
 1

CMOS VLSI DesignH
arris

Lab 3: Datapath and Zipper Assembly

An n-bit datapath consists of n identical horizontal bitslices1. Data signals travel
horizontally along the bitslice. Control signals run vertically to all n bits of the datapath.
Often, a small amount of logic is required to generate the control signals. For example, a
multiplexer in the datapath requires true and complementary select signals. Rather than
provide a local inverter in each of the n bitslices, the inverter could be placed on top of
the datapath in a zipper to drive the complementary signal to all the bitslices.

Most of the processor datapath has been provided for you, but the Arithmetic/Logic Unit
(ALU) is missing from each bitslice. You will first draw an ALU using your full adder,
AND, and OR gates. Then you will add your ALU to the bitslice and wire it in to the
system. You will then place necessary inverters in the zipper and connect them to the
datapath.

Although the total amount of layout to do in this lab is modest, you will find Electric has
a learning curve before you become proficient editing large designs like the MIPS bitslice
or datapath. Read through the entire lab first to understand what you will be doing. You
should not need to edit any cells that you are not asked to modify; indeed, if you do
change anything else, you run the risk of damaging some other part of the system that
uses the same cells you edited. This is particularly insidious because you may not
discover the damage until you look at the datapath at the very end.

1. ALU

Copy your lab2_xx.elib to lab3_xx.elib and open the new library. Look at the alu{sch} 1-
bit Arithmetic / Logic Unit (ALU) schematic provided. It defines a 1-bit ALU like that of
Figure 4.17 of Computer Organization and Design, sans overflow detection. Study the
schematic until you understand its operation.

Create the alu{lay} layout. Place the various gates in a horizontal line and wire them
together to match the schematic. You may wish to look at the bitslice{lay} to see an
example of wiring an assortment of gates together. Use horizontal metal2 wires running
on top of the cells to make the connections and be sure to leave at least two metal2 tracks
free for over-the-cell routing when you assemble the entire datapath, just as you left

1 In general, the bits of the datapath might vary slightly. For example, a carry lookahead adder requires
different logic in different bits. And of course, the horizontal/vertical distinction is arbitrary and a datapath
could be rotated.

 2

tracks free over your full adder. Export a, b , and result on the left, set and less on the
right, cin on the bottom, and cout on the top. Also export the mux control signals

Here are a few hints while drawing the layout:

• Use Facet • Expand Facet Instances to view the contents of a cell.
• Unexpand the facet instances to make it easier to see exports on facets
• Use Windows • Alignment Options to set a 0.5 lambda grid when necessary, but

strive to keep everything on a 1 lambda grid..
• Ctrl-click to cycle through various different layers when you have lines drawn on top

of facets. You may find reviewing Chapter 1 Section 8 and Chapter 2 Section 1 of
the online Electric manual at http://www.staticfreesoft.com/manual/ helpful to
pick up the finer nuances of selecting from a stack of many different objects.

• Place large pure-layer nodes for the N and P wells to avoid difficulties with gaps
between wells

• Use Info • List Exports on Network to get the name of the export on a selected
network.

• Use metal1 or metal2 pins from the palette to give yourself a destination to connect to
when Electric gets confused about snapping a connection to an undesired destination.
Select two nodes, then right click on a blank space to connect the nodes.

• Use the red boxes in the palette window to choose which layer will be drawn in the
event of ambiguity. For example, when connecting two vias, select either the blue or
purple lines to indicate metal1 or metal2 for the connection.

• If you have problems getting the layout to pass NCC, you may wish to simulate it to
uncover the bugs. Also look at the results of preanalysis.

• Expect to spend some time playing around with Electric to come to understand how it
makes connections when there are many layers of stuff.

Simulate your ALU layout (with the alu.cmd file provided) before you run NCC to catch
any obvious errors. Check that all five operations work correctly: ADD, SUB, AND,
OR, and SLT. Verify it with DRC, ERC, and NCC. Periodically check and repair your
library to catch other problems.

2. Bitslice Assembly

Look at the datapath bitslice schematic bitslice{sch}. It is complete. Zoom in so that
you can read the labels on each icon. Match the hardware in the schematic to the MIPS
datapath in Figure 1.53 of CMOS VLSI Design.

The processor has no on-chip memory; instead, it provides an interface to external
SRAM. The interface consists of 3 8-bit busses. Two are outputs containing the address
and data to write to the memory. The third is an input carrying the data read from the
external memory.

 3

On the left side of the datapath is the address multiplexer (adrmux) selecting the address
for the external memory. The 32-bit instruction is stored in four 8-bit instruction
registers, so four flip-flops named ir3…ir0 are required in each bitslice. The memory
data register is named mdr. Next comes the interface to the register file. This consists of
the write data multiplexer wdmux, the 8-word register file itself (drawn below the
datapath to keep the entire schematic on one page), and the A and B registers.
Interdigitated with the A and B registers are the Source 1 and Source 2 multiplexers
choosing the operands for the ALU and the ALUOut register. The program counter logic
consists of the multiplexer to choose the next value of the program counter, an AND gate
to reset the program counter to 0 on startup, and the program counter flop itself. At the
very right end of the bitslice is the ALU.

