
Recovering from Overload in Multicore Mixed-Criticality Systems

Jeremy P. Erickson, Namhoon Kim, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill∗

Abstract

The multicore revolution is having limited impact on
safety-critical cyber-physical systems. The key reason is the
“one out of m” problem: certifying the real-time correct-
ness of a system running on m cores can necessitate pes-
simistic analysis that easily negates the processing capac-
ity of the “additional” m − 1 cores. In safety-critical do-
mains such as avionics, this has led to the common practice
of simply disabling all but one core. In this paper, the us-
age of mixed-criticality (MC) scheduling and analysis tech-
niques is considered to alleviate such analysis pessimism.
Under MC analysis, a single system with components of
different criticality levels is viewed as a set of different
per-criticality-level systems. More optimistic analysis as-
sumptions are made when certifying lower criticality lev-
els. Unfortunately, this can lead to transient overloads at
these levels, compromising real-time guarantees. This paper
presents the first multicore MC framework that addresses
this problem. This framework makes scheduling decisions
in a virtual time domain that can be “stretched” until the
effects of a transient overload have abated. Such effects dis-
sipate more quickly if virtual time is “stretched” more ag-
gressively, but this may reduce the quality of the work per-
formed. This tradeoff is analyzed experimentally herein.

1 Introduction
The computational capabilities enabled by multicore chips
are being leveraged to realize a wealth of new products
and services across many application domains. One domain,
however, stands out as being largely unaffected: safety-
critical cyber-physical embedded systems. In seeking to en-
able the usage of multicore platforms in such systems, one
issue looms larger than any other, namely a problem we
call the “the one out of m” problem: due to cross-core in-
teractions that are hard to predict, certifying the real-time
correctness of a system running on m cores can necessi-
tate provisioning system components so conservatively, the
processing capacity of the “additional” m − 1 cores is en-
tirely negated. That is, only “one core’s worth of work” can
be certified even though m cores are available. In safety-
critical domains such as avionics, this has led to the com-
mon practice of simply disabling all but one core (which is
the simplest solution, if only one core’s worth of work can
be supported anyway).

∗Work supported by NSF grants CNS 1016954, CNS 1115284, CNS
1218693, and CNS 1239135.

Mixed-Criticality Systems. In many safety-critical appli-
cations, tasks are partitioned among different criticality lev-
els, where higher criticality levels require more stringent
certification. In work on uniprocessor real-time systems,
Vestal suggested leveraging such certification stringency
differences to achieve less pessimistic system provision-
ings [24]. Specifically, he observed that, from the perspec-
tive of certifying the real-time requirements of a less critical
task, the execution times assumed of more critical tasks are
needlessly pessimistic. Thus, he proposed that schedulabil-
ity tests1 for less critical tasks be altered to incorporate less
pessimistic execution times for more critical tasks.

More formally, in a system with L criticality levels, each
task has an assumed worst-case execution time (AWCET)
specified at every level, and L system variants are analyzed:
in the level-` variant, the real-time requirements of all level-
` tasks are verified with level-` AWCETs assumed for all
tasks (at any level).2 The degree of pessimism in determin-
ing AWCETs is level-dependent: if level ` is of higher crit-
icality than level `′, then level-` AWCETs will generally be
greater than level-`′ AWCETs. For example, when certify-
ing the system at the highest criticality level, provably cor-
rect tool-produced upper bounds on execution times might
be assumed, while when certifying at a lower level, ob-
served worst-case times from profiling might be assumed.
The task model resulting from Vestal’s work has come to be
known as the mixed-criticality (MC) task model.
MC2. In ongoing work with colleagues at Northrop Grum-
man Corp. (NGC), we have been extending work on
scheduling and analyzing MC task systems to obtain an MC
framework that can be practically applied on multicore ma-
chines [12, 18]; we see such work as a potential key step
towards addressing the “one out ofm” problem. The frame-
work we have developed has come to be known as MC2

(mixed-criticality on multicore). MC2 was designed with
future unmanned aerial vehicles (UAVs) as a primary mo-
tivating use case. Basic implementation issues were previ-
ously considered by Herman et. al [12].

MC2 supports four criticality levels, denoted A (high-
est) through D (lowest), as illustrated in Fig. 1. Levels A
and B are scheduled on a per-processor basis using table-
driven and earliest-deadline-first (EDF) scheduling, respec-
tively. Level C was proposed by Mollison et al. [18] to be
scheduled using the global earliest-deadline-first (G-EDF)
scheduler, which provides bounded response times but may

1Such tests are used to verify real-time deadline requirements.
2We stress that a single system is analytically viewed as L separate and

different systems. Such a notion can seem a bit strange a first.

1

Figure 1: MC2 architecture.

not meet all deadlines. Erickson et al. [9] demonstrated that
the more general class of G-EDF-like (GEL) schedulers [16]
can yield better response-time bounds. Therefore, we con-
sider general GEL schedulers here. (These global sched-
ulers are more fully described in Sec. 2.)

