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Abstract
Dataflow software architectures are prevalent in prototypes
of advanced automotive systems, for both driver-assisted
and autonomous driving. Safety constraints of these sys-
tems necessitate real-time performance guarantees. Automo-
tive prototypes often ensure such constraints through over-
provisioning and dedicated hardware; however, a commer-
cially viable system must utilize as few low-cost multicore
processors as possible to meet size, weight, and power con-
straints. In short, these platforms must do more with less. To
this end, we develop cache-aware and overhead-cognizant
scheduling techniques that lessen guaranteed response times
without unnecessarily constraining platform utilization. We
implement these techniques in PGMRT, a portable middle-
ware framework for managing real-time dataflow applica-
tions on multicore platforms. The efficacy of our techniques
is demonstrated through overhead-aware schedulability ex-
periments and runtime observations. Results for our test
platform show that cache-aware clustered scheduling out-
performs naı̈ve partitioned and global approaches in terms
of schedulability and end-to-end response times of dataflows.

1 Introduction
Graph-based software architectures, often referred to as
dataflow architectures, are common to software applications
that process continual streams of data or events. In such
architectures, vertices represent sequential code segments
that operate upon data, and edges express the flow of data
among vertices. The flexibility offered by such an archi-
tecture’s inherent modularity promotes code reuse and par-
allel development. Also, these architectures naturally sup-
port concurrency, since parallelism can be explicitly de-
scribed by the graph structure. These characteristics have
made dataflow architectures popular in multimedia technolo-
gies [13, 24] and the emerging field of computational pho-
tography [2, 27]. Dataflow architectures are also prevalent
in the sensor-processing components in prototypes of ad-
vanced automotive systems, for both driver-assisted and au-
tonomous driving (e.g., [20, 25, 26]). While many domains
with dataflow architectures have timing requirements, the
automotive case is set apart since timing violations may re-
sult in loss of life or property.

In addition to timing requirements, an automotive plat-
form has size, weight, and power (SWaP) and manufactur-
ing cost constraints. Such constraints are largely ignored
in many existing prototypes of advanced automotive sys-
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tems, which typically rely on over-provisioning and ded-
icated hardware to support real-time dataflow computa-
tions [20, 25, 26]. If advanced automotive features are to be
commercially viable, then such computations must instead
be consolidated onto as few low-cost processors as possi-
ble. However, consolidation only bolsters the need for effi-
cient real-time scheduling techniques since more computa-
tions compete for fewer available processors.

Real-time dataflows. A number of methods for modeling
the real-time behavior of dataflow applications have been de-
veloped for multiprocessor and distributed systems [4, 12,
15, 23]. Typically, such applications are modeled as directed
acyclic graphs (DAGs), with nodes denoting tasks and edges
denoting producer/consumer relationships. The predominant
approach has been to map such a DAG onto a set of con-
nected, but independently scheduled, processors. Under this
partitioned approach, each task (DAG node) is statically as-
signed to a single processor. As with traditional partitioned
multiprocessor scheduling, this method may suffer from uti-
lization loss due to bin-packing problems.

More recently, Liu and Anderson explored dataflow ap-
plications on globally scheduled multiprocessors, wherein
DAG tasks share a single run queue, and thus may migrate
among processors [18]. Liu et al. showed that task response
times are bounded under global earliest-deadline-first (G-
EDF) scheduling, without utilization loss. Liu et al. extended
these results to apply in distributed systems comprised of
globally scheduled multicore machines [19]; these results
can also be applied to a single cluster-scheduled multicore
system (where groups of processors share a run queue).
However, solutions optimized for shared-memory commu-
nication have not been investigated.

A similar DAG-based model has been used to analyze the
hard real-time scheduling under G-EDF of tasks with paral-
lelism within jobs [14, 17, 21, 22].

Sporadic task systems and minimizing response-time
bounds. Devi et al. were the first to demonstrate that
deadline-tardiness bounds (i.e., response-time bounds) can
be derived for ordinary sporadic tasks scheduled by G-EDF,
without utilization loss [6]. However, Bastoni et al. showed
that algorithms like G-EDF may incur high runtime over-
heads and suffer from heavy cache-affinity loss [3]. As a re-
sult of these factors, real-time schedulability is reduced and
the response-time bounds of schedulable task sets increase.
Clustered schedulers, such as clustered EDF (C-EDF), can
balance utilization loss against high overheads, striking a
middle ground between partitioned and global scheduling.

Recently, Erickson et al. showed that “G-EDF-like”
(GEL) schedulers, such as the global fair-lateness (G-FL)
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Figure 1: Vehicle and pedestrian detection and tracking component, expressed as a DAG. eji denotes the execution time of task T j
i .

scheduler, have provably smaller response-time bounds than
G-EDF [9]. Under GEL schedulers, priority points (PPs) dis-
tinct from deadlines are defined to minimize worst-case re-
sponse times. A GEL scheduler uses these PPs as pseudo-
deadlines. Erickson et al. also showed that job splitting may
further minimize bounds on response times [8]. Here, the
scheduling priority of a job decreases as the job consumes
discrete chunks of execution budget, effectively splitting
each “real” job into a sequence of sub-jobs. Clustered vari-
ants of GEL schedulers can also be created by using the GEL
scheduler for each cluster of processors.
Contributions. Future advanced automotive systems need
computing platforms that support efficient real-time schedul-
ing of dataflow applications on highly-utilized multicore
processors. With this firmly in mind, we consider the prob-
lem of scheduling sporadic DAGs on multicore platforms
with the goals of: (i) minimizing bounds on end-to-end la-
tency; (ii) maximizing system utilization; (iii) improving an-
alytical schedulability and observed performance; and (iv)
providing a real-time software platform from which we may
draw practical conclusions and facilitate future research. We
meet (i) and (ii) by extending Liu et al.’s dataflow analy-
sis and integrating it with Erickson et al.’s techniques to
lessen DAG end-to-end response-time bounds. We avoid
the high overheads of global scheduling through the use
of the clustered fair-lateness (C-FL) scheduler. We also
use job splitting to further reduce response times. We ad-
dress (iii) through a cache-aware heuristic to assign tasks
to clusters that promotes cache reuse and reduces commu-
nication costs. To meet (iv), we created portable real-time
dataflow scheduling middleware called PGMRT, which we
run atop LITMUSRT, a Linux-based real-time operating sys-
tem jointly developed by UNC and MPI.1. Using this imple-
mentation, we gathered overhead measurements, which we
then integrated into overhead-aware schedulability experi-
ments. We also conducted experiments in which observed
end-to-end DAG response times were recorded under vari-
ous configurations of PGMRT to determine which configu-
rations offer the best real-time behaviors while maximizing
system utilization.
Organization. In the rest of the paper, we first pro-
vide needed background and review relevant prior work
(Secs. 2–4). We then present a heuristic for mapping DAG
tasks to clusters to promote efficient cache reuse (Sec. 5),
discuss the implementation of PGMRT (Sec. 6), present our
experimental results (Sec. 7), and conclude (Sec. 8).

