
Supporting Mode Changes while Providing Hardware Isolation in
Mixed-Criticality Multicore Systems ∗
Micaiah Chisholm, Namhoon Kim, Stephen Tang, Nathan Otterness,

James H. Anderson, F. Donelson Smith, and Donald Porter
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
When hosting real-time applications on multicore platforms,
interference from shared hardware resources (e.g. caches
and memory banks) can significantly increase task execu-
tion times. Most proposed approaches for lessening interfer-
ence rely on mechanisms for providing hardware isolation
to tasks. However, one limitation of most prior work on
such mechanisms is that only static task systems have been
considered that never change at runtime. In reality, safety-
critical applications often transition among different func-
tional modes, each defined by a distinct set of running tasks.
In a given mode, only tasks from that mode execute, yet tasks
from all modes consume memory space, and this creates ad-
ditional constraints affecting hardware-isolation techniques.
This paper shows how to address such constraints in the
context of an existing real-time resource-allocation frame-
work called MC2 (mixed-criticality on multicore). In MC2,
hardware-isolation techniques are employed in conjunction
with criticality-aware task-provisioning assumptions that en-
able hardware resources to be utilized more efficiently.

1 Introduction
There is great interest today in hosting computationally inten-
sive real-time workloads on multicore platforms. However,
efforts towards this end have been stymied by problems
caused when tasks interfere with each other in accessing
shared hardware components such as caches and memory
banks. Shared-hardware interference can cause significant
task execution-time increases. This is especially problematic
for real-time workloads, which are typically validated by
analyzing worst-case scenarios. When worst-case execution
times increase proportionally to the amount of sharing across
cores, the benefit of additional cores can be nullified. This
dilemma has been dubbed the one-out-of-m problem [24] to
reflect the very real possibility of being able to allocate only
“one core’s worth” of capacity though m cores are present.

The one-out-of-m problem is one of the most serious
unresolved obstacles in work on real-time multicore resource
allocation today. Evidence of this can be seen in the recent
CAST-32 position paper from the U.S. Federal Aviation
Administration (FAA) [7, 8]. This position paper provides an
in-depth discussion of the challenges created by employing
multicore platforms in avionics settings.

In addressing the one-out-of-m problem, two orthogo-

∗Work supported by NSF grants CNS 1409175, CPS 1446631, and CNS
1563845, AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-1-
0499, and funding from General Motors.

nal approaches have been investigated. The predominate
approach involves devising mechanisms to predictably man-
age shared hardware resources so that interference and
task execution-time estimates are reduced [1, 2, 3, 4, 9,
12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 29, 32,
34, 37, 39, 38, 40, 41]. Alternatively, Vestal (while work-
ing in the avionics industry) proposed employing mixed-
criticality (MC) analysis [36], under which execution-time
estimates for less-critical tasks are determined based on
less-pessimistic assumptions.1 While these two approaches
have been largely considered separately, both have been
applied together in ongoing work by our group on a real-
time resource-allocation framework called MC2 (mixed-
criticality on multicore) [9, 16, 23, 24, 29, 37]. In particular,
MC2 supports both MC provisioning techniques as proposed
by Vestal [36] and mechanisms for managing the shared
last-level cache (LLC) and DRAM memory.
From static to dynamic workloads. Prior work on shared-
hardware management has been almost entirely limited to
static task systems that never change at runtime. This is a key
limitation. Indeed, many safety-critical applications must
support multiple functional modes, each defined by a distinct
set of running tasks. For example, in an aircraft, different sets
of running tasks may be required when taking off, at cruise
altitude, or when some emergency condition occurs. Thus,
for the one-out-of-m problem to be truly solved, it is crucial
that solutions exist that encompass multi-mode systems. In
this paper, we present such a solution in the context of MC2.

Allowing multiple modes to exist can greatly complicate
shared-hardware management. The key issue here is not ex-
hausting overall CPU capacity, because tasks from different
modes do not run at the same time. Rather, in the context
of MC2, DRAM allocations are the main problem, as even
inactive tasks consume memory. Note that the DRAM re-
gion a task can access determines the region of the LCC it
accesses.2 Thus, the problems of allocating DRAM space
and LLC space are intertwined and many complexities exist.

Contributions. MC2 includes an offline DRAM/LLC allo-
cation component, and an online component that schedules
tasks at runtime. Our major contribution is to show how to
modify both components to support multi-mode systems. We
also report on the results of experiments conducted using our
modified MC2 in which various shared-hardware allocation

1Vestal originally considered uniprocessor platforms, but MC analysis
has also been considered in the context of multicore platforms.

2The LLC would typically be a set-associative cache with the mapping
of a memory location to a set determined by its physical address.

options pertaining to such systems were explored.
MC2’s offline component allocates DRAM and LLC re-

gions to subsets of tasks in a criticality-cognizant way. When
modifying this component to support multi-mode systems,
different regions of DRAM and the LLC must be assigned to
per-mode subsets of tasks while ensuring that all tasks from
all modes are so assigned and each mode is schedulable.

With respect to these requirements, tasks that are shared
across multiple modes (as commonly occurs in practice)
can cause major difficulties because their presence creates
dependencies among modes. To further complicate matters,
a shared task could potentially be of different criticalities
in different modes. For example, a planning computation in
an unmanned aerial vehicle may require a criticality-level
upgrade during a mode switch initiated in response to a
detected threat, as planning becomes very critical in that
context. To our knowledge, such criticality changes (under
Vestal’s notion of criticality [36]) have not been considered
in prior work on mode changes.3 A task that undergoes a
criticality change when switching between two modes may
require different hardware isolation guarantees in each mode.