As noted by Burns and Davis [6], most proposed MC
frameworks do not provide any guarantees for a given
level ` if any job (i.e., task invocation) exceeds its level-
` AWCET. This assumption could be highly problematic
in practice. For example, in a UAV, highly critical flight-
control software might be supported at level A, and less crit-
ical mission management and planning software at level C.
If a level-A flight-control job exceeds its level-C AWCET,
then it would be very undesirable if no guarantees could be
provided for level-C mission management tasks from that
point forward.3 In this paper, we present a method for pro-
viding guarantees in MC2 in such situations. Specifically,
we consider response-time behavior for tasks at level C in
MC2. (Tasks should be quite conservatively provisioned at
levels A and B, thus breaches of level-A and -B AWCET
assumptions should rarely, if ever, occur.)
Contributions. When any job at or above level C overruns
its level-C AWCET, the system at level C may be over-
loaded, compromising level-C guarantees. Using the MC2

framework, a task may have its per-job response times per-
manently increased as a result of even one overload event,
and multiple overload events could cause such increases
to build up over time. Examples of conditions that could
cause this to happen are presented in Sec. 2. As a result, we
must alter scheduling decisions to attempt to recover from
transient overload conditions. In this paper, we propose a
scheme that does so by scaling task inter-release times4 and
modifying scheduling priorities. We further discuss our im-
plementation of this scheme, including both in-kernel and
userspace components. We also provide experimental re-
sults based on our implementation to demonstrate that this
scheme can effectively recover from overload.
Comparison to Related Work. Other techniques for man-
aging overload have been provided in other settings, al-
though most previously proposed techniques either focus
exclusively on uniprocessors [2, 3, 7, 14, 17] or only pro-
vide heuristics without theoretical guarantees [11].

3At the industry session of RTAS 2014, several industry practitioners
noted this as a practical concern that had not been adequately addressed in
the literature on MC systems.

4That is, the time between subsequent job invocations

Our paper uses the idea of “virtual time” from
Zhang [25] (as also used by Stoica et al. [21]), where job
separation times are determined using a virtual clock that
changes speeds with respect to the actual clock. In our work,
we recover from overload by slowing down virtual time,
effectively reducing the frequency of job releases. Unlike
in [21], we never speed up virtual time relative to the nor-
mal underloaded system, so we avoid problems that have
previously prevented virtual time from being used on a mul-
tiprocessor. To our knowledge, this work is the first to use
virtual time in multiprocessor real-time scheduling.

Some past work on recovering from AWCET overruns
in MC systems has used techniques similar to ours, albeit in
the context of trying to meet all deadlines [13, 19, 20, 22,
23]. Our scheme is also similar to reweighting techniques
that modify task parameters such as periods. A detailed sur-
vey of several such techniques is provided by Block [4].
Organization. In Sec. 2, we describe the task model used
in prior work and show why overload can cause guarantees
to be permanently violated. In Sec. 3, we describe our mod-
ified task model and scheduler, and discuss how it can be
used to recover from overload. In Sec. 4, we describe our
implementation, and in Sec. 5, we provide experimental ev-
idence that our scheme is effective.

2 Original MC2 And Overload
In this paper, we assume that time is continuous and we
consider only the system at level C. In other words, we con-
sider level-A and -B tasks as CPU time that is unavailable
to level C, rather than as explicit tasks. We consider a sys-
tem τ = {τ0, τ1, . . . , τn−1} of n level-C tasks running on
m processors P = {P0, P0, . . . , Pm−1}. Each invocation
of τi is called a job, and the sequence of such jobs is de-
noted τi,0, τi,1, The release time of τi,k is denoted as
ri,k. We assume that minτi∈τ ri,0 = 0. Each τi,k is prior-
itized on the basis of a priority point (PP), denoted yi,k: a
job with an earlier PP is prioritized over a job with a later
PP. The time when τi,k actually completes is denoted tci,k,
and its actual execution time is denoted ei,k. We define the
response time Ri,k of τi,k as tci,k− ri,k. We define a job τi,k
as pending at time t if ri,k ≤ t < tci,k.

We assume that τ is a sporadic task system (see below)
and is scheduled via a global scheduler. A global scheduler
schedules ready jobs from a single run queue5 that is or-
dered by priority; a job is ready if it is pending and all prior
jobs of the same task have completed. At any time, if j jobs
are ready, then the min(m, j) ready jobs of highest priority
are scheduled; preemption and migration are allowed.

Under GEL scheduling and the conventional sporadic
task model, each task τi is characterized by a per-job worst-
case execution time (WCET) Ci > 0, a minimum separa-
tion Ti > 0 between releases, and a relative PP Yi ≥ 0; τi’s
utilization is given by Ci/Ti. The utilization of a task sys-
tem is simply the sum of the utilizations of its tasks. Using

5That is, queue of available jobs

2

the above notation, the system is subject to the following
constraints for every τi,k:

ei,k ≤ Ci, (1)
ri,k+1 ≥ ri,k + Ti, (2)
yi,k = ri,k + Yi. (3)

In our work, we consider assumed WCETs due to the
mixed-criticality analysis, as discussed in the introduction.

Prior work [15, 18] shows that bounded response times
can be achieved for level-C tasks assuming certain con-
straints on system-wide and per-task utilizations. To illus-
trate this property, we depict in Fig. 2(a) a system that only
has level-A and -C tasks, with one level-A task per CPU.
For level-A tasks, we use the notation (Ti, C

C
i , C

A
i), where

Ti is task τi’s period, CCi is its level-C AWCET, and CAi
is its level-A AWCET. For level-C tasks, we use the nota-
tion (Ti, Yi, Ci). Observe that in Fig. 2(a), no job runs for
longer than its level-C AWCET. Under this condition, re-
sponse times can be bounded using techniques from prior
work [15, 18]. In this paper, we typically concern ourselves
with response times relative to a job’s PP. Under the model
we are defining in this section, such a response time can be
converted to an absolute response time by adding Yi. Ob-
serve that in Fig. 2(a) some jobs do complete after their PPs;
this is allowed by our model. Similarly, some jobs complete
after the release of their respective successor jobs.

The particular example in Fig. 2(a) fully utilizes all pro-
cessors. In the situation depicted in Fig. 2(b), both level-A
tasks released at time 12 run for their full level-A AWCETs.
Therefore, from the perspective of level C, an overload
occurs.6 Because the system is fully utilized, there is no
“slack” that allows for recovery from overload, and re-
sponse times are permanently increased. In a system with
large utilization, response times could take significant time
to settle back to normal, even if they eventually will.

