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Abstract

Recent work involving a mixed-criticality framework called
MC? has shown that, by combining hardware-management
techniques and criticality-aware task provisioning, capacity
loss can be significantly reduced when supporting real-time
workloads on multicore platforms. However, as in most other
prior research on multicore hardware management, tasks
were assumed in that work to not share data. Data shar-
ing is problematic in the context of hardware management
because it can violate the isolation properties hardware-
management techniques seek to ensure. Clearly, for research
on such techniques to have any practical impact, data shar-
ing must be permitted. Towards this goal, this paper presents
a new version of MC? that permits tasks to share data within
and across criticality levels through shared memory. Sev-
eral techniques are presented for mitigating capacity loss
due to data sharing. The effectiveness of these techniques
is demonstrated by means of a large-scale, overhead-aware
schedulability study driven by micro-benchmark data.

1 Introduction

In work on real-time multicore computing, much effort has
been directed at a problem that has been termed the “one-out-
of-m” problem [12, 22]: certifying the real-time correctness
of a system running on m cores can require such pessimistic
analysis, the processing capacity of the additional m — 1
cores is entirely negated. In effect, only “one core’s worth”
of capacity can be utilized even though m cores are available.
In domains such as avionics, the one-out-of-m problem has
led to the common practice of simply disabling all but one
core.! This problem is the most serious unresolved obstacle
in work on real-time multicore resource allocation today.
Much of the pessimism underlying the one-out-of-m prob-
lem is attributable to shared hardware resources, such as
caches, buses, and memory banks, that are not predictably
managed. As such, much of the prior work directed at this
problem has focused on enabling tighter task execution-time
estimates by providing such management. Additionally, re-
cent work by our group [10, 22] has shown that greater reduc-
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"Multicore-related certification difficulties are extensively discussed in
a recent position paper from the U.S. Federal Aviation Administration [8].

tions in pessimism are possible when hardware management
is coupled with mixed-criticality (MC) analysis assumptions,
as originally proposed by Vestal [34]. Under such analysis
assumptions, less-critical tasks are provisioned somewhat
optimistically, allowing for increased platform utilization.

While major strides by various research groups have been
made in attacking the one-out-of-m problem (see Sec. 6), the
ability to support real-world workloads has not yet been real-
ized. A key reason is a lack of support for data sharing among
tasks. In prior work, researchers have nearly universally cho-
sen to disallow data sharing because it directly breaks the
isolation techniques that underlie hardware management.
This choice is certainly reasonable, as a fundamental under-
standing of the basics of providing isolation is necessary
before delving into other complicating factors.

In this paper, we consider for the first time tradeoffs in-
volving data sharing on multicore platforms wherein ca-
pacity loss is reduced via the usage of both hardware-
management techniques and MC provisioning assumptions.
We study such tradeoffs in the context of a pre-existing
mixed-criticality framework called MC2 (mixed-criticality
on multicore) [10, 16, 22, 29, 35], which was the focus of
our group’s prior work noted above. Before describing our
contributions, we first provide a brief overview of MC?.

Hardware management under MC?. In the MC? variant
considered herein, three criticality levels exist, denoted A
(highest) through C (lowest). (These levels are illustrated in
Fig. 1 along with a fourth level.) Level-A and -B tasks have
hard real-time (HRT) constraints and are scheduled via par-
titioning, with per-core scheduling being time-triggered for
Level A and priority-based for Level B. Level-C tasks have
soft real-time (SRT) constraints and are globally scheduled.
In recent work [22], which is built on here, hardware manage-
ment was introduced with respect to DRAM memory banks
and the last-level cache (LLC). This management gives rise
to numerous tradeoffs regarding the allocation of LLC areas
to groups of tasks and/or criticality levels. In other recent
work [10], also built on here, an optimization framework was
introduced for sizing these LLC areas [10].

Contributions. The hardware management recently added
to MC?2 relies on the ability to provide strong isolation guar-
antees to higher-criticality tasks with respect to DRAM
banks and the LLC. The introduction of data sharing can
break any illusion of isolation. In this paper, we examine the



adverse impacts caused by data sharing and present methods
for lessening them. Our specific contributions are threefold.

First, after providing needed background (Sec. 2), we
describe a new implementation of MC? that extends the
prior one by allowing tasks to communicate through shared
memory (Sec. 3). This new implementation allows pro-
ducer/consumer buffers to be shared within a criticality level
and wait-free buffers to be shared across criticality levels.
We consider three options for lessening the impacts of data
sharing: locking a shared buffer into the LLC, bypassing
the LLC entirely when accessing a buffer, and assigning the
tasks that share a buffer to the same core (if they are Level-A
or -B tasks) so that concurrent sharing is eliminated.

Second, we explain how to modify the pre-existing op-
timization framework for sizing LLC areas to account for
these buffer-sharing options (Sec. 4). We also add to this
framework a task-to-core partitioning heuristic (for Levels A
and B) that takes buffer-sharing costs into account.

Third, based on previous micro-benchmark data involving
task-execution characteristics [22] and newly collected data
involving buffer sharing (Sec. 3.3), we report on the results of
a large-scale overhead-aware schedulability study in which
data-sharing impacts were assessed (Sec. 5). Across all sce-
narios considered in this study, our techniques reclaimed
84% of the schedulability lost due to unmanaged data when
compared to an ideal scheme that has an infinitely large LLC
that can store all shared buffers.

Some limited prior work on MC systems exists in which
hardware management was applied (see Sec. 6). However,
this paper and three earlier papers on MC? [10, 22, 35] are
the only ones known to us that consider hardware manage-
ment under Vestal’s notion of MC analysis, which was pro-
posed with the express goal of improving platform utiliza-
tion.

2 Background
We begin by reviewing needed background material.

Task model. We consider real-time workloads specified us-
ing the implicit-deadline periodic task model and assume fa-
miliarity with this model. We specifically consider a task sys-
tem 7 = {71,...,7,}, scheduled on m processors,”> where
task 7;’s period and worst-case execution time (WCET) are
denoted T; and C;, respectively. (We generalize this model
below when considering MC scheduling.) The utilization
of task 7; is given by u; = C;/T; and the fotal system
utilization by . u,. If a job of 7; has a deadline at time
d and completes execution at time ¢, then its tardiness is
max{0,t — d}. Tardiness should be zero for any job of a
HRT task, and should be bounded by a (reasonably small)
constant for any job of a SRT task.