1All source code is available at www.litmus-rt.org.

2 Background
We begin with additional motivation behind the graph-based
scheduling of automotive applications. Fig. 1 depicts a hypo-
thetical vehicle and pedestrian detection and tracking com-
ponent of an advanced automotive system. A video camera
feeds the source of the graph with video frames at 30Hz. T 1

1

converts the raw camera data into the common YUV color
image format. T 1

1 hands the image to T 7
1 for display. It also

passes the data to T 2
1 for computer vision processing. Vi-

sion algorithms often operate only on grayscale images, so
T 2

1 strips the color components (U and V) from the image
to produce a more compact grayscale image. T 2

1 then sends
the grayscale image to T 3

1 and T 4
1 for vehicle and pedestrian

detection, respectively. Although vehicle and pedestrian de-
tectors may use similar algorithms, T 3

1 requires less execu-
tion time because it limits its search to the immediate road
area before the vehicle. Information on detected vehicles and
pedestrians is passed to T 5

1 and T 6
1 , respectively, for track-

ing. Here, detected objects are correlated with historical data
to produce an estimated trajectory and speed for each ob-
ject. This data is sent to T 7

1 , where the relevant information
is overlaid on top of the original color image.

In this paper, we explore the use of C-FL scheduling
in safety-critical applications like the one above. This may
seem like an odd choice since EDF-like global and clus-
tered schedulers, like C-FL, are commonly associated with
“soft real-time” systems (i.e., those generally regarded as
non-safety-critical) because in the absence of severe utiliza-
tion constraints, analysis “only” provides bounds on dead-
line tardiness. However, C-FL is a viable choice in this do-
main for several reasons. First, C-FL still provides provable
bounds on end-to-end latency for DAGs—timing properties
can be guaranteed. Second, a survey of automotive studies on
driver reactions places an alert driver’s reaction time around
700ms [11]. Some automotive software components may
only have to react to events within this relatively lax time
window in order to ensure safe operation. Finally, C-FL en-
ables a high degree of system utilization. This is important
in light of SWaP concerns. This last reason motivates our
departure from partitioned fixed-priority scheduling, as pre-
scribed by the AUTOSAR automotive standard [1], which
suffers from well-known utilization constraints. We hope
this work may be informative to future automotive standards.

3 System Model
In this section, we present the implicit-deadline sporadic
DAG task model, which is our focus herein. Such a task



Figure 2: Precedence con-
straints within a DAG.

system is comprised of a set
τ = {T1, T2, . . . , Tn} of n
DAGs. Each DAG is a set Ti =
{T 1

i , T
2
i , . . . , T

zi
i } of zi tasks,

with producer/consumer rela-
tionships. Each task releases
a (potentially infinite) series
of jobs T j,1i , T j,2i , . . .. An ex-
ample DAG T1 is depicted in
Fig. 2. Each edge is directed
from a producer task that pro-
duces data to a consumer task
that consumes that data. A particular task T ji ’s producers,
prod(T ji ), are those on edges for which T ji is the consumer,
and its consumers, cons(T ji ), are those on edges for which
T ji is the producer. The maximum number of bytes that a job
of T ji can produce for T `i to consume is denoted as bj→`

i .
Each job must wait to begin execution until one job from
each of its producers has completed, so that the necessary
input data is available. For example, in Fig. 2, for any k,
T 4,k

1 needs input data from each of T 2,k
1 and T 3,k

1 , so it must
wait until those jobs complete.

To simplify analysis, each DAG Ti has exactly one source
task T 1

i , which only has outgoing edges, and one sink task
T zii , which has only incoming edges. Multi-source/-sink
DAGs may be supported with the addition of singular “vir-
tual” sources and sinks that connect multiple sources and
sinks, respectively. The depth of a task T ji is the number of
edges on the longest path between T 1

i and T ji , and the height
of a DAG is the depth of its sink task. For example, the depth
of T 4

1 in Fig. 2 is two, and T 4
1 is the sink task so the depth of

T1 is two. Also, each DAG has a common minimum separa-
tion time pi for all of its tasks. Each job of any task in Ti has
a deadline pi time units after it is released. Each task T ji also
has a parameter eji , which denotes the worst-case execution
time (WCET) for any of its jobs. This parameter does not
include the cost of consuming data from prod(T ji )—we ac-
count for this later in analysis. We assume that τ is scheduled
on an identical multiprocessor.

Prior work [10, 18, 19] considered the more general
processing graph method (PGM) to describe DAGs, where
DAG nodes may have different periods. The implicit-
deadline sporadic DAG model above is a restricted case of
PGM DAGs. Our restricted model is sufficient to schedule
the automotive workloads we consider. Further, the end-to-
end latency bounds we show in Sec. 4 are tighter than would
otherwise be possible using the more generalized analy-
sis [18, 19]. However, the techniques herein can be applied
to DAGs with nodes of different periods, so we present end-
to-end latency bounds for such DAGs in [7].