When allocating DRAM to a task τi that is shared between
two modes, two basic options exist: either the two modes can
be allocated overlapping DRAM regions, with τi allocated in
the overlap, or they can be allocated non-overlapping DRAM
regions, which would entail migrating τi’s state between
these regions when switching between the two modes. Under
either option, LLC allocations would be correspondingly
affected. In more complex situations, these options could
actually be applied in disparate combinations, with different
techniques used for different tasks or modes. Along with
other details pertaining to how DRAM and LLC regions are
actually created, this yields a vast solution space to explore.

To sift through this solution space, we conducted a large-
scale schedulability study in which overheads that impact
schedulability were considered as measured on our multi-
mode extension of MC2’s runtime component. We also con-
ducted case-study experiments to confirm that mode-change
latencies in our MC2 extension are reasonable. To our knowl-
edge, this paper is the first work on supporting mode changes
in a multicore context where hardware-isolation and MC-
analysis techniques (as proposed by Vestal [36]) are used.4

Organization. In the rest of this paper, we provide relevant
background (Sec. 2), describe our modifications to MC2 to
support mode changes (Sec. 3), discuss our schedulability
experiments (Sec. 4) and related work (Sec. 5), and conclude
(Sec. 6). Due to space constraints, some implementation
details and experimental results are deferred to appendices.

3Under current avionics certification procedures, such a task would
always default to its highest criticality level. However, as noted in the CAST-
32 position paper [7, 8], such procedures assume uniprocessor machines
and must evolve to enable better platform utilization on multicore platforms.
Moreover, according to colleagues in the avionics industry, many practical
use cases exist where criticality changes would be desirable to support.

4As noted in Sec. 5, in prior work on MC analysis, a switch to degraded
system performance is often cast as a mode change, but this is very different
from the functional mode changes considered in this paper.

CE CE CE CE

RM RM RM RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3
higher
(static)
priority

lower
(static)
priority

Figure 1: Scheduling in MC2 on a quad-core machine.

2 Background
We begin by reviewing needed background material.
Task model. We consider real-time workloads specified via
the implicit-deadline periodic/sporadic task model (of which
we assume familiarity). We specifically consider a task sys-
tem τ = {τ1, . . . , τn}, scheduled on m processors,5 where
task τi’s period and worst-case execution time (WCET) are
denoted Ti and Ci, respectively. (We generalize this model
below when considering MC scheduling and multi-mode
systems.) The utilization of task τi is given by ui = Ci/Ti
and the total system utilization by

∑
i ui. If a job of τi has a

deadline at time d and completes execution at time t, then its
tardiness is max{0, t− d}. Tardiness should always be zero
for a hard real-time (HRT) task, and should be bounded by a
(reasonably small) constant for a soft real-time (SRT) task.
Mixed-criticality scheduling. For systems with tasks of dif-
fering criticalities, Vestal proposed using less-pessimistic
execution-time estimates when considering less-critical
tasks [36]. Under his proposal, if L criticality levels exist,
then each task has a provisioned execution time (PET) spec-
ified at each level, and L system variants are analyzed: in
the Level-` variant, the real-time requirements of all Level-`
tasks are verified with Level-` PETs assumed for all tasks
(at any level). The degree of pessimism in determining PETs
is level-dependent: if Level ` is of higher criticality than
Level `′, then Level-` PETs will generally exceed Level-`′

PETs. For example, in the systems considered by Vestal [36],
observed WCETs were used to determine lower-level PETs,
and such times were inflated to determine higher-level PETs.

Scheduling under MC2. Vestal’s work led to a significant
body of follow-up work on MC scheduling (see [6] for an ex-
cellent survey). Within this body of work, MC2 was the first
MC scheduling framework for multiprocessors [29]. MC2

is implemented as a LITMUSRT [28] plugin and supports
four criticality levels, denoted A (highest) through D (low-
est), as shown in Fig. 1. Higher-criticality tasks are statically
prioritized over lower-criticality ones. Level-A tasks are pe-
riodic and partitioned and scheduled on each core using a
time-triggered table-driven cyclic executive.6 Level-B tasks
are also periodic and partitioned but are scheduled using a
rate-monotonic (RM) scheduler on each core.6 On each core,
the Level-A and -B tasks are required to have harmonic pe-
riods and commence execution at time 0. Level-C tasks are

5We use the terms “processor,” “core,” and “CPU” interchangeably.
6Other per-level schedulers optionally can be used. These options, and

other considerations, such as slack reallocation, schedulability conditions,
and execution-time budgeting are discussed in prior papers [16, 29, 37].

CPU 0 …L1-I
32KB

L1-D
32KB

CPU 3
L1-I

32KB
L1-D
32KB

L2
1MB

DRAM
Bank 0
128 MB

DRAM
Bank 7
128 MB

…

Figure 2: Quad-core ARM Cortex A9.

sporadic and scheduled via a global earliest-deadline-first
(GEDF) scheduler.6 Level-A and -B tasks are HRT, Level-
C tasks are SRT, and Level-D tasks are non-real-time. A
major thesis underlying the design of MC2 is that Levels
A and B should be mostly comprised of quite deterministic
“fly-weight” tasks with rather low utilizations; more computa-
tionally intensive tasks would likely be assigned to Level C.
This thesis arose from discussions with colleagues in the
avionics industry, who are interested in deploying complex
decision-making capabilities at lower criticality levels.

Hardware management under MC2. MC2 provides a com-
ponent used offline (i.e., before runtime) to perform LLC and
DRAM allocations [24]. We briefly describe the techniques
that underlie this component here. (We are still assuming
there is only a single task set to schedule. We consider ex-
tensions to support multiple modes later.) Our description
is with respect to the machine shown in Fig. 2, which is the
hardware platform assumed throughout this paper. This ma-
chine is a quad-core ARM Cortex A9 platform. Each core on
this machine is clocked at 800MHz and has separate 32KB
L1 instruction and data caches. The LLC is a shared, unified
1MB 16-way set-associative L2 cache. The LLC write policy
is write-back with write-allocate. 1GB of off-chip DRAM is
available, partitioned into eight 128MB banks.