Mixed-criticality scheduling. The roots of most recent
work on MC scheduling can be traced to a seminal paper by

2We use the terms “processor,” “core,” and “CPU” interchangeably.
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Figure 1: Scheduling in MC? on a quad-core machine.

Vestal [34]. For systems where tasks of differing criticalities
exist, he proposed adopting less-pessimistic execution-time
assumptions when considering less-critical tasks. More for-
mally, in a system with L criticality levels, each task has a
provisioned execution time (PET)? specified at every level,
and L system variants are analyzed: in the Level-/ variant,
the real-time requirements of all Level-/¢ tasks are verified
with Level-¢ PETs assumed for all tasks (at any level). The
degree of pessimism in determining PETs is level-dependent:
if Level £ is of higher criticality than Level ¢/, then Level-£
PETs will generally exceed Level-¢’ PETs. For example, in
the systems considered by Vestal [34], observed WCETs
were used to determine PETs for tasks at lower levels, and
such times were inflated to determine PETs at higher levels.

MC?2. Vestal’s work led to a significant body of follow-up
work (see [7] for an excellent survey). Within this body of
work, M02 was the first MC scheduling framework for mul-
tiprocessors (to our knowledge) [29]. MC? was originally
designed in consultation with colleagues in the avionics in-
dustry to reflect the needs of systems of interest to them. It
is implemented as a LITMUSR®T [25] plugin and supports
four criticality levels, denoted A (highest) through D (low-
est), as shown in Fig. 1. Higher-criticality tasks are statically
prioritized over lower-criticality ones. Level-A tasks are par-
titioned and scheduled on each core using a time-triggered
table-driven cyclic executive.* Level-B tasks are also parti-
tioned but are scheduled using a rate-monotonic (RM) sched-
uler on each core.* On each core, the Level-A and -B tasks
are required to have harmonic periods and commence execu-
tion at time O (this requirement can be relaxed slightly [29]).
Level-C tasks are scheduled via a global earliest-deadline-
first (GEDF) scheduler.* Level-A and -B tasks are HRT,
Level-C tasks are SRT, and Level-D tasks are non-real-time.
In this work, we assume that Level D is not present.

MC? with hardware management. In recent work [22], a
new MC? implementation was developed that provides tech-
niques for managing the LLC and DRAM memory banks.
We briefly describe these techniques here. Our description is

3We use “PET” instead of “WCET” because under MCZ, some tasks are
SRT, and hence may not be provisioned on a worst-case basis.

4Other per-level schedulers optionally can be used, and Level-C tasks
can be defined according to the sporadic task model. These options, and
other considerations, such as slack reallocation, schedulability conditions,
and execution-time budgeting are discussed in prior papers [16, 29, 35].
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Figure 2: Quad-core ARM Cortex A9.

with respect to the multicore machine shown in Fig. 2, which
is the hardware platform assumed throughout this paper. This
machine is a quad-core ARM Cortex A9 platform. Each core
on this machine is clocked at 800MHz and has separate
32KB L1 instruction and data caches. Additionally, the LLC
is a shared, unified IMB 16-way set-associative L2 cache.
The LLC write policy is write-back with write-allocate. 1GB
of off-chip DRAM is available, and this memory is parti-
tioned into eight 128MB banks.

In the MC? variant that provides hardware management,
rectangular areas of the LLC can be assigned to certain
groups of tasks. This is done by using page coloring to allo-
cate certain subsequences of sets (i.e., rows) of the LLC to
such a task group, and hardware support in the form of per-
core lockdown registers to assign certain ways (i.e., columns)
of the LLC to the group. (Please see [22] for more detailed
descriptions of these LLC allocation mechanisms.) Addition-
ally, by controlling the memory pages assigned to each task,
certain DRAM banks can be assigned for the exclusive use
of a specified group of tasks. The OS can also be constrained
to access only certain LLC areas and/or DRAM banks.

Fig. 3 depicts the main allocation strategy for the LLC
and DRAM banks considered in [22]. This strategy ensures
strong isolation guarantees for higher-criticality tasks, while
allowing for fairly permissive hardware sharing for lower-
criticality tasks. DRAM allocations are depicted at the bot-
tom of the figure, and LLC allocations at the top. As seen,
Level C and the OS share a subsequence of the available
LLC ways and all LLC colors. (On the considered platform,
each color corresponds to 128 cache sets.) Level-C tasks
(being SRT) are assumed to be provisioned on an average-
case basis. Under this assumption, LLC sharing with the OS
should not be a major concern. The remaining LLC ways are
partitioned among Level-A and -B tasks on a per-CPU basis.
That is, the Level-A and -B tasks on a given core share a
partition. Each of these partitions is allocated 1/4 of the avail-
able colors, as depicted. This scheme ensures that Level-A
and -B tasks do not experience LLC interference due to tasks
on other cores (spatial isolation). Also, Level-A tasks (being
of higher priority) do not experience LLC interference due
to Level-B tasks on the same core (temporal isolation).

The specific number of LLC ways allocated to the Level-
C/OS partition and to the per-core Level-A and -B parti-
tions is a tunable parameter that can be determined on a
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Figure 3: LLC and DRAM allocation. LLC boundaries indicated
by double lines are configurable parameters. Note that the Level-A
and -B LLC areas for each core can overlap.

per-task-set basis using optimization techniques based on
linear programming presented in a prior paper [10]. These
optimization techniques seek to minimize a task set’s Level-
C utilization while ensuring schedulability at all criticality
levels.

The MC? implementation just described does not provide
management for L1 caches, translation lookaside buffers
(TLBs), memory controllers, memory buses, or cache-related
registers that can be a source of contention [33]. However, we
assume a measurement-based approach to determining PETs,
so such unconsidered resources are implicitly considered
when PETs are determined. We adopt a measurement-based
approach because work on static timing analysis tools for
multicore machines has not matured to the point of being
directly applicable. Moreover, measurement-based methods
for determining PETs are often used in practice.

Problems caused by data sharing. In this paper, we aug-
ment the MC task model described above to allow any two
tasks to communicate via buffers stored in shared memory
page(s) accessible to them both. This modification explicitly
breaks the isolation properties provided by the pre-existing
MC? implementation. For example, if two Level-B tasks as-
signed to different cores share a buffer, then the memory ac-
cesses of at least one of them cannot be entirely constrained
to its assigned core’s DRAM bank. Also, memory accesses
by one task can cause the other to experience LLC evictions.