The bitslice{lay} is complete except for the ALU that you designed in the previous part.
Look at the layout and relate the cells in the layout to the cells in the schematic. Double-
click on each cell to view its name. At the very left end, you again find the adrmux.
Double-click on the other cells and verify that their names match the schematic. VDD
and GND run along the top and bottom of the datapath, respectively. Notice how metal2
bitlines on an 8λ pitch are used to connect the cells together. For example, adr,
memdata, and writedata exit the bitslice to the left. These signals will ultimately
connect to the external memory. Notice how memdata runs over the top of the adrmux
and to the inputs of the four instruction registers.

Now that you are familiar with the layout, add your ALU layout to the right end of the
bitslice layout. Connect VDD and GND to the adjacent flip-flop. Note that these ports
are on the left end of the flip-flop. As shown in the schematic, make three connections to
the rest of the datapath: inputs A and B come from src1 and src2, and the output result
goes to the aluresult signal. In the datapath layout style, these connections should occur
using mostly horizontal metal2 lines. The lines must run over the top of the cells, not
above VDD or below GND. Drawing these lines can be tricky because Electric will tend
to snap your wire to connect to the nearest port when you click on a cell. If you click
above or below the cell when terminating a long horizontal wire, Electric will bring the
line to the horizontal location where you clicked, but not snap to any port.

Add exports to the signals emerging from the top and bottom of the ALU. These include
inputs alubinv, alubinvb, aluop[0], aluopb[0], aluop[1], aluopb[1], less, and cin, and
outputs set and cout.

When your changes are complete, use DRC, ERC, and NCC to verify your layout.

3. Zipper Modifications

Recall that the ALU requires true and complementary versions of alubinv, aluop[0], and
aluop[1]. The controller that you will design in Lab 4 only produces the true version of
each signal. Therefore, we must locally invert the signal. Moreover, each signal must
drive eight bits of the datapath. For good performance, we would like to drive these bits
with something larger than a minimum-sized inverter. Thus, in the zipper we provide

 4

buf4x drivers for each control signal. These accept the inputs from the controller and use
inverters with 4 times the usual transistor widths to drive true and complementary control
signals across the datapath.

Look at the datapath{lay}. You will see eight rows of the bitslice that you have just
completed. Above the bit slices is the zipper that generates the control signals for all the
bits of the datapath. Look at the zipper{lay}. The center portion contains the decoder for
the register file. The right portion contains a bunch of buf4x cells to drive control signals
across the datapath. It is missing three buf4x drivers for alubinv, aluop[0], and
aluop[1], as shown in the zipper schematics. Add these three buffers. Align the buffers
above the datapath so the outputs of the zipper are properly located to drive the
multiplexer control lines that you exported from the bitslice. Be sure the port names
match the zipper schematics.

Run DRC, and NCC to verify the zipper. ERC will not pass because the power and
ground lines are not connected within the cell.

4. Datapath Assembly and Verification

Your final task is to assemble and verify the datapath. Vertical metal1 control lines tie the
bitslices together. Most are already complete, but you must add the ones for the ALU.
While you edit the datapath, be careful not to accidentally move the zipper or a bitslice
lest you introduce thousands of DRC errors!

First add the six metal3 lines for aluop[0], aluop[1], alubinv, and their complements.
These lines should connect the zipper outputs to each of the eight bitslices. Rather than
clicking seven times to connect the eight bitslices, you can save effort by connecting a
pair of bitslices then using the Tools • Routing • Mimic Stitch Now to automatically
connect the other identical pairs. Check the report that six wires were added;
occasionally you might Mimic Stitch more or fewer connections than you might have
intended if they are too similar or different. The zipper inputs should already be exported
for you as alucontrol[0], alucontrol[1], and alucontrol[2], respectively (i.e. alubinv
corresponds to alucontrol[2]).

Next, connect the carry chain. As shown in datapath{sch}, the carry into the least
significant bit should be tied to alubinv so it is 1 for subtractions and 0 for adds. This bit
is the bottom bitslice in the datapath. Run a metal 2 wire below the datapath to make the
connection. For each of the remaining bits, cin should be connected to cout of the bit
below. This is easiest if the carry in and carry out signals are located in the same vertical
column, as you were instructed to do in Lab 2. Mimic stitching may be helpful here too.

Connect the Less signal used for the set on less than (slt) instruction. Recall that slt
produces a 1 if input A is less than input B and a 0 otherwise. This can be accomplished
by computing A-B. If the result is negative, indicated by a 1 in the most significant bit of
the subtraction, set the output to 1. Otherwise, set it to 0. In other words, the least
significant bit of the output should equal the most significant bit of the subtraction result.

 5

All other bits should be 0. As shown in the datapath schematic and in Figure 4.18 of the
text, the least significant Less input connects to the set output of the most significant bit.
Remember that the least significant bit is the bottom row of the datapath and the most
significant bit is the top row. All other Less inputs should be tied to ground and all other
set outputs may be left floating.

Run DRC, ERC, and NCC to verify the datapath. For a design this large, tracking down
errors is very difficult. Therefore, be sure you know what you are doing and are
confident that you made the correct connections rather than relying on the tools for
feedback to catch problems.

5. What to Turn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your

grade, but will be helpful for calibrating the workload for the future.
2. Turn in a copy of the ALU layout.
3. Print simulation waveforms for the ALU demonstrating correct operation of ADD,

SUB, AND, OR, and SLT operations. Annotate your waveforms to explain which
instruction is being tested and how you know the result is correct.

4. For each of the following facets, did your design pass DRC? ERC? NCC?
• alu
• bitslice
• zipper
• datapath

