
Mixed-Criticality on Multicore (MC2): A Status
Report

Namhoon Kim, Jeremy P. Erickson, and James H. Anderson
Department of Computer Science, The University of North Carolina at Chapel Hill

{namhoonk, jerickso, anderson}@cs.unc.edu

Abstract—The MC2 (mixed-criticality on multicore) frame-
work has been proposed and implemented in LITMUSRT, a real-
time extension to Linux. The implemented MC2 framework has
been used in several research efforts pertaining to multiprocessor
real-time systems. This paper describes the current status of work
on MC2. There are currently two MC2 branches. We describe
the features of each branch and report on current progress in
unifying these branches.

I. INTRODUCTION

Future embedded real-time systems are expected to require
increased computational workloads and functionalities. Multi-
core platforms have the potential to meet these requirements by
offering greater computational capabilities and advantages in
size, weight, and power (SWaP). However, the introduction of
multiple processing cores makes real-time resource allocation
more difficult. To further complicate matters, many avionic
and automotive embedded applications require tasks to be
supported at different criticality levels, such as safety critical,
mission critical, and best effort, on a single multicore system
[1].

Because the failure of a safety critical task may cause a fatal
failure of a system, such a task may be provisioned with a
very pessimistic worst-case execution time (WCET). This can
result in wasted computational capacity due to the difference
between the predicted WCET and the actual execution time
observed at run time. A technique to minimize this discrepancy
has been proposed by Vestal [2]. He proposed the multi-
criticality (or mixed-criticality) task model, which provides
varying degrees of WCET assurance. Specifically, for low-
criticality tasks, he proposed using less pessimistic WCETs
for schedulability analysis, while for high-criticality tasks, he
proposed using more pessimistic WCETs.

In the RTCA DO-178B and DO-178C software standards
for avionics, criticality levels range from A (highest) to E
(lowest) and are determined for a system component (e.g., a
task) by examining the effects of failures. Mixed-criticality
scheduling on multicore platforms was first considered by
Anderson et al. [3]. They proposed operating-system (OS)
infrastructure that allows mixed-criticality applications to be
supported on a multicore platform, assuming the five crit-
icality levels of DO 178B/C, while ensuring real-time cor-
rectness. In follow-up work, researchers at UNC Chapel Hill
and Northrop Grumman Corp. proposed a mixed-criticality
scheduling framework for multicore platforms, called MC2

(mixed-criticality on multicore), and provided schedulability
analysis results [4]. In MC2, higher-criticality tasks are viewed
as “slack generators” that use only a small fraction of their
execution budget. Lower-criticality tasks execute using this
slack. MC2 also employs a two-level hierarchical scheduling
approach, in which containers (also called servers) [3] are
used to enable the temporal correctness of subsystems.

The first implementation of MC2 was described by Herman
et al. [1], who discussed design tradeoffs and evaluated the
robustness of the implemented mixed-criticality scheduler with
respect to breaches in execution-time assumptions. MC2 is
implemented within LITMUSRT, a real-time extension of
Linux that was designed to support real-time workloads on
multicore platforms [5], [6], [13], [14].

In order to make safety-critical cyber-physical embedded
systems more predictable, cache-management techniques were
proposed by Ward et al. [7]. Specifically, they proposed two
cache-management techniques, called cache locking and cache
scheduling, and showed that the usage of such techniques
can reduce WCETs in higher-criticality tasks. Ward et al.
developed a branch of MC2 in which these cache-management
techniques are used, and presented experimental results on a
multicore Tegra3 ARM machine.

As mentioned by Burns and Davis [8], a task may exceed its
predicted level-l WCET. When such guarantees are violated,
overload can occur. To provide guarantees in such overload
situations, a recovery mechanism was proposed by Erickson
et al. [9] that uses virtual time. This mechanism has been
incorporated in a branch of MC2 that employs a virtual timer
[4]. This branch was used to obtain experimental results on an
x86 machine. However, due to the different microarchitectures
of MC2 with cache management and with virtual time, these
two branches of MC2 have not yet been unified.

In this paper, we report on the current status of MC2. In the
rest of this paper, we provide relevant background (Sec. II),
describe the current two branches of MC2 (Sec. III), and then
conclude (Sec. IV).

II. BACKGROUND

In this section, we provide necessary background on mul-
tiprocessor real-time scheduling, LITMUSRT, and the MC2

architecture. We also briefly explain the container abstraction
used for hierarchical scheduling and common MC2 features.