To illustrate this lack of isolation, we conducted an experi-
ment similar to those reported in [22] in which the WCET of
a synthetic task with a working-set size (WSS) of 256KB was
recorded under the pre-existing MC? implementation when
executed either in an otherwise-idle system or in a loaded
system that includes a stress-inducing background workload.
We considered three loaded scenarios: no hardware manage-
ment but also no data sharing, and hardware management
both without and with data sharing. In the last scenario, each
stress-inducing task was configured so that 12.5% of its
memory accesses were to shared data. The synthetic task
was allocated an LLC area consisting of eight ways and
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Figure 4: Measured WCET for the 256KB-WSS synthetic task
considered in [22] assuming it is allocated eight LLC ways.

some number of colors. The obtained data, plotted in Fig. 4,
shows that with at least eight allocated colors and no data
sharing, hardware management enabled a WCET near that of
an idle system. However, the introduction of sharing caused
deterioration close to that of an unmanaged system.

3 Implementation

Our goal in the rest of this paper is to devise methods that
eliminate or limit the deterioration just demonstrated. Before
discussing such methods, we first describe the inter-process
communication (IPC) mechanisms we added to MC2.

IPC. Linux-based OSs provide several IPC mechanisms,
including pipes, named pipes (FIFOs), message queues, and
shared memory. Pipes, named pipes, and message queues
require data to be copied from user space into kernel space,
and then back from kernel space into user space. In contrast,
with shared memory, physical memory pages are mapped
into the address space of multiple tasks. This allows for
lower-overhead IPC, as tasks may read and write buffers
stored in shared pages without copying data into and out
of kernel space. For this reason, we focus exclusively on
shared-memory-based IPC mechanisms in this paper.

We implemented two such mechanisms: producer/con-
sumer buffers (PCBs) and wait-free buffers (WFBs). We use
PCBs for data sharing among tasks of the same criticality and
WEFBs for data sharing among tasks of different criticalities.
We assume wait-free sharing across levels so that multi-level
blocking dependencies (which would greatly complicate MC
schedulability analysis) do not occur. Each PCB or WEFB is
assumed to be written by one task and read by one task. For
producer/consumer sharing, buffers must be replicated so
that data can be produced without overwriting. For wait-free
sharing, overwriting semantics is assumed, but buffer repli-
cation is still needed to ensure that read and write operations
can occur without interfering with each other [4].

3.1 Mitigating Interference Due to Shared Memory

As discussed in Sec. 2, the introduction of data sharing can
cause LLC and DRAM-bank interference. In this paper, we
propose to ameliorate such interference by applying the fol-

lowing three techniques in the sequence specified:

Selective LLC ByPass with C-DRAM Assignment
(SBP): (i) Designate each buffer accessed by a Level-A or -B
task as uncacheable and allocate it from the Level-C DRAM
banks. (Note that such a buffer could be shared with a task at
Level C.) This eliminates unpredictable LLC interference at
Levels A and B, at the expense of higher average-case buffer
access times due to the lack of caching. (ii) Designate each
buffer shared exclusively by Level-C tasks as cacheable and
allocate it from the Level-C DRAM banks.

Concurrency Elimination (CE): If a buffer is shared by
two tasks at Levels A and/or B, then assign both tasks to the
same core, and assign the buffer to that core’s designated
DRAM bank and designate it as cacheable. (Since these
techniques are being applied in sequence, this could “undo”
a prior designation as uncacheable.) We call such a buffer
a core-local buffer. This technique eliminates concurrent
interference with respect to the considered buffer because a
core may only execute one task at a time. If a buffer is not
core-local, we call it a cross-core buffer. Note that all buffers
accessed by Level-C tasks are cross-core buffers.

LLC Locking (CL): Permanently lock a buffer in the
LLC to eliminate any DRAM-bank contention® or unin-
tended LLC evictions. (As explained later, portions of a
buffer actually can be locked.) This effectively reduces the
LLC size for caching code and local data, exposing an inter-
esting tradeoff that is explored in Sec. 5.

CL can be supported by using the lockdown registers
mentioned in Sec. 2, using methods proposed by Mancuso
et al. [28], which entail prefetching the to-be-locked buffer
into a way that is then permanently locked by all per-core
lockdown registers. Note that locked cache lines may still be
read and written from any core, just not evicted.

While it would be desirable to allow a cross-core buffer ac-
cessed by a Level-A or -B task to be dynamically cacheable,
supporting this functionality using lockdown registers is not
straightforward. For example, consider a buffer that is shared
between Levels A and C. If that buffer were to be cached
due to a reference by a Level-C task Tic, then it would be
cached in the Level-C LLC area, and thus could be poten-
tially evicted by another Level-C task running on another
core. If that were to happen, followed by an immediate refer-
ence by a Level-A task, then the buffer would be cached in
the Level-A LLC ways. This creates a situation wherein 7
could potentially interfere with Level-A tasks by accessing
Level-A ways. To avoid such situations, cross-core buffers ac-
cessed by Level-A or -B tasks are either permanently locked
in the LLC or never cached in our framework.

Buffer copying rules. Given the semantics of the consid-
ered WEBs [4], read (resp., write) operations must copy data
to (resp., from) such a buffer, i.e., the data in the buffer can-
not be accessed in place. A PCB can be accessed in place

5Locked buffers are never evicted, so the write-back policy of our LLC
prevents any DRAM-bank contention for locked buffers.



(without copying) if it is core-local, if it is entirely locked
in the LLC.® or if it is only shared by Level-C tasks. All
other PCBs must be copied. These copying rules support a
major thesis underlying our implementation that requires the
Level-A/B DRAM banks to be kept interference free.

3.2 Kernel-Level Implementation in mc?

We added a user-level interface to MC? where, via a character
device, a task is able to request and map shared memory
pages into its virtual address space. In our implementation,
mmap () is used to specify the number of shared pages to
map and their permissions, and 1oct1 () is used to specify
the DRAM bank and LLC colors of the mapped pages. This
implementation extends the page-coloring mechanisms of
the prior MC? implementation [22].