Another cause of overload is depicted in Fig. 3, where
there is only a single level-C task. Observe that in Fig. 3(a)
τ1 executes except when both CPUs are occupied by level-
A tasks. Therefore, when the overload occurs at time 12 in
Fig. 3(b), τ1 cannot recover despite the frequent presence of
slack on the other CPU. This demonstrates that an overload
can cause long-running problems due to a single task’s uti-
lization, not merely due to the total utilization of the system.

In the next section, we discuss our overload recovery.

3 Our Modifications
In order to recover from overload, it is necessary to effec-
tively reduce task utilizations, to avoid the problems dis-

6 A similar overload could occur if a level-C task exceeds its level-C
AWCET. However, MC2 optionally supports the use of execution budgets
in order to prevent such an occurrence. While the use of execution budgets
would prevent level-A and -B tasks from overrunning their level-A and
-B AWCETs, respectively, they can still overrun their level-C AWCETs.
Thus, we have chosen examples that provide overload even when execution
budgets are used.

cussed in the previous section. In this paper, we propose to
do so by using a notion of virtual time (as in [21]), as de-
scribed in this section.

Our scheme involves a generalized version of GEL
scheduling, called GEL with virtual time (GEL-v) schedul-
ing, and a generalized version of the sporadic task model,
called the sporadic with virtual time and overload (SVO)
model. Under the SVO model, we no longer assume a par-
ticular WCET (thus allowing overload). Therefore, (1) is no
longer required to hold.7 Under GEL-v scheduling and the
SVO model, we also introduce the use of virtual time, and
we define the minimum separation time and relative PP of a
task with respect to virtual time after one of its job releases
instead of actual time.8 Virtual time affects only level C, not
levels A and B. The use of virtual time will allow us to re-
cover from overload. We now introduce our strategy using
the example depicted in Fig. 2(c).

Once an overload occurs, the system can respond by
altering virtual time for level C. Virtual time is based on
a global speed function s(t). During normal operation of
the system, s(t) is always 1. This means that actual time
and virtual time progress at the same rate. However, af-
ter an overload occurs, the scheduler may choose to select
0 < s(t) < 1, at which point virtual time progresses more
slowly than actual time. In Fig. 2(c), the system chooses to
use s(t) = 0.5 for t ∈ [19, 29). As a result, virtual time
progresses more slowly in this interval, and new releases of
jobs are delayed. This allows the system to recover from the
overload, so at actual time 29, s(t) returns to 1. Observe
that job response times are significantly increased after ac-
tual time 12 when the overload occurs, but after actual time
29, they are similar to before the overload. In fact, the ar-
rival pattern of level A happens to result in better response
times after recovery than before the overload, although this
is not guaranteed under a sporadic release pattern.

An actual time t is converted to a virtual time using

v(t) ,
∫ t

0

s(t) dt. (4)

For example, in Fig. 2(c), v(25) =
∫ 25

0
s(t) dt =

∫ 19

0
1 dt+∫ 25

19
0.5 dt = 19 + 3 = 22. Unless otherwise noted, all in-

stants herein (e.g., t, ri,k, etc.) are specified in actual time,
and all variables except Ti and Yi (defined below) refer to
quantities of actual time.

Under the SVO model, (2) generalizes to

v(ri,k+1) ≥ v(ri,k) + Ti, (5)

and under GEL-v scheduling, (3) generalizes to

v(yi,k) = v(ri,k) + Yi. (6)

7As mentioned in Footnote 6, execution budgets can be used to restore
this assumption at level C, in which case overloads can come only from
levels A and B.

8If jobs of a task are released in response to external events, violations
of the minimum separation constraint can be avoided by delaying the actual
job release, setting a timer as if the job were released periodically.

3

(a) Example MC2 schedule in the absence of overload, illustrating bounded response times.

(b) The same schedule in the presence of overload caused by level-A tasks running for their full level-A AWCETs. Notice
that response times of level-C jobs settle into a pattern that is degraded compared to (a). For example, consider τ2,6, which is
released at actual time 36. In (a) it completes at actual time 43 for a response time of 7, but in this schedule it does not complete
until actual time 46, for a response time of 10.

(c) The same schedule in the presence of overload and the recovery techniques described in Sec. 3. Notice that response times
of level-C jobs settle into a pattern that is more like (a) than (b). For example, consider again τ2,6, which now is not released
until actual time 41 and completes at actual time 47 for a response time of 6. This is more similar to (a) than to (b).

Figure 2: Example MC2 task system, without and with overload.

For example, in Fig. 2(c), τ1,0 is released at actual time 0,
has its PP three units of (both actual and virtual) time later
at time 3, and τ1,1 can be released four units of (both actual
and virtual) time later at time 4. However, τ1,5 of the same
task is released at actual time 21, shortly after the virtual
clock slows down. Thus, its PP is at actual time 27, which
is three units of virtual time after its release, and the release
of τ1,6 can be no sooner than actual time 29, which is four
units of virtual time after the release of τ1,5. The execution
time of τ1,5 is not affected by the slower virtual clock.

In a real system, unlike in our examples so far, level-C
jobs will often run for less time than their respective level-C
AWCETs. Therefore, it may be unnecessarily pessimistic to
initiate overload response whenever a job overruns its level-
C AWCET. Instead, we use the following definition.

Def. 1. τi has a nonnegative response-time tolerance, de-
noted ξi, relative to each job’s PP. A task meets its response-
time tolerance if tci,k ≤ yi,k + ξi, and misses it otherwise.

We slow down the virtual clock only after some job

4

(a) Example MC2 schedule in the absence of overload, illustrating bounded response times.