4 Determining End-to-End Latency

We now discuss how to apply results from [19] on PGM-
based systems to analyze the end-to-end response time (or
latency) of a DAG Ti. In [19], job release times and dead-
lines are computed on-the-fly such that tasks T ji ∈ Ti behave

as independent sporadic tasks. Here, we present the ideas be-
hind this technique and describe how it can be applied in our
context.

The analysis from [19] is general enough to apply to
clustered algorithms wherein an intra-cluster scheduler is
used from a broad class of window-constrainted [16] global
scheduling algorithms. Under a window-constrained global
algorithm, all jobs share a single run queue, and each job
is prioritized on the basis of a priority point (PP) that can
move during execution, but that must remain within a con-
stant distance of the job’s deadline. The released but unfin-
ished jobs with the earliest PPs are scheduled for execution.
The most well-known window-constrained algorithm is G-
EDF, which uses the deadline of each job as its PP. However,
Erickson et al. [9] demonstrated that allowing PPs set earlier
than deadlines can result in better response-time bounds. The
G-FL scheduler, mentioned in Sec. 1, functions in this way.
Erickson et al. [8] also showed that response time bounds
can be further improved by simulating a G-FL schedule of a
task system with more frequent releases of smaller jobs. This
method is referred to as job splitting. Unlike G-EDF and ba-
sic G-FL, G-FL with job splitting moves the PP of a job dur-
ing execution. However, it does so in a way that maintains
the window-constrained property. As noted above, clustered
variants of these global algorithms can be obtained by using
the global algorithm to schedule the tasks within each clus-
ter. For the simple examples provided in this section, there is
only one cluster, so G-EDF and G-FL are identical to C-EDF
and C-FL, respectively, their clustered counterparts.

In a DAG Ti, the source task T 1
i is assumed to follow the

implicit-deadline sporadic task model: its releases are sepa-
rated by at least pi time units, and each job’s deadline is pi
time units after its release. We define for each job an ideal
release and an ideal deadline that are identical to the release
time and deadline of the corresponding job from the source
task. We also define for each job T j,ki an actual release that
is sometimes later than its ideal release, and a corresponding
actual deadline pi units later. The source task is a special
case in that its actual and ideal releases are identical, and
thus its actual and ideal deadlines are identical. Scheduler
decisions are always based on PPs derived from actual dead-
lines rather than ideal ones.

The primary purpose of delaying the actual release is to
model the fact that a job cannot run before its producers
have completed. Because G-EDF is the simplest window-
constrained algorithm, we show in Fig. 3(a) the G-EDF
scheduling of a DAG with the same structure as the DAG
from Fig. 2 (ignoring overheads for simplicity). Observe that
the actual releases of T 2,1

1 and T 3,1
1 are at time 6, when

T 1,1
1 completes. Actual releases and deadlines must follow

the sporadic task model. For example, consider time 33 in
Fig. 3(a), when T 3,3

1 finishes early. Because all producers of
T 4,3

1 are now complete, T 4,3
1 commences execution at time

33. However, because T 4
1 ’s last actual release was at time

24, the actual release of T 4,3
1 is not until time 34, and its ac-

tual deadline is at time 44. This is to ensure that the deadline
used by the scheduler follows the sporadic task model. Prior
response-time analysis [9] remains correct when jobs may



(a) System scheduled under G-EDF.

(b) System scheduled under G-FL.

Figure 3: Example schedules of the DAG depicted in Fig. 2 with
m = 2, p1 = 10, e11 = 6, e21 = 2, e31 = 6, and e41 = 6.

execute before their actual release times, as long as their ac-
tual deadlines follow the sporadic task model. Thus, if a job’s
ideal release precedes its actual release, and all of its prece-
dence constraints are satisfied, then it may commence exe-
cution if it has sufficient priority, as at time 33 in Fig. 3(b).

If the tasks in τ can be assigned onto clusters of CPUs
such that no individual cluster is overutilized, then be-
cause actual deadlines follow the sporadic task model, any
scheduler using a window-constrained scheduling algorithm
within each cluster can ensure that no job T j,ki completes
more than some per-task constantRji units (i.e., the response
time bound) after its actual release, as shown in [16].

Liu et al. [19] demonstrated that this property can be
used to provide a bound relative to each job’s ideal release,
by showing that actual and ideal releases only differ by a
bounded amount. The following theorem is similar to Thm. 3
in [19], but is much less pessimistic. (The improvements are
described in an online appendix [7].)

Theorem 1. Suppose that the tasks in τ can be assigned onto
clusters of CPUs such that no individual cluster is overuti-
lized. If Θ is the set of all tasks along the worst-case path2

from T 1
i to T ji , including both T 1

i and T ji , then any job T j,ki
completes within ∑

T `
i ∈Θ

R`i

units of its ideal release.
We consider the end-to-end latency for an entire graph,

rather than for a single job. However, by our definition of
ideal releases, T zii has the same ideal release as T 1

i . There-

2That is, the path that maximizes the given sum.
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fore, the latency of the graph is simply the bound provided
by Thm. 1 with j = zi.

Although the analysis in [19] was shown to be cor-
rect whenever a window-constrained scheduling algorithm
is used within each cluster, it was only experimentally eval-
uated using C-EDF (and it was not evaluated based on a real
scheduler implementation). As mentioned above, C-FL can
provide superior response-time bounds by using PPs that are
earlier than deadlines. C-FL biases scheduling priority to-
wards tasks with larger eji values. Recall that, because there
is only one cluster in the example we are considering, G-FL
is identical to C-FL. An example of the operation of G-FL is
depicted in Fig. 3(b). Observe that, in comparison with the
G-EDF schedule in Fig. 3(a), T 4,2

1 finishes at time 28 instead
of time 30, T 4,3

1 finishes at time 37 instead of time 39, and
so on. Thus, using G-FL or C-FL can reduce the end-to-end
latency of a graph, as the theoretical bounds in [9] indicate.
Although not pictured due to space constraints, job splitting
can further reduce the latency of each graph. In this paper,
we explore the use of both techniques.