We support CL by locking log-
ical pages into the LLC, where
each such page occupies a sin-
gle way. A logical page is de-
fined by a set of physical pages
of the same color. Note that same-
colored physical pages will map
to the same cache sets. We intro-
duce the concept of logical pages
because CL is actually applied at
the granularity of buffers, not pages. To avoid unnecessarily
wasting LLC space, which is a very constrained shared re-
source, we allow several such buffers to be stored in the same
logical page. These buffers can even be allocated by different
tasks. Clearly, storing buffers allocated by different tasks in
the same physical page would be an egregious protection vio-
lation. To avoid this, we store them in different same-colored
physical pages with appropriate offsets so that when they are
mapped into the LLC, they map to disjoint cache sets.” The
set of such pages is viewed as a single logical page. This
concept is illustrated in Fig. 5. Our implementation is actu-
ally more general than just described as it allows portions of
a single buffer to be split across several logical pages.

Physical Page

Logical Page/

Physical Page

Figure 5: Physical-to-
logical page mapping.

3.3 Micro-Benchmarks

To compare SBP, CE, and CL, we ran micro-benchmark ex-
periments in which a shared buffer was either read or written
by a measured task. For SBP, we considered only the more-
interesting option (i), i.e., the considered page is designated
as uncacheable. Under CE, we assumed the buffer was not
locked in the LLC. To compare these techniques, we col-

6 As subsequently discussed, buffers may be partially locked in the LLC.
A partially locked cross-core PCB shared with Levels A or B must be
entirely copied, but part will be copied from the LLC.

"Note that, with this implementation, if a misbehaving task accesses
an address in a shared page that is external to the shared buffer it should
be accessing (e.g., via a buffer overflow), then this could cause a temporal
fault for another task by evicting data in a cache line with the same color
as the locked logical shared page. However, such a temporal fault cannot
compromise logical correctness.
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Figure 6: Measured worst-case times for randomly writing a buffer.

lected 10,000 samples for each choice of buffer size (2VKB,
0 < N < 8), access type (read or write), and reference
sequence (random or sequential). For the purpose of mea-
surement only, the measured task was instrumented to access
the shared buffer in kernel space via a system call so that the
ktime_get () API could be used to accurately measure
execution times for small buffers.® Measurements were ob-
tained in the presence of stress-inducing background tasks.
Since we are interested in systems in which the isolation
techniques in [22] are employed, the background tasks were
constrained to interfere only with the measured task’s access
of the shared buffer. The allowed interference depended on
the technique being evaluated: the background tasks were
configured to stress (i) the LLC and the specific DRAM bank
used by the measured task under SBP; (ii) the LLC and the
DRAM banks not used by the measured task under CE; and
(iii) the non-locked LL.C ways and the specific DRAM bank
used by the measured task under CL. Fig. 6 depicts recorded
worst-case times for random writes. Other results, which
show similar trends, can be found in an online appendix.

Obs. 1. Worst-case buffer-writing times were the lowest
under CL and the highest under SBP. CL writing times were
typically 2 to 7% of SBP writing times. CE writing times
were typically 50 to 60% of SBP writing times.

CL writing times were generally 2 to 3% of SBP writing
times for buffers that fit into the L1 cache, and nearer to
7% for other buffers. These results are expected, and are at-
tributable to how the different techniques leverage resources
within the memory hierarchy. Memory references will be
satisfied from DRAM under SBP, from the LLC under CL,
and from some combination of the two under CE, since a
miss in the LLC causes a line of eight words to be cached.

4 Optimizations

The micro-benchmark results just described show that CL
is clearly the technique of choice if it can be applied to
a particular shared buffer. However, there is limited LL.C
space, so from a system-wide perspective, tradeoffs exist
with respect to how the three techniques SBP, CE, and CL
are applied. In this section, we show how such tradeoffs

81n our new MC? implementation, tasks do not actually access buffers
in kernel space. Such accesses were performed in kernel space in this
experiment to enable more precise measurements.



Figure 7: Example task system with producer/consumer buffers
(PCBs) and wait-free buffers (WFBs) with tasks at different criti-
cality levels (denoted by superscripts).

can be resolved. We begin by covering necessary additional
background. Then, we describe a task-partitioning heuristic
that resolves choices related to CE, and modifications to the
pre-existing cache-allocation optimization framework [10]
that resolves choices related to CL.

Modeling buffers. As discussed in Sec. 2, we consider a set
of implicit-deadline periodic tasks 7 = {71, 72,73, ..., Tn }+
split across Levels A—C in MC?. Each task 7; has a period,
and three PETs (one per criticality level).

To represent buffer sharing, we introduce a directed de-
pendency graph, as illustrated in Fig. 7. Each node represents
a task, and each edge denotes a shared buffer and is directed
from the (single) writer/producer of that buffer to the (sin-
gle) reader/consumer. Each shared buffer is further specified
by a message size (the amount of data read or written in
one access), a buffer size (the message size times the num-
ber of message slots in the buffer—recall the discussion
about buffer replication in Sec. 3), and its fype (wait-free for
cross-criticality sharing, and producer/consumer for same-
criticality sharing). The introduction of producer/consumer
buffers introduces precedence constraints (wait-free buffers
do not—a read of a wait-free buffer simply obtains the most
recently written value, whatever that value is). Because pro-
ducer/consumer sharing occurs only within a criticality level,
we have precedence constraints only within such a level.
There is a considerable body of prior work on dealing with
precedence constraints, and it is usually assumed that the
graph induced by such constraints is a directed acyclic graph
(DAG). We assume that here. We also assume that all tasks
in the same DAG have the same period.

Schedulability. Prior work has shown that tardiness bounds
can be computed for a periodic or sporadic SRT task set with
precedence constraints by converting to an “equivalent” inde-
pendent task set that is then analyzed [27]. Task utilizations
are unaltered by this conversion. Since bounded tardiness is
ensured at Level C by using utilization-based schedulability
conditions [29], Level-C precedence constraints can thus be
supported with the same schedulability conditions as before.

We handle precedence constraints at higher criticality
levels by introducing release offsets to the task model that
determine when a task initially commences execution. For ex-
ample, in Fig. 7, assuming the common period of 7{* and T§4
is 100 time units, 7{* and 75* could be required to release

their first jobs at times 0 and 100, respectively. The introduc-
tion of offsets does not impact the utilization of tasks, but
can increase the end-to-end response time for a sequence of
dependent jobs. We leave detailed end-to-end response-time
analysis at Levels A and B to future work, and assume that
any bounds that naturally follow from the use of offsets are
acceptable provided individual tasks are schedulable. Since
Level-A and -B conditions for checking task schedulability
are utilization constraints [29], these assumptions imply that
we can also assess Level-A and -B schedulability with the
same schedulability conditions as before.