(b) The same schedule in the presence of overload caused by level-A tasks running for their full level-A AWCETs.

Figure 3: Another example MC2 task system, without and with overload. See Fig. 2 for key.

misses its response-time tolerance. Ideally, response-time
tolerances should be determined based on analytical upper
bounds of job response times, in order to guarantee that the
virtual clock is never slowed down in the absence of over-
load. However, for illustration, in Fig. 2(c) we simply use a
response-time tolerance of three for each task. Thus, we do
not slow down virtual time until some job’s completion time
is greater than three units of actual time after its PP. At time
18, τ3,4 completes exactly three units after its PP, which is
barely within its tolerance, so the virtual clock is not slowed
down. However, at time 19, τ1,3 completes four units after
its PP, which exceeds the response-time tolerance. There-
fore, we slow down the virtual clock at time 19.

We will define normal behavior for a system as the situ-
ation in which all jobs meet their response-time tolerances.
Recall that, as depicted in Fig. 2 above, a system with high
utilization may not effectively be able to recover from over-
load, because there is no slack, and as depicted in Fig. 3
above, a system with a task of high utilization may not
be able to effectively recover from overload. As we have
just discussed, our technique creates extra slack both in a
system-wide sense and in a per-task sense, solving both
problems. Therefore, the system eventually returns to nor-
mal behavior. We denote the time required to do so as dissi-
pation time.

In a technical report [8], we provide theoretical analysis
of dissipation time. In that technical report, we first provide
analytical upper bounds on response time that can safely
be used as response-time tolerances. We also derive an up-
per bound on dissipation time, called a dissipation bound,
with respect to these response-time tolerances. As discussed
above, our technique causes the system to eventually return
to normal behavior, so this bound exists. In this paper, rather
than considering theoretical dissipation bounds, we focus on

Figure 4: Illustration of “idle normal instant.” If all jobs
pending at t meet their response-time tolerances, then t is
an idle normal instant. t2 is referenced in Sec. 4.

experimentally determining dissipation time at runtime.
In the analysis used in our technical report, demand for

CPU time is considered beginning at an instant when some
processor is idle. If all jobs pending at this time meet their
response-time tolerances, then regardless of how that situa-
tion arose, the system has returned to normal behavior. Fur-
thermore, the virtual clock can safely be returned to speed 1
after such an instant. Therefore, the system can detect such
an instant to determine when to set the virtual-clock speed
back to 1. We now define such an instant more formally.

Def. 2. Arbitrary time t is an idle normal instant if some
processor is idle at t and all jobs pending at t meet their
(normal) response-time tolerances.

Our method does not dictate a particular choice of s(t),
although in our experiments we consider several such val-
ues. Selecting a small value of s(t) will result in a large
short-term impact on level-C job releases, but the system
will return to normal behavior quickly. For example, if s(t)
is assigned to be 0.1, then the system only allows a tenth as
many level-C job releases as it normally does. Alternatively,
selecting a large value of s(t) will result in a lesser short-

5

term impact on job releases, causing only minor delays, but
the system will take a longer time in order to return to nor-
mal behavior. In our experimental comparison, we quantify
these effects and point to proper design decisions.

As suggested by the analysis in our technical report [8],
we determine when the system returns to normal behavior
by detecting an idle normal instant. Therefore, we return the
virtual clock to speed 1 after detecting such a t, which can
only be determined when all jobs pending at t are complete.
In Fig. 2(c), observe that only CPU 2 is executing work
from actual time 28 to actual time 29. Thus, only τ2 is pend-
ing throughout this interval, or CPU 1 would be executing
work. Furthermore, τ2,4 is the only pending job of τ2 at time
28. Observe that τ2,4 completes at its PP, and thus meets its
response-time tolerance of three, at time 29. Therefore, time
28 is an idle normal instant. The system can determine this
to be the case at time 29, when τ2,4 completes. Therefore,
the virtual clock returns to speed 1 at time 29.

4 Implementation Description

We implemented our scheme by extending the existing MC2

implementation that was described in [12]. That implemen-
tation is based on LITMUSRT [1], a real-time extension to
Linux originally developed at UNC. Source code for our
implementation is also available at [1]. Our implementation
consists of two components: the scheduler, which is part of
the kernel, and a monitor program, which runs in userspace.
The kernel reports job releases and job completions to the
monitor program and provides a system call that the mon-
itor program can use to change the speed of the virtual
clock. The speed of the virtual clock does not change be-
tween these calls. The kernel is responsible for implement-
ing virtual time, ensuring that the SVO model’s minimum-
separation constraints are respected, and making schedul-
ing decisions according to GEL-v scheduling. The monitor
program is responsible for determining when virtual-clock
speed changes should occur. In an online appendix [10], we
provide pseudocode for the functionality we changed.

Within the kernel, the primary change that we made com-
pared to the prior MC2 implementation was the use of vir-
tual time at level C. No changes at levels A or B were re-
quired. Because the virtual-clock speed is constant between
discrete changes, virtual time is a piecewise linear function
of actual time, as depicted in Fig. 5(a), where ts (speed
change) is the latest speed change before arbitrary time t.
The kernel can compute v(t) by keeping track of ts and
v(ts). If the virtual-clock speed was changed to s at ts, then
v(t) = v(ts) + s · (t− ts).

At any time before a job’s PP arrives, the kernel does not
know whether the virtual-clock speed will change before
that PP arrives. Thus, the kernel cannot compute yi,k upon
the release of τi,k. However, the scheduling priority of τi,k
is simply the virtual time v(yi,k). When τi,k is released at
time ri,k, the kernel can compute v(ri,k). Then (6) can be
used to compute v(yi,k).