5 Assigning Tasks to Clusters
We now examine the problem of assigning DAG tasks to pro-
cessor clusters, and present an assignment heuristic designed
to promote efficient cache sharing among DAG tasks. We
also develop a method for determining overheads pertaining
to the data passed between tasks.

In a shared-memory system, node output data is written
directly to memory—there is no explicit message passing
of data among nodes. Data may reside anywhere within the
system’s memory hierarchy, from the private L1 cache of
a processor to main memory. The cost of reading this data
depends upon (i) the location of data within the memory hi-
erarchy, and (ii) the processor from which the read is made.
Reads become more costly as the distance between the data
and the reader increases. For example, the cost of reading
data from a processor’s own L1 cache is cheap, while read-
ing data from an L3 cache is more expensive.

Consider the memory hierarchy of a dual-socket twelve-
core system depicted in Fig. 4. Here, there are private per-
CPU 192KB L1s for data (L1-D) and instructions (L1-I),
pair-wise shared 3MB L2s, per-socket 12MB L3s, and fi-
nally, main memory. For simplicity, let us assume the caches
are coherent, inclusive, fully associative, and follow a least-



recently-used (LRU) eviction policy.3 Suppose processors
that share a common L2 are cluster-scheduled, as depicted
in Fig. 4, and we wish to map the DAG depicted in Fig. 2
to this system. Further suppose that T 1

1 produces 128KB and
1MB of data for T 2

1 and T 3
1 , respectively, and T 2

1 and T 3
1 pro-

duce 128KB and 1MB of data respectively for T 4
1 . Worst-fit

decreasing is a commonly studied partitioning heuristic, in
which tasks are allocated to clusters in order of decreasing
utilization, and each task is allocated to the cluster with the
largest available capacity. Under such a heuristic, each task
would be put in a separate cluster: T 1

1 in C1, T 2
1 in C2, T 3

1

in C3, and T 4
1 in C4. With this assignment, the read costs of

T 2
1 and T 3

1 can be no less than reads from the L3 shared by
C1, C2, and C3, as this is their closest common cache. Costs
are greater for T 4

1 since C4 has no common cache with C2

or C3. A far more cache-efficient strategy is to put all tasks
in C1, since all the written data (2.25MB) can fit within C1’s
3MB L2 cache. Thus, the end-to-end latency of this graph
may be less since each task executes for a shorter duration.

This illustrates that a cache-efficient partitioning heuris-
tic for mapping nodes to clusters should be cognizant of the
system’s memory hierarchy and associated costs. Ultimately,
this heuristic should place related nodes in the same or clos-
est adjacent cluster, as long as schedulability is maintained.
This might not actually enhance schedulability if conserva-
tive assumptions are made with respect to caches in timing
analysis, but runtime performance may still be positively im-
pacted, which increases safety margins.

5.1 Cache-Aware Task Assignment

In this section, we present a cache-aware task assignment
heuristic, which is shown in Fig. 5. This heuristic was de-
signed assuming the system ofm processors consists ofm/c
clusters, each containing c processors. The heuristic reverts
to the worst-fit decreasing heuristic after all clusters have to-
tal utilization exceeding an aggressiveness factor h. Since
system overheads are charged later in schedulability analy-
sis, the aggressiveness factor prevents loading a cluster to
the degree that even small overheads lead to overutilization
while other clusters remain underutilized.

We keep track of the following quantities. T is the set of
unassigned tasks from all DAGs, initially T =

⋃
Ti∈τ Ti.

C = {C0, C1, . . . , Cm/c} is the set of all clusters. a(T ji ) for
each T ji is the cluster to which T ji is assigned, initially Nil,
indicating that it has not been assigned to a cluster.

We also utilize several functions. cost(T ji ) is the cost of
reading all data produced for T ji by its producers, accord-
ing to the cluster assignments of each T `i ∈ prod(T ji ) and
T ji . If some a(T `i ) or a(T ji ) is Nil, then the tasks are as-
sumed to be partitioned the farthest apart with respect to the
memory hierarchy. w(T ji ) , (eji + cost(T ji ))/pi is the ap-
proximated utilization of T ji after accounting for commu-
nication overheads. u(Ck) ,

∑
Tk
i ∈Ck

w(T jk ) is the total
utilization of a cluster, including communication overheads.
Finally, min(C) is the set of clusters with minimum u(Ck).

3We address the practicality of these assumptions later in this paper.

PICKCLUSTER(T j
i : task, Q: list of clusters)

1 X := from Q, select clusters that minimize w(T j
i )

2 X := from X , select clusters that minimize:∑
T `
i ∈cons(T

j
i )

w(T `
i )

3 X := from X , select clusters that places T j
i closest to

other tasks of the same graph
4 return first cluster in min(X)

CACHEAWAREPARTITION

1 Sort T by w(T j
i ) in decreasing order

2 for each T j
i in the first (m−m/c) ordered tasks ∈ T

3 a(T j
i ) := PICKCLUSTER(T j

i ,min(C))

4 for each remaining T j
i ∈ T

5 Q := {q | (q ∈ C) ∧ (u(q) + w(T j
i ) ≤ h)}

6 if Q 6= ∅
7 a(T j

i ) := PICKCLUSTER(T j
i , Q)

8 else
9 a(T j

i ) := PICKCLUSTER(T j
i ,min(C))

Figure 5: Cache-aware task assignment heuristic.

Algorithm description. We first describe PICKCLUSTER,
which is used to select the best cluster for a particular task
T ji . It accepts a parameter Q, a list of candidate clusters. In
line 1, it first attempts to select the cluster that will result
in the smallest value of w(T ji ). If there is a tie, then line 2
will continue to select the cluster that minimizes the cost of
any consumers that are already assigned. If there is still a
tie, then line 3 will select the cluster that places T ji closest
to other tasks in Ti, even if those tasks are neither producers
nor consumers of T ji . Finally, if there is still a tie, the cluster
with minimum utilization is selected in line 4.