With these assumptions, buffer sharing can impact schedu-
lability only by increasing task execution times due to costs
incurred in accessing buffers. We discuss this impact next
assuming SBP, CE, and CL are applied. Note that, if shared
buffers are not managed using any of our techniques, then
execution times should be conservatively determined as in an
unmanaged system, as the data depicted in Fig. 4 suggests.

Execution-time impacts. As seen in Fig. 1, tasks of higher
criticality have priority over those of lower criticality in MC?.
Thus, while each task technically has a PET at each of Levels
A through C, only the following PETs are needed for MC?
schedulability analysis: Level-C PETs for tasks at all levels,
Level-B PETs for tasks at Levels A and B, and Level-A
PETs for tasks at Level A. In keeping with prior work [22],
we assume that Level-C PETs are measured average-case
execution times, Level-B PETs are measured worst-case
execution times, and Level-A PETs are obtained by applying
an inflation factor for safety to Level-B PETs.

To enable the needed execution data to be obtained, we
extended measurement-based methods used in our prior
work [22] to deal with buffer sharing. We assume that each
job consists of three phases. If a job copies a buffer it ac-
cesses, then this occurs in an initial read phase. The task
then executes within an execution phase wherein only local
data and isolated shared data are accessed. Finally, a write
phase occurs, if buffers are being copied. Note that, accord-
ing to the copying rules specified in Sec. 3.1, the read or
write phases can be null. If either phase is non-null, then its
execution cost can be determined via a measurement process.
For safety, this process should include a background work-
load that stresses the DRAM bank where the non-isolated
data being copied to or from is stored.

The buffer copying rules ensure that the duration of a
task’s execution phase can be determined in the same manner
as in our earlier work [22], with one exception: applying CL
can cause some data to be permanently locked in the LLC. It
may seem surprising that marking a buffer as uncacheable by
applying SBP has no impact. However, such a buffer must
be a cross-core buffer shared by at least one task at Level A
or B. (A buffer shared only at Level C is deemed cacheable
by SBP, as is one shared at Levels A and B that is made
core-local by CE.) The copying rules require a task to make
a local copy of such a buffer before its execution phase.



As for the exception caused by CL, data locked in the
LLC is guaranteed to be cache warm at all times, which can
decrease the length of a task’s execution phase. However, the
actual benefits of locked data on a task’s execution time are
difficult to quantify because they depend on memory-access
patterns. Therefore, we conservatively assess these benefits
by only considering the time required to load such data once
into the LLC. Specifically, we subtract this time from the
execution time of a task’s execution phase for any locked
shared data that the task accesses.

Partitioning heuristics. To support CE, we devised a two-
step method that attempts to assign Level-A and -B tasks
to cores. In the first step, a modified version of a greedy
assignment heuristic proposed by Liu and Anderson [26]
is used that attempts to reduce schedulability-related data-
sharing costs. The second step is applied only if the first step
fails and attempts to find an assignment using the worst-fit
decreasing heuristic, which more evenly balances utilization
across cores, but is oblivious to data sharing. At a high level,
Liu and Anderson’s heuristic involves ranking shared buffers
by utilization, where a buffer’s utilization is based on the
time to access it and the period of the accessing task. Mod-
ifications to this heuristic were required for our purposes
because we have to take into account both Level-A and -B
tasks and Level-A and -B PETs when applying the heuristic.
Further details can be found in Appendix B.

Prior optimization techniques. Applying CL in a holistic
sense requires selecting specific buffers to lock into the LLC.
To enable such selections, we modified the prior MC? opti-
mization framework [10] briefly mentioned in Sec. 2. That
framework was considered previously only in the context of
independent task systems. In such a system, a task’s PETs
vary with the LLC space allocated to it. As a result, rele-
vant utilization values (per-core, per-criticality-level, ezc.)
are dependent on the number of ways allocated to each LLC
region in Fig. 3. Under the prior framework, such regions
are sized by solving a linear program (LP) that minimizes
overall Level-C system utilization (which reduces tardiness
for Level-C tasks) subject to meeting all MC? schedulability
conditions. The LL.C-region sizes are determined by vari-
ables in the LP that determine, for each region, the number
of ways allocated to it. These variables either can be required
to be integral, resulting in a mixed integer LP (MILP), or
allowed to be continuous and then rounded to integral values,
resulting in an ordinary LP. In our prior work, we found that
both the MILP and LP versions exhibited similar runtime
performance, with the MILP version yielding slightly better
results. As such, we assume integer way variables here.

Optimizing buffer locking. We modified the prior MILP
to optimize the size and use of the LLC locked-buffer area
shown in Fig. 8. Our new MILP determines how much space
should be allocated to this area, and how much of each buffer
should be locked into it. We allow buffers to be partially
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Figure 8: New LLC allocation that extends that in Fig. 3 by allowing
several ways to be allocated for holding locked buffers. Several
such buffers (b, by, b.) are depicted.

locked into the LLC. As a result, continuous variables can be
used to represent the amount of each buffer so locked. The
only new integer variable needed is one that represents the
number of ways allocated to the locked-buffer area. Other
aspects of the prior MILP remain unaltered. In applying the
prior MILP, we used PETs obtained experimentally. As noted
above, these PETs are actually a function of the number of
ways allocated to the LLC region a task can use. We found
that these functions could easily be dealt with in our MILP
by using a piece-wise linear approximation of them [10].
In this work, we have additional execution times that must
be considered pertaining to accessing shared buffers. These
execution times can also be approximated linearly, as the
micro-benchmark data shown in Fig. 6 suggests. Further
details can be found in Appendix A.