We assume herein that Level D is not present, as it has no
impact on the isolation guarantees or schedulability of tasks
at higher levels (and Level D is afforded no real-time guar-
antees). LLC management is provided for the other levels
by assigning rectangular areas of the LLC to certain groups
of tasks. This is done by using page coloring to allocate
certain subsequences of sets (i.e., rows) of the LLC to such
a task group, and hardware support in the form of per-CPU
lockdown registers to assign certain ways (i.e., columns) of
the LLC to the group. (See [24] for more details concerning
these LLC allocation mechanisms.) Also, by controlling the
memory pages assigned to each task, certain DRAM banks
can be assigned for the exclusive use of a specified group of
tasks. The operating system (OS) can also be constrained to
access only certain LLC areas or DRAM banks.

Fig. 3 depicts the main allocation strategy for the LLC and
DRAM banks provided under MC2 [24]. DRAM allocations
are depicted at the bottom of the figure, and LLC allocations
at the top. As seen, the Level-A and -B tasks on each CPU
are assigned a dedicated DRAM bank, and Level C and the
OS share the remaining banks. Also, Level C and the OS
share a subsequence of the available LLC ways and all LLC
colors. (On the considered platform, each color corresponds

DRAM
Bank 0
Level C
& OS

DRAM
Bank 1
Level C
& OS

DRAM
Bank 2
Level C
& OS

DRAM
Bank 3
CPU 0
A & B

DRAM
Bank 4
CPU 1
A & B

DRAM
Bank 5
CPU 2
A & B

DRAM
Bank 6
CPU 3
A & B

DRAM
Bank 7
Level C
& OS

CPU 0
Level A

CPU 1
Level A

CPU 2
Level A

CPU 3
Level A

CPU 0
Level B

CPU 1
Level B

CPU 2
Level B

CPU 3
Level B

Level C
&
OS

4 Colors

4 Colors

4 Colors

4 Colors

16 Ways

LLC (L2)

Figure 3: LLC and DRAM bank allocation. Note that the Level-
A and -B LLC areas for each core can overlap. LLC boundaries
indicated by double lines are configurable parameters.

to 128 cache sets.) Level-C tasks (being SRT) are assumed to
be provisioned on an average-case basis. Accordingly, LLC
sharing with the OS should not be a major concern. The
remaining LLC ways are partitioned among Level-A and -B
tasks on a per-CPU basis. That is, the Level-A and -B tasks
on a given core share a partition. Each of these partitions is
allocated one quarter of the available colors. This scheme
ensures that Level-A and -B tasks do not experience LLC
interference from tasks on other cores (spatial isolation).
Also, Level-A tasks (having higher priority) do not experi-
ence LLC interference from Level-B tasks on the same core
(temporal isolation).

For any task set, the actual number of ways allocated to
each LLC partition (i.e., the Level-C/OS partition and the
per-core Level-A/B partitions) is viewed as a variable, which
is determined by solving an mixed integer linear program
(MILP) [24]. This MILP minimizes the task set’s Level-
C utilization while ensuring schedulability at all criticality
levels. It is invoked only after an assignment of Level-A and
-B tasks to cores has been obtained via bin-packing heuristics
(i.e., the MILP does not determine such an assignment). We
will consider this MILP in greater detail later in Sec. 3 as
a precursor to explaining how LLC and DRAM allocations
can be determined for multi-mode systems.

The MC2 implementation just described does not provide
management for L1 caches, translation lookaside buffers,
memory controllers, memory buses, or cache-related regis-
ters that can be a source of contention [35]. However, we
assume PETs are determined via measurement, so such re-
sources are implicitly considered when PETs are determined.
We adopt a measurement-based approach because work on
static timing analysis tools for multicore machines has not
matured to the point of being directly applicable. Moreover,
PETs are often determined via measurement in practice.

In recent work, we proposed extensions to MC2 that
permit tasks to share memory pages to support pro-
ducer/consumer buffers [9] and to enable the usage of shared
libraries [23]. Our mode-change extensions can be applied
alongside these other extensions, but we do not consider that
possibility here, for ease of exposition.7

7Delving into sharing would require providing further background and
would complicate our experimental framework. We lack space for either.

Problem considered in this paper: supporting multiple
modes. Our objective in this paper is to adapt the hardware-
isolation mechanisms of MC2 so that multiple functional
modes can be supported. Each mode is defined by a set
of periodic/sporadic tasks, with each such task set defined
exactly as discussed at the beginning of Sec. 2. At any point
in time, the system is either executing in a distinct mode or
undergoing a transition from one mode to another. These
transitions are enacted by a mode-change protocol.

Tasks from different modes do not execute at the same
time (except perhaps briefly when a mode change is under-
way). However, memory pages for all tasks from all modes
must be allocated in DRAM, unless secondary storage de-
vices such as a solid-state disks are employed. While such
devices are worthy of scrutiny, we do not consider them
in this paper because their usage can cause relatively long
mode-change latencies, which may be unacceptable in safety-
critical domains. As seen above, DRAM allocations impact
LLC allocations. Therefore, the main challenge we must
address is to determine how to allocate tasks from all modes
in both DRAM and the LLC so that schedulability is ensured
for all modes. We address this challenge in Sec. 3 below.
Additionally, we must add a mode-change protocol to MC2’s
runtime scheduler and show that it gives rise to reasonable
mode-change latencies. Due to space constraints, we defer
consideration of these issues to Appendices A and B.