However, recall that the definition of “response-time tol-

erance” in Def. 1 is based on the actual time yi,k. Therefore,
it will generally be necessary for the kernel to determine
yi,k and return it to the monitor program. It turns out that
the kernel can perform this computation when it is already
running for other reasons.

The precise time that yi,k is computed can be determined
by considering three cases, as depicted in Fig. 5(b)–(d).

If tci,k ≤ yi,k, as depicted in Fig. 5(b), then τi,k meets
its response-time tolerance (which was defined in Def. 1 to
be nonnegative) by definition. Therefore, it is sufficient to
return a placeholder to the monitor program in this situation.
It is not actually necessary to compute yi,k.

If tci,k > yi,k and the speed of the virtual clock changes
at least once between yi,k and tci,k, then this scenario is de-
picted in Fig. 5(c), where ts now refers to the first virtual-
clock speed change after yi,k. In this case, yi,k is computed
when the virtual-clock speed is changed at time ts.

If tci,k > yi,k and the speed of the virtual clock does not
change between yi,k and tci,k, then this scenario is depicted
in Fig. 5(d). In this case, yi,k is computed when the job is
completed.

In order to set the release timer for a level-C job, the ker-
nel speculatively assumes that the virtual-clock speed will
not change until the timer fires. Whenever the virtual-clock
speed does change, the kernel updates all pending release
timers based on the new speed.

The userspace monitor program has two functions. One
is to detect that some job has missed its response-time toler-
ance and to react by changing the virtual-clock speed. The
specific methods it uses to react are discussed below.

The second function of the userspace monitor program
is to detect the earliest possible idle normal instant. We pro-
vide the following definition, which is closely related to the
definition of “idle normal instant” in Def. 2.
Def. 3. t is a candidate idle instant at time t2 ≥ t if some
processor is idle at t and any job pending at t either meets
its response-time tolerance or is still pending at t2.

In Fig. 4, t is a candidate idle instant at t2 even if τ1,3
misses its response-time tolerance, as long as τ1,2 and τ2,5
meet their response-time tolerances.

The following theorem shows that we may consider only
one candidate idle instant at any given time and still find the
earliest idle normal instant. In Fig. 4, t2 was selected as a
time when a processor becomes idle, in order to illustrate
this theorem.

Theorem 1. If t is a candidate idle instant at t2 and t2 is an
idle normal instant, then t is an idle normal instant.
Proof. Because t is a candidate idle instant, by Def. 3, ev-
ery job pending at t that is no longer pending at t2 meets
its response-time tolerance. Furthermore, because t2 is an
idle normal instant, by Def. 2, every job that is still pend-
ing at t2 meets its response-time tolerance. Therefore, every
job pending at t meets its response-time tolerance. Further-
more, because t is a candidate idle instant, by Def. 3, some
processor is idle at t. Therefore, by Def. 2, t is an idle nor-
mal instant.

6

(a) Example depicting how actual to
virtual time conversion is done.

(b) Example depicting yi,k when
tci,k ≤ yi,k .

(c) Example depicting yi,k when
tci,k > yi,k and at least one speed
change occured between yi,k and
tci,k .

(d) Example depicting yi,k when
tci,k > yi,k and no speed change
occured between yi,k and tci,k .

Figure 5: Examples illustrating virtual time computations in the kernel.

In order to detect an idle normal instant, we simply keep
track of the earliest candidate idle instant and the set of in-
complete jobs pending at that time, or the fact that there
is no candidate idle instant. If all jobs that were pending
at a particular candidate idle instant complete within their
response-time tolerances, then that time was actually an idle
instant. On the other hand, if some job τi,k pending at that
time misses its response-time tolerance, then there can be no
idle normal instant before tci,k. Whenever a CPU becomes
idle, if there is no current candidate idle instant, the current
time is recorded as the candidate idle instant.

We refer to our first userspace monitor program as SIM-
PLE. It is given the response-time tolerances desired for the
tasks and a virtual time speed s(t) used for overload recov-
ery. When a response-time tolerance miss is detected while
the system is not in recovery mode, it simply slows down
the virtual clock and starts looking for an idle instant.

We refer to our second userspace monitor program as
ADAPTIVE. It allows a value of s(t) to be determined at
runtime, selecting a smaller value for a more significant
response-time tolerance miss. This minimizes the impact on
the system when only a minor response-time tolerance miss
has occured, but provides a more drastic response when a
larger miss has occured. The monitor accepts an aggres-
siveness factor a in addition to the set of response-time tol-
erances, providing additional tuning. Once a response-time
tolerance violation is detected, the monitor maintains the in-
variant that s(t) = a·min((Yi+ξi)/Ri,k), where the min is
over all jobs with tci,k after recovery mode last started. Thus,
it chooses the speed based on the largest observed response
time since the virtual-time clock was last at normal speed.

5 Experiments

When a designer provisions an MC system, he or she should
select level-C AWCETs that will be infrequently violated.
Therefore, in the most common cases, overload conditions
should be inherently transient, and it should be possible to
return the system to normal operation relatively quickly.
Therefore, our experiments consist of transient overloads
rather than continuous overloads.

We ran experiments on a system with one quad-core

920-i7 CPU at 2.67 GHz, with 4GB of RAM. We gener-
ated 20 task sets, using a methodology similar to that de-
scribed in [12], which used task systems designed to mimic
avionics. We generated task systems where levels A and
B each occupy 5% of the system’s processor capacity and
level C occupies 65% of the system’s capacity, assuming
that all jobs at all levels execute for their level-C AWCETs.
As in [12], we assumed that each task’s level-B AWCET is
ten times its level-C AWCET, and that its level-A AWCET
is twenty times its level-C AWCET.9 The resulting percent-
ages of the system occupied assuming different AWCETs is
depicted in Fig. 6(a).