5 [Evaluation

To quantify the benefits of our shared-buffer management
techniques, we conducted experiments in which the schedula-
bility of millions of randomly generated task systems was as-
sessed under several scheduling- and resource-management
schemes. These schemes, which are summarized in Tbl. 1,
are as follows. Under U-EDF, all tasks are scheduled on
a single processor using the earliest-deadline-first (EDF)
scheduler. This reflects current industry practice for elim-
inating shared-hardware interference by disabling all but
one core. All other schemes use MC? scheduling and anal-
ysis. Under DSO (data-sharing oblivious), the MC? hard-
ware management techniques presented previously [22] are
used, but no special techniques are applied for shared buffers.
In the next three schemes, the shared-buffer management
techniques given in Sec. 3.1 are successively introduced:
SBP introduces the SBP technique; SBP+CE then adds the
CE technique, with task-to-core assignments being done
via the assignment heuristic discussed in Sec. 4; finally,
SBP+CE+CL adds the CL technique, where LLC locking
decisions are made via the optimization algorithm discussed
in Sec. 4. To upper bound the potential gains afforded by the
use of our techniques, we also consider Ideal, in which an



[Data Category  [Benefit] U-EDF] DSO[ SBP] SBP+CE[ SBP+CE+CL[Ideal | [ Category [ Choice [ Level A [ Level B [ LevelC |
Unsharedat | CI X | [ X[ X ] X [ X | A-Heavy [50, 70) 10, 30) [10, 30)
Levels A&B BT | X | | X | X | X X | B-Heavy [10, 30) [50, 70) [10, 30)

I X X X X 1: Criticality C-Heavy [10, 30) [10, 30) [50, 70)
Shared BI < < X X Utilization AB-Moderate [35, 45) [35, 45) [10, 30)
Core-Local NC XX < = = Ratios AC-Moderate | [35, 43) 10, 30) [35.45)
oW Tocked only | X BC-Moderate_|_[10, 30) [35.45) [35.45)
All-Moderate | (35, 45) (35, 45) (35, 45)
CI N/A locked only X
Shared w/ AB [ BI | N/A Tockedonly | X ] Short {3.6} 6,12} 3, 33)
Cross-Core NC NA X Tocked only < 2: Period (ms) | Contrasting {3,6} 96,192} [10, 100)
W N/A Tocked only X Long {48,96} 96,192} [50, 500)
ST T < Tockedonly | X Light [0.001, 0.03) | [0.001,0.05) | [0.00L,0.1)
Level C only BI < Tocked only X 3: Task Util. Moderate [0.02, 0.1) [0.05, 0.2) [0.1,0.4)
W Tockedonly | X Heavy [0.1,03) [02.04) [0.4,0.6)
- ) 4: Max Light [0.01,0.1) [0.01,0.1) [0.01,0.1)
Table 1: Benefits accrued under different schemes. Benefits are Reload Moderate [0.1,0.25) [0.1,0.25) [0.1,025)
cache isolation (CI), bank isolation (BI), cache warm (CW) during Time Heavy [0.25,0.5) [0.25,0.5) [0.25,0.5)
every access, and no copy (NC) phase required. 5:Max % of | Light [ [0.001,0.0D) | [0.0,0.1) T [0.05,0.) |
WS Shared [ Heavy [10.15,03) | [0203) | 020D |
LLC of infinite capacity is assumed into which all shared 6: Tasks Task Count (levels not relevant below)
buffers can be locked. (Code and local data are still assumed Per Graph Small {1.2.3,4, 5}
Component Large {11, 12,13, 14, 15}

to be allocated assuming the actual LLC of finite size.)

Task-set generation. The task-set generation process we
used extends that used by us previously [22] by account-
ing for shared buffers. All PETs were defined as discussed
in Sec. 4, with the Level-B-to-Level-A inflation factor
set to 50% (this is in keeping with results reported by
Vestal [34]). Task sets were randomly generated by using
six uniform distributions to choose task and task-set parame-
ters. The specific distributions used were selected from the
per-distribution choices listed in Tbl. 2. These distributions
are defined with respect to the U-EDF scheme. All combina-
tions of these choices were considered. These distributions
determine the criticality utilization ratio (i.e. the fraction of
the overall utilization assigned to each criticality level), task
periods, task utilizations, the maximum LLC reload time
after a preemption or migration (specified as a fraction of
overall task execution time), and the maximum percent of a
task’s working set (WS)—the set of addresses used to refer-
ence data—dedicated to reading and writing shared buffers.
At a high level, our overall experimental framework refines
the following step-wise process used in our prior work [22]:

Step 1 Select six specific distributions from among the dis-
tribution categories listed in Tbl. 2.

Step 2 Using the selected distributions from the first four
categories, generate task-set parameters under U-EDF.

Step 3 Based on the generated U-EDF PETs, generate PETs
for the other schemes in Tbl. 1. This process is informed
by micro-benchmark data concerning task execution
times, as discussed at length in [22]. In this work, we
augment this process by also considering buffer access
times, as discussed in Sec. 4.

Step 4 Adjust the generated task parameters to account for
relevant overheads. This step is also described in much
greater detail in [22]. The actual overhead values ap-
plied are based on measurement data.

Step 5 Generate a task dependency graph consisting of a
collection of DAGs at each criticality level. The distri-

Table 2: Task-set parameters and distributions.

bution selected from the sixth distribution category in
Tbl. 2 determines the number of tasks in each DAG of
the graph. Techniques presented by Elliot ef al. [11]
were used to ensure that a wide range of DAG topolo-
gies were generated.

Step 6 Assign wait-free dependencies to cross-criticality
task pairs. To keep the parameter space from further ex-
ploding, we simply assumed that 1/6 of all dependencies
were across criticalities. This reflects the hypothesis that
cross-criticality sharing is less common.

Step 7 Generate an upper bound on the fraction of each
task’s WS that is shared using the distribution selected
from the fifth category. We determined actual buffer
sizes subject to this upper bound by solving an addi-
tional LP that was designed to ensure that the buffer
sizes are reasonable given the properties of the tasks
that access them.

Step 8 Test the schedulability of the resulting task set under
each considered scheme in Tbl. 1.

The distributions in Tbl. 2 were defined to enable the
systematic study of different factors impacting schedulabil-
ity, such as MC analysis, isolation, and shared-buffer sizes.
Moreover, these factors were chosen to reflect realistic usage
patterns. We denote each combination of distribution choices
using a tuple notation. For example, (C-Heavy, Long, Moder-
ate, Heavy, Light, Small) denotes using the C-Heavy, Long,
Moderate, etc., distribution choices in Tbl. 2. We call such
a combination a scenario. We considered all possible such
scenarios, and for each utilization in each scenario, we gen-
erated enough task sets to estimate mean schedulability to
within +0.05 with 95% confidence with at least 100 and at
most 2,000 task systems.