A. Multiprocessor Real-time Scheduling

Task model. We assume that temporal constraints for tasks
can be modeled by the implicit-deadline periodic or sporadic
task model. Under the periodic task model, a system is com-
prised of a set of recurring tasks. Each such task τi releases
a succession of jobs, denoted τi,0, τi,1, . . ., and is defined by
a period, pi, and an execution time, ei. Successive jobs of
τi are released every pi time units, starting at time 0, and a
job released at time t must complete by its deadline, t+ pi.
Under the sporadic task model, each task τi is specified by an
execution cost, ei, a minimum separation between successive
job releases, pi, and a relative deadline, di. Task τi’s utilization
is given by ui = ei/pi. We sometimes assume a harmonic task
system wherein all task periods are integer multiples of the
smallest task period.

We assume a hardware platform with m processors. A
task system is schedulable on such a platform under a given
scheduling algorithm if no deadline constraint is violated.
In a hard real-time (HRT) system, jobs must never miss
their deadlines, while in a soft real-time (SRT) system, some
deadline misses are tolerable. If a job τi,j released at ri,j
completes execution at time t, then its response time is t− ri,j
and its tardiness is max{0, t− di,j}. In the definition of SRT
assumed in MC2, tardiness is required to be bounded.

Partitioned and global scheduling. Under partitioned
scheduling, tasks are statically assigned to processors and
migration is not allowed, while under global scheduling, tasks
may migrate across processors. Generally, partitioned schedul-
ing is preferable in HRT systems, and global scheduling is
preferable in SRT systems [10], [11]. Partitioned approaches
have lower run-time overheads, but processing capacity may
be wasted due to bin-packing problems. In contrast, global
approaches eliminate bin-packing issues and are particularly
effective in SRT systems where some deadline misses are
allowed [12]. A drawback of global scheduling is increased
OS overheads associated with contention of shared scheduler
state.

B. LITMUSRT

MC2 is implemented in LITMUSRT, an extension to the
Linux kernel that supports real-time schedulers as plug-in
components [13], [14]. LITMUSRT was developed as an
experimental platform for research on multiprocessor real-time
scheduling and synchronization. Time-based events, such as
job releases, are handled by Linux’s high resolution timer ap-
plication programming interface (hrtimer API) and scheduling
events and synchronization requests are handled by plug-in
event handlers. LITMUSRT provides a very light-weight event
tracing tool called feather-trace to record scheduling events
and synchronization requests [15]. The partitioned earliest-
deadline-first (P-EDF) and global EDF (G-EDF) schedulers
have been implemented in LITMUSRT previously [16]. As
noted earlier, there are currently two branches of MC2 imple-
mented in LITMUSRT.

����� ����� ����� �����

�� �� �� ��

��� ��� ��� ���

�����

��	
�����


	




�

�

Fig. 1. Container allocation and the scheduler for each container under MC2

on a four-processor system.

C. MC2 Architecture

Vestal proposed a technique for eliminating under-utilization
of processors due to very pessimistic WCET values [2]. He
observed that the WCET values for higher-criticality tasks are
needlessly pessimistic from the perspective of checking the
schedulability of lower-criticality tasks. He proposed specify-
ing per-criticality-level WCET values for each task. That is,
each task τi has an execution time, ei.l, for each criticality
level l (depending on the scheduling scheme, it may not be
necessary to specify an execution time for a task at higher
criticality levels than its own). The level-l utilization of τi is
defined as ui.l = ei.l/pi. This has come to be known as the
mixed-criticality task model. In the variant of MC2 described
here, four criticality levels are assumed, denoted A through
D. MC2 was designed with avionics workloads in mind and
these workloads tend to be harmonic in nature [1].

Container abstraction. An essential part of mixed-criticality
scheduling is that lower-criticality tasks should not affect
higher-criticality tasks. This is very related to the concept of
temporal isolation. Such isolation can be achieved by support-
ing a container (or server) abstraction within the OS. In mixed-
criticality scheduling, a container is a group of tasks that is
a isolated from the rest of the system [3]. MC2 uses a two-
level hierarchical scheduling approach. When the scheduler
selects the next task to run on a processor, it first selects
the highest-priority container among the containers that may
execute tasks on that processor. Then, the scheduler selects
the highest-priority task from the selected container, according
to the associated scheduling algorithm of the container. The
assumed containers and their associated scheduling algorithms
are illustrated in Fig. 1, and explained below.