At levels A and B, we generated tasks on one CPU at a
time, and at level C, we generated tasks for the entire system
at once. In all cases, we used the system fractions in the third
column of Fig. 6(a). Periods were selected as depicted in
Fig. 6(c). We then selected, for each task, a utilization (at its
own criticality level) uniformly from (0.1, 0.4). This is the
“uniform medium” distribution from prior work, e.g., [5].
The resulting distributions with AWCETs at different levels
are depicted in Fig. 6(b). When a task would not fit within
the capacity for its criticality level, its utilization was scaled
down to fit. Each task was then assigned a level-C AWCET
based on multiplying its level-C utilization by its period.
Yi was selected for each level-C task using G-FL, which

provides better response time bounds than G-EDF [9]. To
determine response-time tolerances, we used the analytical
bounds described in our technical report [8].

We tested the following overload scenarios:

• (SHORT) - All jobs at levels A, B, and C execute for
their level-B AWCETs for 500 ms, and then execute
for their level-C AWCETs afterward.
• (LONG) - All jobs at levels A, B, and C execute for

their level-B AWCETs for 1 s, and then execute for
their level-C AWCETs afterward.
• (DOUBLE) - All jobs at levels A, B, and C execute for

their level-B AWCETs for 500 ms, execute for their
level-C AWCETs for one second, execute for their

9In reality, level-A AWCETs likely need to be determined based on
tools that do not currently exist, resulting in the need to guess the ratios
between AWCETs.

7

Level A Level B Level C
Level A 100% 50% 5%
Level B 0% 50% 5%
Level C 0% 0% 65%

(a) Percentage of the system occupied by the level spec-
ified in each row, when all jobs execute for the AWCET
specified in the column.

Level A Level B Level C
Level A (0.1, 0.4) (0.05, 0.2) (0.005, 0.02)
Level B (0.2, 0.8) (0.1, 0.4) (0.01, 0.04)
Level C (2.0, 8.0) (1.0, 4.0) (0.1, 0.4)

(b) Uniform utilization distribution for a task at the level specified in
each row, when measured using the AWCET specified in the column.

Level A Randomly from {25 ms, 50 ms, 100 ms}.
Level B Random multiple of the largest level-A period on the same CPU, capped at 300 ms.
Level C Random multiple of 5 ms between 10 ms and 100 ms, inclusive.

(c) Selection of periods for tasks at each level, which is independent of the level of the AWCETs.

Figure 6: Parameters used for experiments.

level-B AWCETs for another 500 ms, and then execute
for their level-C AWCETs afterward.

As can be seen in Fig. 6(a), these are particularly pes-
simistic scenarios in which all CPUs are occupied by level-
A and -B work for almost all of the time during the overload.

For each overload scenario, we used SIMPLE with s(t)
choices from 0.1 to 1 in increments of 0.1. The choice of
s(t) = 1 does not use our overload management techniques
at all and provides a baseline for comparison. We also used
ADAPTIVE with a choices from 0.1 to 1.0 in increments of
0.1. We then recorded the minimum virtual-time speed (to
analyze ADAPTIVE) and the dissipation time. We averaged
each result over all twenty generated task sets.

In Fig. 7, we depict the average dissipation time using
SIMPLE with respect to the choice of s(t) during recovery.
Additionally, we depict error bars for 95% confidence in-
tervals. Under LONG, dissipation times are approximately
twice as long as under SHORT, because overhead occurs for
twice as long. Under DOUBLE, dissipation times are big-
ger than under SHORT for s(t) ≥ 0.9, but nearly identical
for smaller choices of s(t). This occurs because dissipation
time is measured from the end of the second (and final) in-
terval during which overload occurs. For sufficiently small
choices of s(t), the system usually recovers completely be-
fore the second interval of overload starts, and that interval
is the same length as in SHORT. In any case, a reduction of
at least 50% of the dissipation time can be achieved with
a choice of s(t) = 0.6, and with that choice, the dissipa-
tion time is less than twice the length of the interval during
which overload occurs. Smaller choices of s(t) have dimin-
ishing returns, with only a small improvement in dissipation
time. Such a small improvement is likely outweighed by the
larger impact on job releases from selecting a smaller s(t).
(Recall that the maximum number of job releases during an
interval is proportional to s(t).)

In Fig. 8, we depict the average dissipation time using
ADAPTIVE with respect to the aggressiveness factor. As
before, we depict error bars for 95% confidence intervals.
There is significant variance in the initial choice of s(t)
by ADAPTIVE, depending on which level-C jobs complete
first after the overload starts, resulting in the larger confi-

dence intervals. This effect is particularly pronounced in the
case of DOUBLE. By comparing Figs. 7 and 8, we see that
ADAPTIVE significantly reduces the dependency of dissi-
pation time on the length of the overload interval. Further-
more, dissipation times are often significantly smaller under
ADAPTIVE than under SIMPLE.

However, in order to fully evaluate ADAPTIVE, we must
consider the minimum s(t) value it chooses. Fig. 9 depicts
the average of this choice with respect to the aggressive-
ness value, in addition to 95% confidence intervals. Here,
we see that ADAPTIVE achieves smaller dissipation times
than SIMPLE by choosing significantly slower virtual-clock
speeds. Thus, jobs are released at a drastically lower fre-
quency during the recovery period. Therefore, under the
highly pessimistic scenarios we considered, SIMPLE is a
better choice than ADAPTIVE.