3 LLC/DRAM Allocation Problem
In this section, we give a more detailed overview of the MILP
techniques mentioned in Sec. 2, and present our extensions
of them to enable multiple modes.
3.1 Prior MILP Techniques
The MILP from prior work determines the LLC allocations
shown in Fig. 3, assuming DRAM allocations are as shown
at the bottom of the figure. This MILP, which is described
at length in [24], is too complex to describe fully here. In-
stead, we opt to consider a simpler allocation problem that
is sufficient for explaining the main ideas.
A simple motivating example. Consider a single task with
a 4ms period running on a uniprocessor platform with a
4-way LLC. For this (very) simple task system, we explain
how to construct a MILP that determines the number of ways
to allocate to the task so that its resulting PET ensures sys-
tem schedulability. The obvious choice would be to simply
allocate all ways to the lone task. However, demonstrating
the construction of a MILP for this example is still useful for
understanding the MILP techniques we build upon.

Fig. 4 visually depicts the MILP constraints for this prob-
lem. The first set of constraints is determined based on PET
measurement data. The figure shows five PET data points,
one for each possible way allocation, with each point deter-
mined via measurement data. By introducing lines between
adjacent data points, and constraining a solution to be above
these lines, any PET value determined by the MILP will be
in accordance with measurement data.

We must also ensure that the system is schedulable. Here,

LP Solution Space

Schedulability ConstraintPET Data ConstraintPET Data

Way Variable

PE
T

Va
ria

bl
e

(m
s)

0

1

2

3

4

5

0 1 2 3 4

Figure 4: Illustration of MILP constraints.

with a single task, schedulability can be ensured by speci-
fying just one constraint: the task’s PET cannot be greater
than its period, else the system will be over-utilized. This
constraint is depicted as a dashed line in Fig. 4. The po-
tential solution space, which is also depicted in the figure,
is obtained by intersecting the half-spaces defined by the
specified linear constraints. One could specify an objective
function that would favor certain solutions within this space,
but given the very simple nature of this motivating example,
we will not bother to delve into objective functions just yet.

The actual allocation problem as a MILP. In the exam-
ple above, schedulability was ensured by requiring the lone
task’s utilization to be at most 1.0. In MC2, schedulability is
similarly determined by checking a set of utilization-based
constraints. Thus, the full MILP can be viewed as an exten-
sion of the simple example above in which linear constraints
must be specified for many tasks while accounting for several
utilization-based schedulability conditions. The full MILP
also includes constraints on LLC allocation variables that
ensure that certain LLC areas do not overlap. Furthermore,
an objective function is added to minimize Level-C system
utilization, as this will likely reduce tardiness at Level C.

In the simple example above, overheads affecting schedu-
lability (e.g., scheduling costs, context-switching times, etc.)
were ignored. In the full MILP, such overheads are factored
into the various linear constraints using standard overhead-
accounting techniques that involve inflating PETs. Like PET
data, these various overheads can be determined via mea-
surement. Specific overhead values are treated as constants.

As described here, our prior MILP techniques determine
way allocations, as shown in Fig. 3. Similar techniques can
be applied in alternative allocation frameworks where LLC
areas are sized by deducing color allocations, with way allo-
cations being fixed. While it would be desirable to size LLC
areas by deducing both color and way allocations, this is
difficult (if not impossible) to do with only linear constraints.
In particular, an LLC area’s size is given by multiplying the
number of ways and colors allocated to it. Thus, PETs be-
come a nonlinear function of the number of allocated ways
and colors when both of these parameters are viewed as
variables. To the best of our knowledge, the only way to
eliminate this nonlinear dependency is by requiring either
way allocations or color allocations to be fixed.

Handling DRAM capacity constraints. In most work on
real-time schedulability analysis, memory capacity is viewed

Unallocated pages

OS &
Level C

OS &
Level C

Levels
A & B
CPU 0

Levels
A & B
CPU 1

Levels
A & B
CPU 2

Levels
A & B
CPU 3

Bank 0 Bank 1 Bank 2 Bank 3 Bank 6 Bank 7Bank 4 Bank 5

OS &
Level C

OS &
Level C16 Colors

Figure 5: A closer look at the DRAM allocations in Fig. 3.

as an unconstrained resource. In reality, however, memory
capacity certainly is limited. In recent work, we introduced
DRAM-capacity constraints to our MILP-based optimization
framework that ensure that the supply of pages within each
DRAM bank is not over-allocated [23]. The introduction of
these new constraints exposes a liability associated with the
allocation scheme illustrated in Fig. 3. In particular, each
DRAM bank has 16 page colors available, but within each
Level-A/B bank, only four colors are used. Thus, 75% of the
available space in these banks is unused, as shown in Fig. 5.
3.2 Allocating Multi-Mode Systems
We now propose several approaches for extending our prior
MILP-based allocation scheme to account for the require-
ments of multi-mode systems. Clearly, a myriad of ap-
proaches could be devised for allocating LLC and DRAM
space under MC2 even without multiple modes being present.
The introduction of modes creates even more possibilities,
so it is not possible to consider every possible allocation
approach. The approaches presented here are meant to be
representative of the kinds of techniques that could be ap-
plied and were selected for inclusion because they expose
interesting resource-allocation issues and tradeoffs. As we
shall see, the presence of shared tasks—that is, tasks in-
cluded in multiple modes—creates certain challenges. Thus,
we initially assume such tasks are not present and then later
address the challenges they introduce.
Multi-mode systems without shared tasks. The existing
MC2 framework could be used in a multi-mode system, but
the tasks comprising all modes would have to be viewed as
a single task system. Moreover, 75% of the available Level-
A/B DRAM space would be wasted, as seen in Fig. 5. Our
intent in devising other schemes is to reclaim this wasted
space and use it to support tasks from different modes. We
consider two schemes for doing this: color-based allocation
(CBA) and way-based allocation (WBA).