In MC2 as proposed by Herman et al. [1], tasks are assumed
to be periodic. Each level-l task τi is implemented as a single-
task container within a container for its level. A task τi is
assigned a budget equal to its execution time for its own level.
The budget is consumed when the associated task executes
and is replenished at time 0 and every pi time units. Budget
enforcement is enabled by default, but it can be disabled.



Level A. Level-A tasks are the highest-priority tasks in MC2.
They are statically assigned to processors and scheduled by
a predefined dispatching table similar to the cyclic executive
scheduling approach [17]. There are m level-A containers,
one per processor. The schedulability analysis of level A is
straightforward. Because level A is statically prioritized over
all other levels, its schedulability is not affected by any other
containers and is guaranteed at run time unless a level-A task
τi exceeds it level-A budget, ei.A.

If there are no level-A tasks to run on a processor at a
given instant, then MC2 considers level-B tasks. If a level-A
task completes before its assigned level-A budget has been
exhausted, then MC2 allows a lower-criticality task to run for
the duration of the remaining budget. This technique is known
as slack shifting [1]. The completed job whose remaining
budget is being consumed by a lower-criticality task becomes a
ghost job. The ghost job completes when its remaining budget
is equal to 0.

Level B. Similarly to level A, each processor has a level-B
container. Level-B tasks are scheduled in EDF order. Option-
ally, rate monotonic (RM) scheduling can be used at level
B. When no higher-criticality tasks are eligible to run on a
processor, or when a level-A task is running as a ghost job, the
scheduler selects the next job to run from the level-B container
if such a job is available on that processor. It is required that
the period of all level-B tasks is an integer multiple of the
level-A hyperperiod (the least common multiple of level-A
task periods) [4].

Level-B schedulability is achieved when the total level-B
utilization of level-A and -B tasks on each processor is at most
1, since level-B scheduling across the system resembles the P-
EDF scheduler and has similar theoretical properties. Level-B
schedulability is guaranteed at run time unless some level-A or
-B task exceeds its level-B execution time. Similarly to level-
A jobs, a level-B job becomes a ghost job when it completes
before exhausting its level-B budget; once it is a ghost job, its
budget can be consumed by lower-priority tasks.

Level C. Level-C tasks are globally scheduled by the G-
EDF algorithm. There is one global level-C container to which
all level-C tasks are assigned. The G-EDF scheduler can be
invoked on any processor whenever level-A or -B tasks are
not eligible to run on that processor.

A level-C schedulability test is given in [4] assuming level-
C execution times. Level-C schedulability is guaranteed at run
time as long as no level-A, -B, or -C task exceeds it level-C
execution time. Like higher-criticality levels, slack shifting is
employed at level-C to allow level-D tasks to run.

Level D. Level-D tasks are scheduled on a best-effort basis.
Such tasks are normal Linux tasks, which are not considered
to be HRT or SRT tasks. Thus, there is no container for level-
D tasks and no schedulability test is provided for this level.
Level-D tasks can be scheduled by a stock Linux scheduler
when there are no eligible real-time tasks to run.

Interrupt master. Dedicated interrupt handling, where all
interrupts are directed to a designated processor called the
interrupt master [16], can improve schedulability [1]. If an
interrupt master is used, all release and timer events occur on
the interrupt master. This enables budgeting for level-A and -B
tasks on the other processors to be less pessimistic, but level-
A and -B tasks on the interrupt master suffer from interrupt
handing overheads. MC2 supports using an interrupt master as
an optional feature.

Timer merging. In a harmonic task system, multiple jobs
are released frequently at the same time because the period
of all tasks are integer multiples of the smallest period in the
system. LITMUSRT [5] uses a timer to release real-time jobs.
In Linux, it is not guaranteed that all local timers start at the
same time. Due to this local-timer error, tasks at levels B and
C may have the same release time, yet their release timers
may fire in reverse-criticality order. In this case, a level-C
task is scheduled to run and then a level-B task is released
and scheduled to run, which preempts the previously scheduled
level-C task. To avoid this unnecessary preemption, an optional
feature called timer merging was proposed by Herman et al.
[1]. If enabled, release events within 1 µs of one another are
merged using an O(1) hash table operation. However, a global
lock is required to merge all timer events across multiple
processors. Thus, this feature can be enabled only when the
interrupt master is enabled, which redirects all release events
to a single processor.