For schemes that do not lock buffers in the LLC, we deter-
mined allocated LLC areas using our prior LP optimization
techniques as illustrated in Fig. 3. For schemes not using
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Figure 9: Representative schedulability plots.

our sharing-aware task-partitioning heuristic, we used the
worst-fit-decreasing bin-packing heuristic.

Schedulability results. In total, we evaluated the schedula-
bility of approximately nine million randomly generated task
sets, which took roughly 27 CPU-days of computation. From
this abundance of data, we generated over 700 schedulability
plots, of which three representative plots are shown in Fig. 9.
The full set of plots is available online [9].

Each schedulability plot corresponds to a single scenario.
To understand how to interpret these plots, consider Fig. 9(b).
In this plot, the circled point indicates that 67% of the gener-
ated task sets with EDF utilizations of 4.1 were schedulable
under the DSO scheme. Note that because the z-axis rep-
resents system utilizations under the single-core HRT EDF
scheme, it is possible under MC? to support systems with
an EDF utilization exceeding four, as MC provisioning and
hardware management decrease PETs.

We now state several observations that follow from the

full set of collected schedulability data. We illustrate these
observations using the data presented in Fig. 9.
Obs. 2. SBP provided moderate schedulability benefits in
approximately 60% of the considered scenarios. Moreover,
in approximately 30% of cases, SBP provided schedulability
near to that of Ideal.

This observation is supported by insets (a) and (b) of
Fig. 9. For small-message-size scenarios, as in inset (b), copy-
phases have little to no impact on task PETs. As a result,
the isolation provided for local data under SBP eliminates
the majority of sharing-related schedulability losses without
significant schedulability loss due to bypassing the cache or
copying. For large-message-size scenarios, as in inset (a),
greater copying overheads reduce the benefits of SBP. It is
in these scenarios where CE and CL can be most beneficial.
Obs. 3. CE and CL provided mild improvements to schedu-
lability in roughly 20% of considered scenarios.

Fig. 9(a) gives one example of these improvements. In
a majority of scenarios, copy-phase lengths are relatively
small compared to execution-phase lengths, thus eliminating
the need for techniques that primarily improve performance
by reducing copying (CE and CL). In such scenarios, the
isolation provided by SBP is sufficient to achieve near-ldeal
platform utilization.

Obs. 4. In roughly 40% of scenarios, schedulability under
all MC? schemes, including DSO, was nearly equivalent.

This observation is supported by Fig. 9 (c). In scenarios
with light WSs, there is little impact from cache use or shared-
data copying. In such scenarios, breaking isolation in the
LLC has little effect on task PETs. Similarly, copy-phase
lengths have small impacts on PETs. As a result, all MC?
configurations performed similarly in these scenarios.

Obs. 5. Across all considered scenarios, our combined tech-
niques (SBP+CE+CL) provide 17% better schedulability
on average than DSO. Moreover, this represents 84% of the
improvement possible when compared to Ideal.

Given the nature of our study, the observations above
naturally hinge on our choice of hardware platform. The
consideration of other platforms with different caching and
memory characteristics might yield different conclusions.

6 Prior Related Work

This work follows a long line of research examining shared-
resource contention in real-time systems [23]. Prior efforts
have focused on issues such as cache partitioning [3, 17,
21, 36], DRAM controllers [5, 18, 19, 24], and bus-access
control [1, 2, 13, 14, 15, 31]. Other work has focused on
reducing shared-resource interference when per-core scratch-
pad memories are used [32], accurately predicting DRAM
access delays [20], throttling lower-criticality tasks’ memory
accesses [38], and allocating memory [37].

To our knowledge, we are the first to consider in detail the
unique impact that data sharing has on hardware isolation
under the notion of MC scheduling espoused by Vestal [34],
which was proposed with the express intent of achieving
better platform utilization. Several of the aforementioned pa-
pers do target MC systems [5, 13, 14, 15, 18, 19, 24, 30, 38],
but only peripherally touch on the issue of achieving better
platform utilization, if at all. Also, most of them focus on
hardware design. One of these papers [1] considers systems
in which tasks share data, but does not consider the specific
impact this has on hardware isolation. Hardware isolation
under Vestal’s notion of MC scheduling is the subject of four
prior MC?-related papers by our group [16, 22, 29, 35]. One
of these papers [22] was reviewed in detail in Sec. 2; we refer



the reader to [22] for an overview of the other three. In recent
work, which was published after we completed our study,
data sharing was considered in the context of automotive
systems [6].

7 Conclusion

For hardware-management mechanisms to have practical
impact, data sharing among tasks must be supported. This
need poses a dilemma, as data sharing can directly break
isolation properties fundamental to hardware management.
In this paper, we considered this dilemma in the context
of MCZ, where hardware-isolation mechanisms are used
alongside MC provisioning assumptions to further improve
platform utilization. In particular, we presented techniques
for mitigating this dilemma, and evaluated these techniques
via a large-scale, overhead-aware schedulability study, driven
by measurement data. This study suggests that our proposed
techniques have practical merit. In future work, we plan to
augment this study by considering the other IPC mechanisms
mentioned in Sec. 3, richer DAG-based task models, and
other multicore hardware platforms.
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A MILP Example

Due to space constraints, we forego a complete description
of the MILP techniques used herein as applied to the ARM
Cortex A9 platform. To give readers an understanding of how
our MILP techniques work, we present an overhead-unaware
version of our MILP for a simpler system than the A9.
Consider a task set 7 = {71, 72} such that 7 is a Level-A
task and 7o is a Level-B task. These tasks share a WFB b
with a message size of s; words, written to by 7, and read
by 2. Both tasks run on a single-core system. Fig. 10 de-
picts the LLC for this cache, and associated LP variables,
discussed later. The LLC contains S™%* sets, W"%* ways,
and has a cache-line size of one word. 7; and 7 share a
bank, and buffer b is allocated in a Level-C bank. Under this
scenario, there is very little competition between criticality
levels and cores for cache space. However, this scenario still
serves as an exemplar for demonstrating our MILP tech-
niques. Non-negativity constraints are assumed for all LP
variables presented in the remainder of this appendix.