Under CBA, each mode is assigned a set of colors in
each Level-A/B DRAM bank such that these sets do not
overlap. (The pages for the Level-A/B tasks in that mode are
allocated from these assigned colors.) This is done by simply
partitioning the 16 colors available across all banks into four
disjoint groups, as shown in Fig. 6(a). With color groups
so defined, assigning colors to modes is straightforward:
denoting the color groups as Groups 0 through 3, and the
modes as Mode 0, Mode 1, and so on, Mode i is assigned
the Groups i mod 4, i + 1 mod 4, i + 2 mod 4, and i + 3
mod 4 on DRAM banks 3, 4, 5, and 6, respectively (these
are the Level-A/B DRAM banks, as seen in Fig. 3). CPU i is

assigned Group i. This assignment is illustrated for Mode 1
in Fig. 6(a) with a gray shading. While this figure shows only
four modes being assigned, we can keep assigning modes in
this fashion as long as sufficient DRAM capacity is available.

The four color groups need not have the same size. To
determine the number of colors per group, we first assign to
each group the minimum number of colors required to load
all tasks into their assigned banks and groups; we then dis-
tribute any remaining unallocated colors to groups as evenly
as possible. After determining these color assignments, way
allocations in the LLC can be determined via the same MILP
as before, as illustrated in insets (b) and (c) of Fig. 6. As
seen in these insets, these allocations may be different for
different modes. To better see the correspondence between
the LLC and DRAM allocations in Fig. 6, we have shaded
the allocations for Mode 1 in inset (c) as we did in inset (a).

As seen above, DRAM color allocations in CBA are deter-
mined before LLC allocations are optimized. Alternatively,
we can extend our MILP techniques to determine DRAM
and LLC allocations simultaneously, but this more exact ap-
proach is more costly and is difficult to apply at the scale of
our schedulabity study in Sec. 4. Still, this is an option worth
considering, so we elaborate on it further in Appendix C.

Under WBA, the other allocation scheme considered here,
each Level-A/B LLC area consists of all colors and a desig-
nated number of ways, as illustrated in insets (e) and (f) of
Fig. 6. These LLC areas are all disjoint from each other and
also from the Level-C/OS LLC area. Because each Level-
A/B LLC area consists of all 16 colors, each Level-A/B
DRAM bank can be fully utilized, as illustrated in Fig. 6(d).
Each of these banks would be used to allocate pages to
tasks from all modes. Under WBA, the MILP determines
per-mode LLC way allocations. Like CBA LLC allocations,
WBA LLC allocations may be different for different modes.

The main disadvantage of WBA compared to CBA is that,
under WBA, fewer ways are provided per LLC area. This
reduction in ways may be compensated for by an increase
in colors, but our prior execution-time measurements for
benchmark programs [24] suggests that some tasks are more
sensitive to restrictions on ways and others to restrictions on
colors. When considering multiple modes, each comprised
of many tasks with different characteristics, it is difficult
to say which scheme is best. To shed light on this issue,
our schedulability study in Sec. 4 compares WBA, CBA,
and other options. In this study, a general model of PETs
based on measurement data was employed that reflects PET
sensitivities to way and color allocations.

Multi-mode systems with shared tasks. We now consider
problems that arise when tasks can be shared across modes.
Such shared tasks are problematic because their presence
implies that different modes must now share DRAM alloca-
tions. Note that this is only a problem when tasks are shared
at Levels A or B, as all Level-C tasks share a common LLC
area and each such task can be assigned pages from any
Level-C/OS DRAM bank. We present two techniques for
handling shared tasks, each of which can be applied together

Bank 3 Bank 6Bank 4 Bank 5

Mode-0
Tasks

Mode-1
Tasks

Mode-2
Tasks

Mode-3
Tasks

Mode-3
Tasks

Mode-0
Tasks

Mode-1
Tasks

Mode-2
Tasks

Mode-2
Tasks

Mode-3
Tasks

Mode-0
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-2
Tasks

Mode-3
Tasks

Mode-0
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

CPU-0
Tasks

CPU-1
Tasks

CPU-2
Tasks

CPU-3
Tasks

Group 0

Group 1

Group 2

Group 3

(a) CBA DRAM Allocation

CPU-2
Level-B
Tasks

CPU-3
Level-A
Tasks

CPU-3
Level-B
Tasks

CPU-0
Level-A
Tasks

CPU-0
Level-B
Tasks

CPU-1
Level-B
Tasks

CPU-2
Level-A
Tasks

CPU-1
Level-A
Tasks

16 Ways

Level C
&
OS

16 Colors

(b) CBA LLC Allocation, Mode 0

CPU-3
Level-A
Tasks

CPU-3
Level-A
Tasks

CPU-3
Level-A
Tasks

CPU-3
Level-B
Tasks

CPU-3
Level-B
Tasks

CPU-3
Level-B
Tasks

CPU-0
Level-A
Tasks

CPU-0
Level-A
Tasks

CPU-0
Level-A
Tasks

CPU-0
Level-B
Tasks

CPU-0
Level-B
Tasks

CPU-0
Level-B
Tasks

CPU-1
Level-B
Tasks

CPU-1
Level-B
Tasks

CPU-1
Level-B
Tasks

CPU-2
Level-B
Tasks

CPU-2
Level-B
Tasks

CPU-2
Level-B
Tasks

CPU-2
Level-A
Tasks

CPU-2
Level-A
Tasks

CPU-2
Level-A
Tasks

CPU-1
Level-A
Tasks

CPU-1
Level-A
Tasks

CPU-1
Level-A
Tasks

16 Ways

Level C
&
OS

16 Colors

(c) CBA LLC Allocation, Mode 1

Mode-1
Tasks

Mode-2
Tasks

Mode-3
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-2
Tasks

Mode-3
Tasks

Mode-0
Tasks

Mode-1
Tasks

Mode-3
Tasks

Mode-0
Tasks

Mode-2
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-1
Tasks

Mode-3
Tasks

Bank 3 Bank 6Bank 4 Bank 5

Mode-0
Tasks

Mode-1
Tasks

Mode-2
Tasks

All-Mode
Tasks
Levels
A & B Mode-1

Tasks

Mode-1
Tasks

Mode-0
Tasks

All-Mode
Tasks
Levels
A & B

All-Mode
Tasks
Levels
A & B

All-Mode
Tasks
Levels
A & B

16 Colors

CPU-0
Tasks

CPU-1
Tasks

CPU-2
Tasks

CPU-3
Tasks

(d) WBA DRAM Allocation

16 Ways

16 Colors

CPU 0
Levels
A & B

Level C
&
OS

CPU 1
Levels
A & B

CPU 2
Levels
A & B

CPU 3
Levels
A & B

(e) WBA LLC Allocation, Mode 0

16 Ways

16 Colors

CPU 0
Levels
A & B

Level C
&
OS

CPU 1
Levels
A & B

CPU 2
Levels
A & B

CPU 3
Levels
A & B

(f) WBA LLC Allocation, Mode 1

Figure 6: DRAM and LLC allocations under CBA (top row of figures) and WBA (bottom row of figures).