Fine-grained locking. Each level-B and -C container has
its own release queue and ready queue, and each level-A
container has an associated dispatching table. Moreover, each
processor has state indicating the currently scheduled task.
The scheduler state data in MC2 must be synchronized across
processors to support MC2’s hierarchical scheduling approach.
To access this state, spin locks are used to synchronize data
structures on a per-container and per-processor basis [1].
The rt_domain_t data structure in LITMUSRT is used to
implement the ready and release queues needed to support
containers. Fig. 2 provides an illustration.

If we do not carefully optimize synchronization, then MC2

might suffer from significant overhead since the described state
is accessed frequently. To mitigate this overhead, Herman et
al. proposed a fine-grained state-locking mechanism [1]. This
mechanism ensures two properties: (a) a processor lock can
never be held for more than O(1) time; and (b) container
locks are never nested inside other container locks. Details
are provided in [1].

III. CURRENT MC2 BRANCHES

In this section, we discuss the two current branches of MC2

implemented in LITMUSRT.

A. MC2 with Virtual Time

In this subsection, we describe a branch of MC2 in which
virtual time is supported [9]. This version has been im-



����� ����� ����� �����

������	 ������	 ������	 ������	

������


������������

������� ������� ������� �������

������ ������ ������ ������

�����


���

�����


���

�����


���

�����


���

��������	

��
��
�������	

Fig. 2. Spin locks for containers and processors in the MC2.

plemented based on the LITMUSRT 2011.1 release (Linux
2.36.4). The usage of virtual time provides a mechanism to
recover from overload of the level-C subsystem (described in
more detail below), which can occur when any job at or above
level C overruns its level-C WCET. This branch assumes a
sporadic task model for level-C tasks since changes to the
rate of virtual time alter the job-release frequencies at level C.
In this branch, the interrupt master and timer merging are not
supported.

Virtual time. Erickson et al. [9] modified MC2 to support
recovering from overload at level C. This can occur when any
job at or above level-C overruns its level-C execution time.1 In
this situation, all successive job response times might increase
permanently. Such ill effects can be dealt with by changing
scheduling decisions until the overload situation has abated. In
this MC2 branch, such decisions are altered by using the idea
of virtual time from Zhang [18] and Stoica et al. [19], where
job releases are determined by a virtual clock that can change
speeds with respect to the actual clock. Virtual time v(t) is
based on a global speed function s(t). When a task overruns its
level-C execution time and its response time exceeds a given
tolerance value, the level-C scheduler slows down virtual time
and reduces the job-release frequency at level C. The MC2

branch with virtual time is comprised of a kernel component
that manages virtual time and a userspace component that
monitors job releases and completions. The kernel component
controls job releases based on virtual time. The userspace
component, called a monitor program, collects job-release and

1If budget enforcement of level-C tasks is disabled, a level-C job can
overrun its level-C WCET. Even with budget enforcement, level-A and -B
tasks can overrun their level-C WCETs.

-completion information from the kernel to detect an overload
situation or an idle instant. The monitor program is responsible
for determining the virtual-clock speed. This virtual-clock
mechanism affects only level-C tasks, not level-A or -B tasks.
Detected idle instants are used to determine when recovery is
completed, at which point virtual-time speed returns to actual-
time speed. Experimental results show that the scheduling
overheads and the execution time of the userspace monitor
program are small. The introduction of virtual time increases
scheduling time by about 40% on average and by 100% in the
worst case. Each invocation of the monitor program completes
in approximately 1 ms in the worst case [9].

GEL-v scheduling. In the MC2 variant proposed by Mol-
lison et al. [4], level-C tasks are scheduled by using G-EDF.
As noted by Erickson et al. [20], other G-EDF-like (GEL)
schedulers can provide better response-time bounds, so in
this branch, arbitrary GEL schedulers are allowed at level
C. Furthermore, since the virtual clock is used to manage
job releases of level-C tasks, a modified version of GEL
scheduling, called GEL with virtual time (GEL-v) scheduling,
and a generalized version of the sporadic task model, called
the sporadic with virtual time and overload (SVO) model, are
used for level-C tasks. Under GEL-v scheduling, each job τi,k
is prioritized on the basis of a virtual priority point (PP), and
each task τi is characterized by a minimum separation time
Ti > 0, and a relative PP Yi ≥ 0, both with respect to virtual
time. At time 0, s(t) is equal to 1, which means that actual
time and virtual time progress at the same rate. However, when
an overload is detected, the scheduler decreases s(t), which
reduces the progress of virtual time. As explained above, this
slows down the rate of future job releases of level-C tasks,
and creates extra slack to enable the system return to normal
behavior.