We now describe CACHEAWAREPARTITION, which per-
forms the actual partitioning. The first part of our heuristic is
based on some of the details from the response-time analysis
in [9]. That analysis considers the number of tasks that may
execute while a single processor is left idle. Ultimately, the
c − 1 tasks of greatest utilization within a cluster have the
most significant impact on response-time bounds. A cluster
with a disproportionate number of high-utilization tasks may
result in larger response-time bounds in comparison to clus-
ters with lighter-utilization tasks, even if these clusters are
equally loaded. We want to avoid this problem. Thus, we
spread the first (m/c) · (c− 1) = m−m/c tasks as evenly
as possible across clusters by using the worst-fit decreasing
heuristic. This is done in lines 1–3. Ties are broken using
PICKCLUSTER. For each remaining task (see line 4), we se-
lect in line 5 the set of all clusters for which adding T ji will
not cause the cluster’s utilization to exceed the aggressive-
ness factor h. If there are such clusters, then line 7 selects the
best cluster using PICKCLUSTER. If not, then the algorithm
reverts to a worst-fit heuristic (line 9), using PICKCLUSTER
to break ties.

5.2 Assessing Data Passing Costs
The performance of CACHEAWAREPARTITION hinges on
the function cost(T ji ) used to estimate the cost of passing
data between tasks. We now describe a method for estimat-
ing cost(T ji ) that assesses the costs associated with passing
data between tasks on a multicore platform with a complex



memory hierarchy.
The value of cost(T ji ) is obtained from careful measure-

ments of cache behavior. We use an experimental method
modeled after the “synthetic method” described in [5] that
is used to assess cache preemption and migration delays. A
non-preemptive instrumented process records the time taken
to read a prescribed amount of sequential data from a “hot”
cache. The process suspends for a short duration, resumes
on a random processor, and rereads said data from the now
“cold” cache. A cost is determined by subtracting the hot
measurement from the cold. We classify this measurement
according to the closest shared cache between the read-
issuing processors. Measurements are classified as “mem-
ory” if there is no shared cache between them. After many
thousands of measurements, we derive a lookup table in-
dexed by closest common cache and data size. We collect
two datasets using this method: (i) an “idle” dataset where
the instrumented process runs alone, and (ii) a “polluter”
dataset where “cold” measurements are taken in the pres-
ence of cache-trashing processes that introduce contention
for both caches and memory bus.

These two datasets actually yield two variants of the
cost(T ji ) function that provide lower and upper bounds of
actual communication overhead. The lower bounds we ob-
tain are based upon certain ideal assumptions (see below)
regarding cache behavior. This is acceptable, because our
main intent is to produce task assignments that improve run-
time performance and hence increase safety margins, rather
than to determine precise overhead costs. Indeed, rigorous
analysis of cache behavior for the purpose of precise timing
analysis is still an unresolved issue in the context of multi-
core platforms. In the experiments presented in Sec. 7, we
present schedulability results for the two extremes of “idle”
and “polluter” overheads. If adequate timing analysis tools
were available for multicore platforms, they would likely
yield schedulability results between these two extremes.

The cost(T ji ) function cannot be derived by simply sum-
ming individual costs between each T ji and T `i ∈ prod(T ji )
due to cache sharing. We illustrate this with an example.
Example. Consider the memory hierarchy from Fig. 4.
For simplicity, assume that caches are inclusive, fully

Figure 6: Subgraph with
data passed between nodes.

associative, use an LRU evic-
tion policy, and that no cache
interference occurs due to in-
struction caching or operations
from other processors. Suppose
we wish to compute cost(T 3

1 )
for the subgraph depicted in
Fig. 6. Here, an L1-D cache
is shared between T 2

1 and T 3
1 .

Likewise, an L3 is shared be-
tween T 1

1 and T 3
1 . We will now

walk through a worst-case se-
quence of operations that max-
imizes cost(T 3

1 ).
Step 1: T 2

1 writes 1024KB of data for T 3
1 . The L1-D is only

192KB in size, so 192KB of this data is stored in the L1-D,
while the remaining 832KB spills to the L2.

Step 2: T 1
1 writes 512KB of data for T 3

1 . Although T 1
1 ex-

ecutes on a remote processor, a copy of this data resides in
the L3 due to inclusivity.
Step 3: T 2

1 writes 2560KB of data for T 4
1 . This causes evic-

tions on two levels. First, all of T 3
1 ’s data in the L1-D spills

to the L2 after the first 192KB of T 4
1 ’s data is written. The

L1-D continues to spill as remaining data is written. Ulti-
mately, 2368KB of T 4

1 ’s data spills to the L2. The L2 must
maintain a copy of the L1 (both instruction and data caches)
due to inclusivity, so the L2 can only store store 2688KB of
spilled data. T 3

1 ’s data from Step 1 is evicted first according
to the LRU policy, so 768KB of T 3

1 ’s data is spilled from the
L2 to the L3, and 256KB of it remains in the L2.
Step 4: T 3

1 reads the 512KB of data from T 1
1 . This L3-read

triggers 192KB of data from Step 3 to spill from the L1-D
to the L2, which in turn triggers 192KB of T 3

1 ’s data from
Step 1 to spill from the L2 to the L3. T 3

1 ’s remaining 64KB
of data in the L2 is self-evicted as T 3

1 reads the rest of the
data from T 1

1 .
Step 5: T 3

1 reads the 1024KB of data from T 2
1 . All 1024KB

of data from Step 1 resides in the L3 due to spills. All of
T 3

1 ’s data is read from the L3, so we charge T 3
1 for 1536KB

of data read from the L3, according to the overhead dataset.
Our general algorithm to compute cost(T ji ) is outlined

as follows. First, we assume all T `i ∈ prod(T ji ) collectively
write data for T ji prior to data for any T ki ∈ cons(T `i ), and
we model evictions to track the location of T ji ’s data. Next,
we assume that T ji reads the most distant data first, and we
continue to track the location of T ji ’s remaining data by mod-
eling self-evictions. We sum overhead costs according to the
location of data as it is read by T ji .
A remark on optimism. We have made optimistic assump-
tions in computing cost(T ji ): full associativity, LRU, no in-
struction caching, etc. Since cost(T ji ) conservatively esti-
mates best-case conditions in the “idle” case, it can provide
a lower bound on overhead costs. However, this optimism
is of no consequence under our “polluter” dataset, where all
costs are equivalent: every read of a new cache line results in
a cache miss at all levels. Thus, cost(T ji ) can provide both
an upper and lower bound on overheads, according to the
dataset. Deeply involved timing analysis techniques are nec-
essary to provide tighter bounds.