As discussed above, level-C tasks run very little during
the overload, so jobs pending at the end of the overload
dominate other jobs in producing the largest response times.
Because ADAPTIVE usually results in complete recovery
from overload before the second overload interval, this
causes nearly identical minimum choices of s(t) between
SHORT and DOUBLE. Similarly, because the overload in-
terval is twice as long under LONG than under SHORT, the
minimum choice of s(t) is about half under LONG com-
pared to SHORT.

In summary, the best choice of monitor under the tested
conditions was SIMPLE with s(t) = 0.6, but s(t) = 0.8
could be a good choice if it is preferable to have a smaller
impact on new releases with a longer dissipation time.

In Fig. 10, we depict the execution time of job releases
at level C using SIMPLE with s(t) = 0.6, with respect
to the wall clock time. The pattern of job releases can be
seen from where vertical lines appear. At time 1000, ex-
ecution times of tasks are increased due to the overload.
Therefore, the system enters recovery mode. In Fig. 10,
intervals are marked at the top by s(t) values. As can be
seen in Fig. 10, level-C jobs are released less frequently in
[1000 ms, 2100 ms]. At time 2100, an idle normal instant
has been detected, so s(t) is returned to 1, and the job re-
lease pattern returns to normal.

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.2 0.4 0.6 0.8 1

D
is

s
ip

a
ti
o

n
 t

im
e

 (
m

s
)

s(t) during recovery

Short Long Double

Figure 7: Dissipation time for SIMPLE

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.2 0.4 0.6 0.8 1

D
is

s
ip

a
ti
o

n
 t

im
e

 (
m

s
)

Aggressiveness factor

Figure 8: Dissipation time for ADAPTIVE

In Fig. 11, we depict response times (rather than execu-
tion times) with respect to wall clock time, with two differ-
ent choices of s(t). Once the overload begins at time 1000,
response times are increased in both cases. By comparing
parts (a) and (b), we see that our technique reduces the dissi-
pation time and shrinks response times much more rapidly.

We also measured the same overheads considered in [12]
both with and without our virtual time mechanism present,
and considering both average and maximum observed over-
heads. For most overheads considered, there was no signifi-
cant difference from the virtual time mechanism. However,
there was variance in the scheduling overheads, as depicted
in Fig. 12. For average-case overheads, the introduction of
virtual time increased the scheduling time by about 40%,
while for worst-case overheads, the introduction of virtual
time approximately doubled the scheduling time. Because
level C is SRT, the average-case overheads are more rele-
vant, and the cost of adding the virtual time mechanism is
small. Furthermore, the userspace monitor program had a
CPU share of approximately 10%, less than a typical task.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

M
in

im
u

m
 s

(t
)

Aggressiveness factor

Figure 9: Minimum s(t) for ADAPTIVE

Overload

s(t) = 1 s(t) = 0.6 s(t) = 1

Figure 10: Allocations of tasks at level C for an example run

6 Conclusion
In this paper, we addressed the problem of scheduling under
MC2 when a transient overload occurs. We discussed the
conditions that could cause an overload to result in a long-
running increase in response-time bounds, and proposed a
virtual-time mechanism to deal with these conditions.

We then presented an implementation of our mechanism
and provided experiments to demonstrate that it can effec-
tively provide recovery from unexpected overload scenar-
ios. In our experiments, dissipation times could be brought
within twice the length of a pessimistic overload scenario
by only moderately affecting the time between job releases,
and our scheme created little additional overhead.

References

[1] LITMUSRT home page. http://litmus-rt.org.
[2] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier,

and D. Shasha. On-line scheduling in the presence of over-
load. In FOCS, pages 100–110, 1991.

[3] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate
modulation of soft real-time tasks in autonomous robot con-
trol systems. In ECRTS, pages 21–28, 1999.

[4] A. Block. Adaptive Multiprocessor Real-Time Systems. PhD

9

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 500 1000 1500 2000 2500 3000

R
e

s
p

o
n

s
e

 T
im

e
 (

u
s
)

Time (ms)

Task #1
Task #2

Task #3
Task #4

Task #5
Task #6

(a) Using s(t) = 1.0 (as if our techniques were not used)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 500 1000 1500 2000 2500 3000

R
e

s
p

o
n

s
e

 T
im

e
 (

u
s
)

Time (ms)

(b) Using s(t) = 0.6

Figure 11: Response times for level-C jobs with respect to
time

 0
 2
 4
 6
 8

 10
 12
 14
 16

Avg,8

Avg,12

Avg,16

Avg,20

M
ax,8

M
ax,12

M
ax,16

M
ax,20

O
v
e

rh
e

a
d

 (
µ

s
)

Metric, Task Count

Scheduler Variant
Without-VT

With-VT

Figure 12: Scheduling overhead measurements

thesis, The University of North Carolina at Chapel Hill,
2008.

[5] B. Brandenburg. Scheduling and Locking in Multiprocessor
Real-Time Operating Systems. PhD thesis, The University of
North Carolina at Chapel Hill, 2011.

[6] A. Burns and R. Davis. Mixed criticality systems -
a review. http://www-users.cs.york.ac.uk/

˜burns/review.pdf, December 2013.
[7] G. Buttazzo and J. Stankovic. RED: Robust earliest deadline

scheduling. In 3rd International Workshop on Responsive

Computing Systems, pages 100–111, 1993.
[8] J. Erickson and J. Anderson. Dissipation bounds: Recov-

ering from overload in multicore mixed-criticality systems.
Technical Report TR14-001, Department of Computer Sci-
ence, University of North Carolina at Chapel Hill, Chapel
Hill, NC, May 2014.

[9] J. Erickson, J. Anderson, and B. Ward. Fair lateness schedul-
ing: Reducing maximum lateness in G-EDF-like scheduling.
Real-Time Systems, 50(1):5–47, 2014.