B. MC2 with Cache Management

Another MC2 branch with cache management has been
implemented by Ward et al. [7]. In this branch, several
shared-cache management techniques have been implemented
assuming a quad-core ARM machine. However, this MC2

branch only supports the level-B and -C subsystems. The
MC2 branch with cache management uses cache lockdown
mechanisms that requires hardware support. This is why this
MC2 branch works only for a specific ARM platform, which
provides the needed cache lockdown instructions.

Cache management. Ward et al. [7] proposed a cache
management technique that preallocates the dynamic memory
a job uses before the job begins execution. Page coloring is
used to allocate the memory pages required by a job. Under
page coloring, a color is assigned to each page to control the
mapping address of the page. The pages that have different
colors map to different cache sets, so they cannot conflict
with each other in the last level cache (LLC). This is used
in conjunction with cache lockdown to prevent active pages
for being evicted during the execution of the job. The cache



is treated as a shared resource that can be either preemptive
or non-preemptive, yielding two possible cache allocation
policies: cache locking and cache scheduling. Under cache
locking, the processors and the cache are not preemptible,
while under cache scheduling, they are. In this MC2 branch,
cache management techniques are applied to level-B tasks.
These cache-management techniques are not applied at level
C, which is provisioned using less pessimistic WCETs. The
MC2 scheduler loads the memory pages of the next level-
B job to execute into the shared LLC and flushes the pages
used by the previous job. This results in additional scheduling
overheads. However, it has been shown that cache management
enables significant schedulability gains by reducing level-B
WCETs.

Resource sharing. Cache locking ensures that the pages
required by a job reside in the cache during the entire duration
of its execution. This policy requires a multiprocessor real-
time locking protocol: the cache is treated as a shared resource
that has k replicas as given by the number of cache ways.
The RNLP [21], which optimally supports the simultaneous
locking of replicated resources, is used for this purpose. For
example, if a job requires r pages with the same color, then it
must lock r replicas of that color. Also, the job may require
several colors simultaneously. To support these requirements,
this MC2 branch uses dynamic group locking as proposed by
Ward et al. [22] in the context of the RNLP. Dynamic group
locks allow a job to lock multiple resources with one lock
request rather than requesting each resource individually in a
nested fashion, which can increase system-call overhead and
blocking times. The RNLP controls all colors and ways by
using a FIFO queue for each way of each color. The maximum
duration of blocking for all cache colors is O(mr/k) where k
is the number of ways available and r is the maximum number
of ways per color requested by any job [21].

C. MC2 in LITMUSRT 2014.1

The previous two branches of MC2 in LITMUSRT have not
been merged because they require different microarchitectures
and the MC2 patches are based on different Linux kernel
versions (2.6.36 and 3.0.0). We are currently trying to unify
the two branches with their features as a kernel configuration.
This work is not finished at this time. We discuss some of the
issues in unifying both branches in this section.

Container implementation. MC2 ensures temporal isolation
by supporting a container abstraction. However, LITMUSRT

currently does not support such an abstraction. The previous
MC2 implementation considers a real-time task as a container.
Thus, the data structure rt_param in LITMUSRT has extra
variables to support container functions, such as replenishment
and consumption. The MC2 branch with virtual time uses
real_release and real_deadline variables to keep
track of a job’s release and completion time, while the MC2

branch with cache management uses another rt_job data
structure, user_job. We need to merge these two different

data types to support the container abstraction. This approach
fulfills its requirements, but it is hard to trace the behaviors
of both a container and each individual task in the container,
and this implementation is not well-suited to job handling in
LITMUSRT.

More fine-grained locking. As shown in Fig. 2, there is a
lock for each domain. The domain structure at levels B and C
includes release and ready queues. The scheduler is required to
hold the ready-queue lock when a task is added to the release
queue and vice versa. This domain locking at levels B and C
should be more fine-grained. The locks at level A are fine-
grained enough because the domain structure at level-A only
has a dispatching table.

Cyclic executive scheduling table. Making a scheduling
table for level-A tasks is quite complicated now. We currently
use the Linux proc file system to construct a table, and
we must change the LITMUSRT scheduler plugin several
times whenever changing a budget or adding a new task.
We want to devise a more convenient way to manipulate the
scheduling table. In both MC2 branches, the scheduling table
can be accessed by read_proc_t and write_proc_t
function pointers. However, in Linux 3.10 (the base version
of LITMUSRT 2014.1), the structure proc_dir_entry
does not have those function pointers anymore. We need to
implement proc_fops operations to unify the two branches.