Execution-phase modeling. We let W 4 and W denote the
LP variables for the number of ways allocated to tasks 71
and 7, respectively. We let W1, denote the number of ways
used for locked buffer space. We let ¢! and é# denote LP
variables for the execution-phase time of 7; under Level-
A and -B analysis, respectively. The values of a Level-/
execution-phase variable for a given way must be constrained
by measured Level-¢ execution-phase times for the given way
allocation. In Fig. 11(a), we show an example plot of what
this data might look like for Level-B execution-phase times
of 5. From the measured execution-phase time data, we can
construct linear constraints between adjacent data points, as
shown in Fig. 11(b), to ensure that the value €5’ is never less
than the measured Level-B execution-phase time for a given
way allocation.

Cache-size constraints. To ensure the space allocated to
buffers and to tasks does not exceed the size of the cache or
produce overlap between the task and buffer LLC areas, our
MILP includes the constraint W4 + Wg + W < W™ If
we wish to allow overlap in Level-A and -B way allocations,
we can replace thisA constrgint with the constraints W4 +
W < Wme and W + W < Wmez,

Buffer-space constraints. We let L denote a continuous LP
variable for the number of words in buffer b locked into the
cache. For a cache with S™%% gets, S™%% . WL cache lines
are available for buffer locking. We ensure the buffer data
locked into the cache does not exceed the space allocated
for bufferg using the constraint L, < S™% . WL. We also
constrain L based on buffer size. The buffer b requires three
slots, so this constraintis L < 3 - s,

Copy-phase modeling. The cache space allocated to a
buffer must be distributed evenly among the message slots of

the buffer. For the three-slot WEB b, % cache lines are read
in place from the cache each time a message is read or writ-
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Figure 11: Construction of linear constraints for 7> from task exe-
cution time data.

ten. The remaining s;, — % words of data are copied from a
Level-C bank. We let §;y and ¢, denote the times required for
an uncached word and a locked word, respectively, to be read
from a Level-C bank, according to Level-B analysis. These
times can be determined from measured read/write times for
a range of buffer sizes. The Level-B read-phase time % for

Ty is the time required to read sj — % uncached words from a

Level-C bank, and % cached words from locked cache lines.

L L
T2B:6L'§+5U'(Sb—§)

Read and write phase times at other criticality levels can be
determined in a similar fashion.



Task utilizations. We let Cf and u{ = C!/T; denote the
Level-¢ PET and utilization, respectively, of task 7; as ex-
pressed in our MILP. Task PETs are expressed in terms
of execution-phase variables and copy-phase lengths. For
instance, the Level-B PET C2 of 7, is 5 + rZ. Task uti-
lizations are used to express schedulability constraints, all of
which are utilization constraints in MC?.

Schedulability constraints. The system has two utilization
constraints, u{* < 1 and uf + u® < 1, which, in terms of
our LP variables, are linear constraints. These schedulability
constraints are derived from MC? schedulability conditions
presented in [29].

Objective function. The MILP as presented does not re-
quire an objective function in order to determine values for
WA, WB, WL, and L that lead to a schedulable system.
However, for more complex systems that include Level-C
workloads, we include an objective function that minimizes
Level-C system utilization in order to improve tardiness
bounds at Level C.

This completes our description of MILP techniques ap-
plied to a simpler system than the ARM platform. A more
complex system under our MC? framework requires addi-
tional schedulability constraints at each criticality level and
on each core, way variables for each LLC area specified in
Fig. 8, and additional cache-size constraints. All additional
constraints can be formulated in a similar fashion as the
constraints presented in this appendix. Task PETs must also
factor in overheads. Overheads for our ARM platform can be
upper bounded using expressions that are either constant or
vary linearly with respect to the values of our LP variables.

B Core-Assignment Heuristics

In Sec. 4, we discussed two steps to our core-assignment
method. Here we describe in more detail the first step, a
modification to a greedy assignment heuristic proposed by
Liu and Anderson [26].

Liu and Anderson’s algorithm considers the communica-
tion overhead when assigning DAG-based task systems to
clusters of processors. In our case, we apply the heuristic to
assign tasks at Levels A and B, and for us, each cluster con-
sists of only one core. Greedy choices are made by ranking
shared buffers according to the schedulability-related impact
of cross-core sharing.

Fig. 12 provides the pseudocode for our modification to
Liu and Anderson’s algorithm. Algorithm ASSIGN is ap-
plied first to all Level-A tasks in the system and then to all
Level-B tasks. We use Level-A (respectively, -B) analysis in
evaluating core capacities and utilizations when we assign
DAGs at Level-A (respectively, -B). Utilizations are evalu-
ated without overheads and assume no ways are allocated to
tasks in the LLC.

In Phase 1, we attempt to assign DAGs to cores without
splitting DAGs. At line 1, DAGs are ordered based on cross-
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T': A LIST OF DAGS {71, Y2, -.» Yy}

P: ALIST OF CORES {p1, p2, ... pm }

U(p:): REMAINING CAPACITY OF CORE p;
u(v;): UTILIZATION OF DAG ;

ASSIGN:

PHASE 1:
1: Order DAGs by largest sharing weight first
2: Order cores in P by smallest remaining capacity first
3: for each v; in I" in order do

4: for each p; in P in order do

5 if u(v;) < U(p;) then

6: Assign all tasks in v; to p;
7 Remove v; from I"

PHASE 2:
8: for each v; in I" in order do
9: Order tasks in ~; by smallest depth first
10: Order tasks at same depth by largest sharing
weight first
11: Order cores in P by smallest remaining capacity first
12: for each ; in I in order do

13: for each task 7; in -y; in order do
14: for each py, in P in order do
15: if u; < U(py) then

16: Assign 7; t0 py,

17: Remove v; from I"
18: else

19: Remove p;, from P

Figure 12: Core assignment algorithm.

core sharing “weight.” The sharing weight for a task is the
utilization required for the task to copy from each of its read
PCBs once per job and copy to each of its written PCBs
once per job assuming all buffers bypass the cache and are
allocated in Level-C banks. The sharing weight of a DAG is
the sum of the sharing weights of all its tasks. In lines 3-7,
we assign DAGs to the first core in P with enough capacity.
This is done in worst-fit decreasing order.

In Phase 2, we split up DAGs that were un-assignable in
Phase 1. In lines 8-10, tasks in each unassigned DAG are
ordered by depth and by sharing weight at same depth. In
lines 12-19, we assign tasks in order to cores in worst-fit
decreasing order. Tasks are assigned to the first core with
enough remaining capacity to hold at least one task. When
we cannot assign a task to this core, we disregard the core in
future assignments (line 19). This technique is designed to
assign as many tasks as possible that likely share buffers to
the same core.