Level C/OS Banks

Mode 1

Level A/B Banks

State
BufferMode 0

⌧i ⌧i

Figure 7: DRAM allocation for a task replicated across two modes.

with either CBA or WBA.
The first technique is to partition shared tasks (PST).

Under PST, all Level-A/B shared tasks are assigned to CPU 0
and are allocated DRAM pages from the Level-A/B bank
associated with CPU 0. Non-shared Level-A/B tasks are
assigned to the other CPUs. Under CBA, shared tasks are
color-partitioned from other tasks in the LLC, and under
WBA, they are way-partitioned. Modifying the MILP for
either CBA or WBA to apply PST is straightforward.

The second technique is to replicate shared tasks (RST).
Under RST, each shared task is replicated for each mode in
which it runs, and each replica is treated as a non-shared task.
This technique is relatively straightforward to apply, but one
complication does arise. If a replicated task needs to pre-
serve state information across its jobs, then that information
must be retained in memory, and this creates data-sharing
relationships across modes that can break MC2’s hardware
isolation guarantees. Fortunately, in our prior work on sup-
porting producer/consumer shared data buffers in MC2 [9],
we proposed several approaches that can ease such problems.

Consider, for example, Fig. 7, which shows a Level-A/B
task τi that has been replicated between Modes 0 and 1,
where each replica is assigned to a different DRAM bank.

If state information must be retained across the jobs of τi,
then that information can be stored in a buffer. Under the
approach from [9] that is most directly applicable to the
situation here, the buffer would be allocated in the Level-
C/OS DRAM banks, as shown in Fig. 7, and configured to
bypass the LLC, so that LLC isolation is not compromised.
Since Level C is provided no cross-core DRAM isolation,
accesses to the state buffer by jobs of τi do not affect Level-
C isolation properties. However, accesses to the buffer by
jobs of task τi can experience interference from Level-C
tasks and the OS, which was not possible before. This source
of interference would have to be taken into account in the
measurement process for determining PETs.

Note that PST and RST can both be applied in the same
system, with the choice being made on a per-task basis. How-
ever, to keep the experimental study in Sec. 4 at a manageable
level, we do not examine this possibility further.
Supporting task criticality-level changes. As noted in
Sec. 1, it may be desirable to allow a task to undergo a
criticality change when a mode change occurs. Such a task
can be supported by creating replicas of it as needed at dif-
ferent criticality levels and in different modes. RST provides
the necessary functionality to support such replicas.

4 Evaluation
Our extensions to MC2 to support mode changes involved
altering both its offline allocation component, as described in
the prior section, and also its runtime scheduler. We evaluated
the former by performing a large-scale schedulability study

Mult-Mode Task PST RST
Management

NAIVE N/PST N/RST
CBA CBA/PST CBA/RST
WBA WBA/PST WBA/RST

Table 1: Considered allocation variants.

and the latter via case-study experiments in which mode-
change latencies were measured. Due to space constraints,
we discuss our modifications to MC2’s runtime component in
Appendix A and our case-study experiments in Appendix B.
In this section, we discuss our schedulability study. The code
for our study is available online.8

Schedulability study overview. We assessed the efficacy of
the allocation schemes presented in Sec. 3.2 by evaluating the
schedulability of randomly generated task systems under the
MC2 variants listed in Tbl. 1, as well as the HRT uniproces-
sor earliest-deadline-first scheduler, denoted U-EDF, with
all banks allocated to all modes.9 The latter reflects current
industry practice for eliminating shared-hardware interfer-
ence by simply disabling all but one core.

The CBA and WBA variants in Tbl. 1 use the associated
allocation methods described in Sec. 3.2. Under the NAIVE
variants, if no shared tasks exist, DRAM is allocated as in
Fig. 5, assuming that all tasks from all modes comprise one
all-encompassing task system. However, way allocations in
the LLC are determined on a per-mode basis as illustrated in
Fig. 3 by solving a MILP for each mode (way allocations may
be different for different modes). Shared tasks can be easily
introduced under this allocation scheme by using the PST
and RST approaches discussed earlier in Sec. 3.2. In addition
to the MC2 variants listed in Tbl. 1, we also consider the
ALL variant, which simply involves checking whether any
of the variants in Tbl. 1 produces a schedulable allocation.
This variant is interesting to consider because it shows the
potential value of trying multiple allocation approaches.

We used the following limits on available DRAM on the
Cortex A9 platform when assessing schedulability. Each
bank allocated to Levels A and B has approximately 32,000
pages available for task allocation and approximately 2,000
pages of each color. Approximately 73,000 pages are avail-
able to Level C after accounting for LITMUSRT OS alloca-
tions. All tasks were assumed to statically link to libraries
and not dynamically allocate memory, so the only DRAM
consumption to consider beyond that required by the OS was
static task page allocation and shared state buffers.
Task-system generation. We extended an evaluation frame-
work used extensively by us in prior work [9, 11, 23, 24, 25]
to randomly generate task systems while accounting for
DRAM consumption and multiple modes. Under this frame-
work, PETs are determined at Level B (resp., Level C) based
on measured worst-case (resp., average-case) execution-time
data for benchmark tasks, as discussed in detail in prior

8https://wiki.litmus-rt.org/litmus/Publications
9Bank contention is not possible when only one core runs. Hence, it is

safe to allocate any bank to any task under U-EDF.