[10] J. Erickson, N. Kim, and J. Anderson. Appendix to Re-
covering from overload in multicore mixed-criticality sys-
tems. http://cs.unc.edu/˜anderson/papers.
html, October 2014.

[11] P. Garyali. On best-effort utility accrual real-time scheduling
on multiprocessors. Master’s thesis, The Virginia Polytech-
nic Institute and State University, 2010.

[12] J. Herman, C. Kenna, M. Mollison, J. Anderson, and
D. Johnson. RTOS support for multicore mixed-criticality
systems. In RTAS, pages 197–208, 2012.

[13] M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution
rate of low criticality tasks in mixed criticality systems. In
WMC, RTSS, pages 43–48, 2013.

[14] G. Koren and D. Shasha. Dover: An optimal on-line schedul-
ing algorithm for overloaded real-time systems. In RTSS,
pages 290–299, 1992.

[15] H. Leontyev and J. H. Anderson. Generalized tardiness
bounds for global multiprocessor scheduling. Real-Time
Sys., 44(1):26–71, 2010.

[16] H. Leontyev, S. Chakraborty, and J. Anderson. Multiproces-
sor extensions to real-time calculus. In RTSS, pages 410–
421, 2009.

[17] C. Locke. Best-Effort Decision Making for Real-Time
Scheduling. PhD thesis, Carnegie Mellon University, 1986.

[18] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and
J. Scoredos. Mixed-criticality real-time scheduling for mul-
ticore systems. In ICESS, pages 1864–1871, 2010.

[19] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing
mixed-criticality scheduling strictness for task sets scheduled
with fp. In ECRTS, pages 155–165, 2012.

[20] F. Santy, G. Raravi, G. Nelissen, V. Nélis, P. Kumar,
J. Goossens, and E. Tovar. Two protocols to reduce the crit-
icality level of multiprocessor mixed-criticality systems. In
RTNS, pages 183–192, 2013.

[21] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke,
and C. Plaxton. A proportional share resource allocation al-
gorithm for real-time, time-shared systems. In RTSS, pages
288–299, 1996.

[22] H. Su and D. Zhu. An elastic mixed-criticality task model
and its scheduling algorithm. In DATE, pages 147–152,
2013.

[23] H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elas-
tic mixed-criticality tasks in multicore systems. In RTCSA,
2013.

[24] S. Vestal. Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance. In Pro-
ceedings of the 28th IEEE Real-Time Systems Symposium,
pages 239–243. IEEE, December 2007.

[25] L. Zhang. Virtual clock: A new traffic control algorithm for
packet switching. In SIGCOMM, pages 19–29, 1990.

10

A Appendix: Psuedocode for Changed Ker-
nel Functionality and Monitor Program

Function initialize()
1 last act := now();
2 last virt := 0;
3 speed := 1;

Function act to virt(act)
4 return last virt + (act− last act) · speed;

Function virt to act(virt)
5 return last act + (virt− last virt)/speed;

Function schedule pending release(τi,k,
v(ri,k))

6 Set release timer to fire at virt to act(v(ri,k));

Function job release(τi,k)
7 ri,k := now();
8 v(yi,k) := act to virt(ri,k)+ Yi;
9 yi,k := ⊥;

Function job complete(τi,k)
10 virt := act to virt(now());
11 if yi,k = ⊥ and v(yi,k) < virt then
12 yi,k := virt to act(v(yi,k));
13 Report τi,k, ri,k, yi,k, now(), and whether the

level-C ready queue is empty to the monitor program;

Function change speed(new speed)
14 act := now();
15 virt := act to virt(act);
16 foreach τi,k such that yi,k = ⊥ and v(yi,k) < virt do
17 yi,k := virt to act(v(yi,k));
18 last act := act;
19 last virt := virt;
20 speed := new speed;
21 foreach τi,k such that a pending release has been

scheduled for virtual time v(ri,k) do
22 Reset release timer to fire at

virt to act(v(ri,k));

Algorithm 1: In-kernel functionality used to handle
virtual time.

Function init recovery(comp time,
queue empty)

1 recovery mode := true;
2 if queue empty then
3 idle cand := comp time;
4 pend idle cand := pend now;
5 else
6 idle cand := ⊥;
7 pend idle cand := {};

Function on job release(τi,k)
8 Add τi,k to pend now;

Function on job complete(τi,k, ri,k, yi,k,
comp time, queue empty)

9 Remove τi,k from pend now;
10 if comp time− yi,k > ξi then
11 handle miss(τi,k, ri,k, yi,k, comp time,

queue empty);
12 if recovery mode and idle cand 6= ⊥ then
13 if comp time− yi,k > ξi then
14 idle cand := ⊥;
15 pend idle cand := {};
16 else
17 Remove τi,k from pend idle cand;
18 if recovery mode and idle cand = ⊥ and

queue empty then
19 idle cand := comp time;
20 pend idle cand := pend now;
21 if recovery mode and idle cand 6= ⊥ and

pend idle cand = {} then
22 change speed(1);
23 recovery mode := false;

Algorithm 2: Userspace monitor algorithms common
to SIMPLE and ADAPTIVE.

Function handle miss(τi,k, ri,k, yi,k, comp time,
queue empty)

1 if not recovery mode then
2 change speed(s(t));
3 init recovery(comp time,

queue empty);

Algorithm 3: Specific userspace implementation for
SIMPLE.

Function handle miss(τi,k, ri,k, yi,k, comp time,
queue empty)

1 if not recovery mode then
2 current speed := 1;
3 init recovery(comp time,

queue empty);
4 new speed := a · (Yi + ξi)/(comp time− ri,k);
5 if new speed < current speed then
6 change speed(new speed);
7 current speed := new speed;

Algorithm 4: Specific userspace implementation for
ADAPTIVE.

11