6 Implementation

PGMRT is a portable lightweight middleware layer we de-
veloped to manage the coordinated execution of dataflow
applications. We describe the subset of PGMRT necessary
to support the automotive workloads that we have dis-
cussed. However, PGMRT supports the full PGM specifica-
tion; please see the online version of this paper for a full
description of PGMRT’s API and capabilities [7].
Graphs, nodes, and edges. Each graph is identified by a
unique name and path, similar to a UNIX named pipe. Ap-
plications use PGMRT’s API to create new graphs described
by nodes and edges. Real-time tasks, as unique threads of
execution within the same address space or separate pro-



cesses, use PGMRT’s API to access information about a
named graph and claim/bind to a node and its edges.
Precedence constraints. As described in Sec. 4, non-source
nodes have two types of precedence constraints: job and pro-
ducer constraints. Job constraints are satisfied in PGMRT

since a single thread binds to each node—jobs are naturally
serialized by this thread.

Predecessor constraints are tracked by tokens. A pro-
ducer generates one token on each outbound edge upon job
completion. A consumer’s producer constraints are satisfied
when there is at least one token on each of its incoming
edges. The consumer blocks (suspends execution) whenever
the requisite tokens are unavailable. When the needed tokens
are available, the consumer consumes one token from each
of its incoming edges and the task is ready to execute.

Token production/consumption is realized through incre-
ment/decrement operations on per-edge token counters, sim-
ilar to counting semaphores. Although these tokens do not
transmit data explicitly, tokens can coordinate data sharing
in application-level logic. Since consumers may suspend ex-
ecution, producers must have a mechanism to signal con-
sumers of new tokens. This is achieved using a monitor syn-
chronization primitive, specifically, a POSIX (pthread) con-
dition variable, one per consumer.4 A consumer blocks on its
condition variable if it does not have its requisite tokens. A
producer signals the condition variable whenever it is the last
producer to satisfy all of its consumer’s producer constraints.
Real-time concerns. PGMRT described as above can be
used with general-purpose schedulers. However, additional
enhancements are required to ensure deterministic real-time
behavior. These relate to deterministic token signaling and
proper deadline assignment.

The preemption of a consumer while it is signaling a se-
quence of consumers may leave processors in remote clus-
ters idle. To avoid this, producers are non-preemptive dur-
ing the signaling process. In the LITMUSRT-based ver-
sion of PGMRT used in the experiments in Sec. 7, we use
LITMUSRT’s capabilities to quickly enter and exit these
non-preemptive code sections. For a portable alternative, in-
terrupts may be disabled from userspace (e.g., sti/cli
instructions on x86 processors). These short durations of
non-preemption must be accounted for in real-time analy-
sis, since they may momentarily delay higher priority work
from being scheduled.

Recall from Sec. 4 that a job’s ideal (actual) deadline
is computed as pi time units after its ideal (actual) release.
The ideal release time of a job can be tracked with a high-
resolution timer. However, the actual release time depends
upon token arrival, so the actual deadline must be computed
on-the-fly. In our LITMUSRT-based implementation, imme-
diately before a consumer blocks for tokens, it sets a “token-
wait” flag in memory shared by userspace and the kernel.
The kernel checks this flag whenever a real-time task is awo-
ken from a sleeping state. If set, and the current time is later
than the ideal release time, the kernel automatically com-

4On LITMUSRT, PGMRT uses a low-overhead implementation of a
monitor that combines spinlocks with Linux’s “fast userspace mutex” inter-
face and LITMUSRT’s special support for non-preemptive code sections.

putes the actual release and deadline for the job and clears
the flag. Otherwise, the ideal and actual deadlines coincide.
Observe that this computation requires the current time to
approximate the arrival time of the last token—this is en-
sured by the producer’s non-preemption discussed earlier.
For a portable approach, producers may set the deadline of
a consumer directly prior to signaling, but this comes at the
cost of system call overheads and requires support from the
operating system.

7 Experimental Results

In this section, we evaluate PGMRT via an overhead-aware
schedulability study and a case-study of observed end-to-end
latencies.

7.1 Schedulability Experiments

We evaluate C-FL cluster scheduling, job splitting, and
our cache-aware cluster assignment techniques through
overhead-aware schedulability experiments. We randomly
generated DAGs of varying characteristics and tested them
for schedulability using the methods described in [8]. We
now describe the experimental process we used.

Overheads. Our implementation of PGMRT on
LITMUSRT was run on a four-socket (24-core) Intel
Xeon L7455 running at 2.13GHz. Each socket has the same
memory hierarchy as that in Fig. 4. Every core has a private
8-way set-associative 192KB L1-data and L1-instruction
cache. Core pairs share a 12-way set-associative 3MB L2
cache. Finally, the cores on each socket share a 12-way
set-associative 12MB L3 cache. We measured worst-case
runtime overheads and preemption/migration delays in the
manner described in [5]. We also measured data-passing
overheads, as described in Sec. 5.

We made several changes to the overhead-accounting
techniques for C-FL as described in [8] to support DAGs un-
der PGMRT. First, we account for non-preemptivity during
consumer signaling, as this can delay higher priority work
from being scheduled. Second, we account for the system
calls made by producers to wake consumers. Finally, we only
charge for release-timer overheads of graph source tasks;
non-source nodes do not use release timers.