IV. CONCLUSION

In this paper, we have discussed the current status of
work on MC2, the first mixed-criticality scheduling framework
implemented on multicore platforms. Due to the different
microarchitectures and base kernel versions in LITMUSRT,
two branches of MC2 exist. We hope that the unified MC2 we
are constructing will provide more features and portability as
a mixed-criticality research testbed.

In future work, we plan to extend MC2 to allow tasks to
acquire locks and have precedence constraints, in order to
enable more realistic workloads. In addition, we hope to ease
or remove the hardware dependency of the cache-management
MC2 branch. The cache-management MC2 branch requires
cache-lockdown instructions, which are not widely supported.
We plan to investigate cache allocation mechanisms to remove
the preloading and flushing of memory pages whenever a job
is scheduled.

REFERENCES

[1] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson. RTOS
support for multicore mixed-criticality systems. In Proceedings of the 18th
IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 197–208, April 2012.

[2] S. Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proceedings of the 28th IEEE
Real-Time Systems Symposium, pages 239–243, December 2007.

[3] J. Anderson, S. Baruah, and B. Brandenburg. Multicore operating-system
support for mixed criticality. In Proceedings of the Workshop on Mixed
Criticality: Roadmap to Evolving UAV Certification, April 2009.



[4] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos. Mixed-
criticality real-time scheduling for multicore systems. In Proceedings
of the 7th IEEE International Conference on Embedded Software and
Systems, pages 1864–1871, June 2010.

[5] LITMUSRT homepage. http://www.litmus-rt.org/.
[6] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time

Operating Systems. PhD thesis, The University of North Carolina, Chapel
Hill, 2011.

[7] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared caches
more predictable on multicore platforms. In Proceedings of the 25th
Euromicro Conference on Real-Time Systems, pages 157–167, July 2013.

[8] A. Burns and R. Davis. Mixed criticality systems - a review. http:
//www-users.cs.york.ac.uk/∼burns/review.pdf, December 2013.

[9] J. Erickson, N. Kim, and J. Anderson. Recovering from overload in
multicore mixed-criticality systems. In submission, 2014.

[10] B. Brandenburg, J. Calandrino, and J. Anderson. On the scalability of
real-time scheduling algorithms on multicore platforms: A case study.
In Proceedings of the 29th IEEE Real-Time Systems Symposium, pages
157–169, December 2008.

[11] H. Leontyev and J. Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. The Journal of Real-Time Systems, 44(1):26–
71, February 2010.

[12] U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling
on a multiprocessor. The Journal of Real-Time Systems, 38(2):133–189,
February 2008.

[13] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev, and J.
Anderson. LITMUSRT: A status report. In Proceedings of the 9th Real-
Time Linux Workshop, pages 107–123, November 2007.

[14] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In Proceedings of the 27th IEEE Real-Time Systems
Symposium, pages 111–123, December 2006.

[15] B. Brandenburg and J. Anderson. Feather-trace: A light-weight event
tracing toolkit. In Proceedings of the 3rd International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications,
pages 20–27, July 2007.

[16] B. Brandenburg and J. Anderson. On the implementation of global real-
time schedulers. In Proceedings of the 30th IEEE Real-Time Systems
Symposium, pages 214–224, December 2009.

[17] T. Baker and A. Shaw. The cyclic executive model and ADA. The
Journal of Real-Time Systems, 1(1):7–25, 1989.

[18] L. Zhang. Virtual clock: A new traffic control algorithm for packet
switching. In Proceedings of the ACM Symposium on Communications
Architectures & Protocols, pages 19–29, September 1990.

[19] I. Stoica, H. abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and C.
Plaxton. A proportional share resource allocation algorithm for real-time,
time-shared systems. In Proceedings of the 17th IEEE Real-Time Systems
Symposium, pages 288–299, December 1996.

[20] J. Erickson, J. Anderson, and B. Ward. Fair lateness scheduling: Reduc-
ing maximum lateness in G-EDF-like scheduling. The Journal of Real-
Time Systems, 50(1):5–47, 2014.

[21] B. Ward and J. Anderson. Supporting nested locking in multiprocessor
real-time systems. In Proceedings of the 24th Euromicro Conference on
Real-Time Systems, pages 223–232, July 2012.

[22] B. Ward and J. Anderson. Fine-grained multiprocessor real-time locking
with improved blocking. In Proceedings of the 21st International Confer-
ence on Real-Time Networks and Systems, pages 67–76, October 2013.


