step 1) and for table reduction
and solution (Step 3).

Our algorithm has implications for testability, since it may
introduce redundant and non-prime implicants. As a result, the
combinational circuits may have non-testable faults. However,
recent methods have been proposed which insure complete
testability of hazard-free logic, for both stuck-at and robust
path delay faults, in the presence of both redundant {13], [30]
and non-prime [30] implicants. Therefore, testability need not
be adversely affected when synthesizing hazard-free logic.

With the automation of these exact algorithms, the ba-
sic automated synthesis system of [28] is complete. The
algorithms have been incorporated into two other synthesis
systems as well [38], [26] and can be used in a number
of other asynchronous synthesis methods. The algorithms
have recently been applied to several substantial asynchronous
designs, including a second-level cache controller [27} and
state machines for an infrared communications chip [1].
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