Category Choice Level A Level B Level C

1:Mode Few {2, 3, 4, 5, 6, 7}
Count Many {8, 9, 10, 11, 12}

2: Criticality C-Light [29, 56) [29, 56) [10, 25)
Utilization C-Heavy [9, 33) [9, 33) [45, 78)
Percent All-Mod. [28, 39) [28, 39) [28, 39)

Short {3, 6} {6, 12} [3, 33)
3:Period (ms) Medium {12, 24} {24, 48} [12, 100)

Long {48, 96} {96, 192} [50, 500)

4:Task Light [0.001, 0.03) [0.001, 0.05) [0.001, 0.1)
Utilization Medium [0.02, 0.1) [0.05, 0.2) [0.1, 0.4)

Heavy [0.1, 0.3) [0.2, 0.4) [0.4, 0.6)

Light [1.5, 3) [1.5, 3) [2, 7):0.75
5:Page [6, 13):0.25
Count Medium [3, 5) [3, 5) [4, 9):0.75
in Hundreds [10, 30):0.25

Heavy [5, 7) [5, 7) [6, 11):0.75
[13, 70):0.25

6:Shared Light [0%, 20%) [0%, 20%) [0%, 20%)
Utilization Heavy [50%, 70%) [50%, 70%) [50%, 70%)

7:Critical- 20%ity Change

8:Max Light [0.01, 0.1) [0.01, 0.1) [0.01, 0.1)
Reload Time Heavy [0.25, 0.5) [0.25, 0.5) [0.25, 0.5)

9:State [0%, 10%)

10:Color Reduced [70%, 90%)
Sensitivity Regular 0%

Table 2: Task-set parameters and distributions. In Category 5, last
column, I:P denotes that interval I is selected with probability P .

work [24]. Similarly to Fig. 4, these PETs are a function of
ways and colors. Level-A PETs are obtained by applying a
50% inflation factor to Level-B PETs. For replicated shared
tasks, these PETs must be adjusted to reflect state buffer
usage, and this can be done by applying buffer-accounting
methods presented by us previously [9].

To generate task and task-set parameters, ten distributions
must be selected from the categories listed in Tbl. 2. Using
the selected distributions, multi-mode task systems are then
generated for each considered allocation variant by following
a step-wise process that is explained in detail in our prior
work [24] and refined here to be applicable to multi-mode
systems. We provide below a high-level overview of our
refinements by considering each step in turn, assuming the
distributions highlighted in bold in Tbl. 2 have been selected.

Step 1: Determine the number of modes by using the dis-
tribution selected in Category 1. The highlighted selection
indicates that the number of modes will be selected at ran-
dom from the range {8, 9, . . . , 12}.
Step 2: Generate the first mode. Generally, this is done
by generating a task set for the U-EDF variant and then
modifying that task set for the other considered allocation
variants by adjusting PETs to reflect differences in LLC-
allocation and hardware-isolation choices. Such modifica-
tions are driven by measurement data taken on the Cortex
A9 following an approach described in detail in our prior
work [24].10 The highlighted selection in Category 2 indi-

10Note that generating one mode simply requires generating a single task
set, so our prior work can be directly applied here.

cates that the percentage of tasks at each criticality level will
be in the range [28, 39)% (totaling to 100%). The highlighted
selections in Categories 3–5 specify how per-task U-EDF
parameters are determined. For example, each Level-A task
will have a period of either 12ms or 24ms, a U-EDF uti-
lization in the range [0.1, 0.3), and require 300 to 499 pages
in DRAM. After a task set has been fully defined for the
U-EDF variant, that task set is adjusted to create a variant
for each allocation scheme, as already mentioned.
Step 3: Generate all other modes. Subsequent modes are
generated following a similar process as outlined in Step 2,
except that shared tasks have to be determined. This is done
using the distribution selected in Category 6. The highlighted
selection in this category indicates that, at each criticality
level, the number of tasks shared between a newly generated
mode and the prior mode is such that these tasks have a com-
bined U-EDF utilization of [50, 70)% of the prior mode’s
U-EDF utilization at that level. Ordinarily, any task retained
from the prior mode retains the same criticality level. How-
ever, the distribution in Category 7 is applied to designate
that some shared tasks undergo a criticality change. In par-
ticular, of the tasks that are shared with Level C of the new
mode, 20% are taken from Level B of the prior mode.11

Step 4: Add to all modes special per-core Level-A mode-
change-handling tasks as used in the mode-change protocol
described in Appendix A. Each such task has a period equal
to the shortest system-wide Level-A period, and Level-A, -B,
and -C PETs of 254µs, 169µs, and 83µs, respectively. These
PETs were determined from measured execution times for
an actual mode-change-handling task on the Cortex A9.
Step 5: Adjust generated PETs to account for implementa-
tion-related overheads, shared-buffer copy times, and differ-
ences in PET sensitivy to LLC-way and -color allocations.
These adjustments are affected by the distributions selected
for Categories 8, 9, and 10. For example, the highlighted
distributions from Category 8 indicate that the maximum
LLC reload time under U-EDF for any task after a preemp-
tion or migration is [1, 10)% of its U-EDF PET, that from
Category 9 indicates that [0, 10)% of each task’s pages must
be stored in a state buffer (if replicated), and that from Cat-
egory 10 indicates that the variation of a task’s PETs with
respect to allocated LLC colors is reduced by [70, 90)%
(indicating lesser sensitivity to color allocations). The ad-
justments made in this step are based on measurement data
obtained on the Cortex A9.
Step 6: For each MC2 variant, assign Level-A and -B tasks
to cores using the worst-fit decreasing heuristic discussed
in [24], with obvious modifications for the PST variants to
ensure that all shared tasks are assigned to Core 0. Under the
RST variants, each replica of a Level-A or -B shared task is
simply treated as an independent task.
Step 7: Test the schedulability of the resulting multi-mode

11It is likely in industry settings that tasks requiring Level-A certification
will require Level-A certification in all modes. As a result, we assume no
task changes criticality level to or from Level A.

task system under each evaluated allocation variant.