Experimental setup. Random DAGs for schedulability ex-
periments were generated according to several parameters in
a multistep process. Task utilizations were generated using
three uniform and three bimodal distributions. The ranges
of the uniform distributions were [0.001, 0.1] (light), [0.1,
0.4] (medium), and [0.5, 0.9] (heavy). The bimodal distribu-
tions randomly selected from two uniform distributions with
ranges [0.001, 0.5] and [0.5, 0.9] with respective probabili-
ties of 8/9 and 1/9 (bimo-light), 6/9 and 3/9 (bimo-medium),
and 4/8 and 5/9 (bimo-heavy). Task periods were generating
using three uniform distributions with ranges [3ms, 33ms]
(uni-short), [10ms, 100ms] (uni-moderate), [50ms, 250ms]
(uni-long). The number of DAGs in a task set were se-
lected uniformly in the range [1,12]. The height of a DAG
was determined by a “height-factor.” The height-factor was
generated using four uniform distributions, with ranges of
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Figure 7: Schedulability of pipeline DAGs with uni-long periods, uni-medium task utilizations, and medium-weight edges.

[1/3, 1/2] (short-height), [1/2,3/4] (medium-height), [3/4,
1] (tall-height) [1,1] (pipeline). DAG height is computed
as bheight-factor · # of DAG nodesc. A uniform distribu-
tion of range [1,3] controlled the number of consumers for
each non-sink task. The amount of data passed from pro-
ducer to consumer, or “edge working set size” (EWSS),
was controlled by three uniform and three bimodal distribu-
tions. The uniform distributions were [1KB, 64KB] (light-
weight), [256KB, 1024KB] (medium-weight), and [2MB,
8MB] (heavy-weight). The bimodal distributions randomly
selected from two uniform distributions with ranges [64KB,
256KB] and [2MB, 8MB] with respective probabilities of
8/9 and 1/9 (bimo-light-weight), 6/9 and 3/9 (bimo-medium-
weight), and 4/8 and 5/9 (bimo-heavy-weight). Tasks were
generated by selecting a utilization and period. Tasks were
added to a task set until a specified system utilization was
reached. After selecting the number of DAGs to generate,
tasks were assigned to a random DAG, with a constraint en-
suring that each DAG had at least one node. A height-factor
was then selected for each DAG and its height determined.
After selecting a random source and sink for each DAG, a
random number of consumers was selected for each non-
sink task. We then selected the amount of data transmitted
on each edge. The “working set size” of each task (used to
compute preemption/migration overheads) was computed as
the sum of a task’s in-bound EWSS. Finally, the period of
each non-source task was adjusted to match that of its source
node—we scaled execution time to maintain utilization.

A unique combination of the above distributions defined
a set of experiment settings. For each 0.1 increment in the
system utilization range (0,24], we generated 1,000 task sets.
Schedulability under C-FL for each task set was checked un-
der a combination of the following conditions: (i) according
to cluster configuration, where the L1s, L2s, L3s, and main
memory defined clusters of size one, two, six, and 24, re-
spectively; (ii) task cluster assignment heuristics of worst-
fit (WF) in decreasing task utilization and our cache-aware
(CA) method (with an aggressiveness factor 75% of cluster

capacity); and (iii) cache overheads under idle and polluter
conditions. We used a university compute cluster to test the
schedulability of over 800 billion task sets.

For each schedulable task set, we computed the end-
to-end latency of each DAG according to Eq. (1) from
Sec. 4, with T ji = T zii , when scheduled with job split-
ting. The extent of splitting was determined from overhead
data (which limits the extent of splitting) using a proce-
dure from [8]. A proportional end-to-end latency metric was
computed by dividing the computed the end-to-end latency
by pi · (height(Ti) + 1).

Results. We present a selection of results from our exper-
iments that illustrate the general trends observed across all
data. All schedulability results are available in [7]. Fig. 7
shows results for pipelined shaped DAGs with “uni-long”
periods, “uni-medium” task utilizations, and “medium-
weight” edges. The top (bottom) of Fig. 7(a) and Fig. 7(b)
depict schedulability (proportional end-to-end latency un-
der job splitting) results under idle and cache-polluter over-
heads, respectively.

Obs. 1. Cache-aware assignment improves schedulability.

In the top inset of Fig. 7(a), compare CA and WF cluster
assignment for L1 clustering (lines 1 and 4, respectively).
Observe that under CA:L1, 50% of task sets with a utiliza-
tion of about 22.0 were schedulable. In comparison, under
WF:L1, only 50% of task sets with a utilization of about 18.5
were schedulable. Moreover, no task sets with a utilization
of 22.0 were schedule under WF:L1. CA cluster assignment
outperforms WF cluster assignment for L2 and L3 cluster-
ing as well, although the gap in performance is smaller. For
example, CA:L3 (line 3) offers only slightly better schedu-
lability than WF:L3 (line 6).

As expected, schedulability across all methods under
cache-polluter overheads is worse, as depicted in the top in-
set of Fig. 7(b). However, at no point does WF cluster assign-
ment outperform CA cluster assignment for the same cluster
configuration. This may come as a surprise since no parti-



tioning scheme can reduce the cache-related overheads in-
curred under the cache-polluter dataset (see end of Sec. 5).
However, the CA heuristic also assigns tasks according to an
approximated utilization (w(T ji )) that includes cache-related
costs. Thus, the CA heuristic is able to make better task as-
signments, even if it does not reduce incurred overheads.

Obs. 2. Cache-aware cluster assignment is resistant to bin-
packing utilization loss.

Cluster configuration strongly affects schedulability un-
der WF cluster assignment. This is observed by compar-
ing WF:L1 (line 4), WF:L2 (line 5), and WF:L3 (line 6)
within the top insets of Fig. 7. WF:L3 outperforms WF:L2
by a wide margin, and WF:L2 similarly outperforms WF:L1.
In contrast, compare CA:L1 (line 1), CA:L2 (line 2), and
CA:L3 (line 3) within the top insets of Fig. 7. The differ-
ences in schedulability are much less.

Obs. 3. Computed proportional end-to-end latency is less
for smaller clusters.

L1 clustering gave the smallest overall proportional la-
tencies, as shown by lines 1 and 4 in both bottom insets of
Fig. 7. This is expected since deadlines are never missed un-
der partitioned EDF scheduling if no cluster is overutilized.
However, we also observe that proportional latency is very
small (no more than about 1.2) under CA and WF cluster
assignment under L2 clustering (lines 2 and 5, respectively).
Proportional latency is greater under L3 clustering (lines 3
and 6), but not as great as under global scheduling (line 7) in
either bottom inset of Fig. 7.

Obs. 4. There are trade-offs between schedulability and pro-
portional end-to-end latency.

Schedulability is best under CA:L3 in Fig. 7. However,
besides global scheduling (line 7), CA:L3 has worst pro-
portional end-to-end latency (line 3). The converse is true
for smaller clusters. These results suggest that the system
designer is faced with three interesting choices: (i) mini-
mize end-to-end latency by using the smallest cluster con-
figuration where their application is schedulable; or (ii) in-
crease safety margins in provisioned task execution time and
use larger clusters to maintain schedulability; or (iii) de-
crease processor speed (effectively increasing system uti-
lization) and use larger clusters to maintain schedulability.
Choices (ii) and (iii) are extremely attractive in an automo-
tive setting. Choice (ii) increases safety, while choice (iii)
may reduce SWaP and manufacturing costs.

7.2 Runtime Evaluation
We now describe our runtime evaluation of PGMRT. We im-
plemented a PGMRT application that executes a DAG on
LITMUSRT. Upon invocation, a node performs a repeated
summation over all input data from producers, and then
writes output for all consumers. The invocation executes for
at least a specified length of time, but will execute for longer
durations under poor cache performance.

Experimental setup. We generated task sets composed of
several DAGs according to two experimental parameters:
DAG shape and the amount of data passed between nodes.
DAG shape was pipelined or rectangular. In a pipelined
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Figure 8: Avg. 99th percentile of observed proportional latencies.

DAG, every interior node has only one producer and one
consumer. Rectangular DAGs are made of several pipelined
sub-DAGs, joined by a source and sink. The amount of
data passed between a producer and consumer was tested
at points of [256KB, 512KB, 768KB, 1024KB, 1280KB,
1536KB, 2048KB]. We generated five task sets (trials) for
each combination of DAG shape and amount of data passed.
Each task set was deemed schedulable, according to our
overhead-aware analysis under polluter overheads, for our
24-core evaluation platform. We assigned tasks to clusters
using both the cache-aware and worst-fit decreasing heuris-
tics. Each task set was executed for 30 seconds (both with
and without job splitting) and we measured the observed
end-to-end latency. Only the top-performing approaches for
pipelined DAGs were tested on rectangular DAGs.
Results. We present the proportional end-to-end latencies
observed in our experiments for pipelined DAGs and rectan-
gular DAGs made of three pipelines. We omit results for job
splitting because it provided little improvement due to low
split factors. Fig. 8 depicts our results for task sets with a
total utilization of 13.0 (prior to overhead accounting). The
x-axis is EWSS. The y-axis is observed proportional laten-
cies. The 99th percentile of observed proportional latencies
(99% of observed latencies are less than a given y-value),
averaged across the five trials, is plotted. We make the fol-
lowing observations.

Obs. 5. Observed end-to-end latencies are better for larger
clusters.

In Fig. 8(a), we see that performance is largely dictated
by cluster configuration rather than the cluster assignment
method. For example, the observations for WF:L2 (line 5)



and and CA:L2 (line 2) are relatively similar. The same trend
holds for L1 and L3 clustering. We also note that L3 clus-
tering performs well, completing the positive results from
schedulability experiments for L3 clustering. Finally, we
observe that global scheduling performs surprisingly well
(line 7), considering that analytical results suggested that
global scheduling would perform poorly.
Obs. 6. Cache-aware methods may yield smaller latencies.

The cache-aware heuristic outperforms the worst-fit
heuristic for smaller EWSSs. However, there appears to be
a trend where worst-fit performs better for larger EWSSs. In
Fig. 8(a), observe the intersections between CA:L1 (line 1)
and WF:L1 (line 4) at 768KB, and CA:L2 (line 2) and
WF:L2 (line 5) at 1280KB. CA:L3 (line 3) and WF:L3
(line 6) do not intersect in Fig. 8(a), but do in Fig. 8(b) at
1536KB. The cache-aware heuristic sacrifices load balanc-
ing across clusters for a chance at cache efficiency. However,
as cache utilization grows, actualized gains become more
difficult to realize.

We conclude with the observation that cache-aware clus-
tered scheduling methods strongly affect schedulability and
end-to-end latency bounds. On our experiments, we see that
these methods maximize schedulability and are competitive
in analytical and observed latency. This suggests that future
automotive standards should consider clustered deadline-
oriented schedulers to maximize resource utilization.

8 Conclusion
In this paper, we have presented solutions to problems of
scheduling real-time dataflow applications on multicore pro-
cessors. We explored dataflow applications in advanced au-
tomotive systems, and discussed how best to meet SWaP
and manufacturing costs constraints, while providing tim-
ing guarantees for safe operation and responsiveness. We
derived analytical bounds on the end-to-end latency of such
applications. We also developed a high-level model of cache
behavior, and the overheads thereof, to drive a cache-aware
heuristic we use to map dataflow computations to proces-
sors. We also presented PGMRT, a portable middleware for
managing real-time dataflow applications. Using overheads
obtained through PGMRT running on LITMUSRT, we per-
formed overhead-aware schedulability experiments. The re-
sults validate our approach, and demonstrate that cache-
aware techniques, coupled with clustered processor schedul-
ing, can yield better timing properties than naı̈ve partitioned
or global scheduling. We also presented results from runtime
experiments that bolster the benefits of our techniques.

In future work, we would like to extend support to accel-
erator coprocessors (e.g., GPUs and FPGAs), and also per-
form a case study with real-world automotive applications.
Acknowledgement: We thank Dr. Shige Wang of General
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