The distributions in Tbl. 2 were defined to enable the sys-
tematic study of different factors impacting schedulability,
such as MC analysis, DRAM constraints, and mode relation-
ships, and were selected in a way to strike a balance between
having a manageable study and covering a wide range of
choices. Additionally, much of the task-system generation
process is based on actual measurement data.

We denote each combination of distribution choices using
a tuple notation. For example, (Many, All-Mod., Medium,
Heavy, Medium, Heavy, Light, Reduced) denotes using the
Many, All-Mod., Medium, etc., distribution choices for those
categories in Tbl. 2 that have multiple options. We call such
a combination a scenario. We considered all possible such
scenarios, and for each task-system utilization in each sce-
nario, we generated enough task systems to estimate mean
schedulability to within ±0.05 with 95% confidence with at
least 100 and at most 300 task systems.
Schedulability results. In total, we evaluated the schedula-
bility of over 4 million randomly generated task systems,
which took roughly 190 CPU-days of computation. (The
MILP typically required less than a second per considered
task system to execute.) From this abundance of data, we
generated 1,296 schedulability plots, of which three repre-
sentative plots are shown in Fig. 8. The full set of plots is
available online [10].

Each schedulability plot corresponds to a single scenario.
To understand how to interpret these plots, consider Fig. 8(a).
In this plot, the x-axis represents the nominal12 per-mode
U-EDF utilization. The actual U-EDF utilization varies by
up to 50% from mode to mode to reflect variations expected
in real-world task systems. In this plot, the circled point
indicates that 43% of the generated task systems with a nom-
inal U-EDF utilization of 3.0 were schedulable under the
N/PST variant. Note that, because the x-axis represents sys-
tem utilizations under the single-core HRT U-EDF variant,
it is possible under MC2 to support systems with a nominal
U-EDF utilization exceeding four, as MC provisioning and
hardware management decrease PETs.

We now state several observations that follow from the
full set of collected schedulability data. We illustrate these
observations using the data presented in Fig. 8.

Obs. 1. [Naive vs. other] When comparing the PST vari-
ants, schedulability under CBA and WBA was on average
367% and 477% better, respectively, than schedulability un-
der NAIVE. Respective percentages for the RST variants
were 265% and 326%.

All insets of Fig. 8 show moderate to significant schedu-
lability gains for the non-NAIVE variants over the NAIVE
variants. These gains underscore the importance of consider-
ing limited DRAM space in multi-mode systems.

12The term nominal has a technical definition that we omit due to space
constraints. For a general understanding of our plots, it suffices to substitute
“average” for “nominal.”

EDF [1]
ALL [2]

N/PST [3]
N/RST [4]

CBA/PST [5]
CBA/RST [6]

WBA/PST [7]
WBA/RST [8]

(a)

[2,5,7]

[6,8]
[3]

[4]

[1]

(a) (Many, C-Heavy, L., H., M., L., H., Reg.)

[1,3,4]

[5,6]
[2,7,8]

(b) (Many, All-Mod, L., M., M., L., L., Reg.)

[2,5,7]
[6,8]

[3]

[4]

[1]

(c) (Few, All-Mod, L., M., H., H., L., Red.)

Figure 8: Representative schedulability plots.

Obs. 2. [PST vs. RST] Schedulability under N/PST,
CBA/PST, and WBA/PST over all scenarios combined
was 22%, 31%, and 28% better than that under N/RST,
CBA/RST, and WBA/RST, respectively.

In insets (a) and (c) of Fig. 8, most of the PST variants
outperform their RST counterparts (e.g., CBA/PST outper-
forms CBA/RST). The RST variants are negatively affected
by greater DRAM requirements than the PST variants for
replicated pages.
Obs. 3. [CBA vs. WBA] Schedulability under WBA/PST
and CBA/PST was comparable (less than a 0.02 difference
in schedulable utilization) in scenarios with regular color
sensitivity (refer to Category 10 in Tbl. 2). Similar results
were seen in reduced-color-sensitivity scenarios.

In comparing the scenarios in insets (a) and (c) of Fig. 8,
we see little difference in WBA/PST vs. CBA/PST, even
though each of these scenarios exhibits different sensitivi-
ties of PETs to available colors. Schedulability under the
two respective RST schemes is also similar in these two
insets. Despite disadvantages for WBA allocations in color-
sensitivity, WBA and CBA schedulability were comparable
nonetheless.
Obs. 4. Of all considered schemes, WBA/PST and
CBA/PST performed the best, achieving on average over
94% of the schedulability of ALL.

This observation is supported by all insets of Fig. 8.
Given the nature of our study, these observations naturally

hinge on our experimental setup. However, we have taken
care to ensure that a wide range of system configurations
were considered.

5 Prior Related Work
This work follows a long line of research examining
shared-resource contention in real-time systems [26]. Prior
efforts have focused on issues such as cache partition-
ing [3, 17, 21, 39, 38], DRAM controllers [4, 13, 18, 19, 27],
and bus-access control [1, 2, 12, 14, 15, 32]. Other work
has focused on reducing shared-resource interference when
per-core scratchpad memories are used [34], accurately
predicting DRAM access delays [20], throttling lower-
criticality tasks’ memory accesses [41], allocating mem-
ory [40], and enhancing temporal isolation by managing
shared pages [9, 22, 23]. In evaluating one recently proposed

cache-partitioning scheme, vCAT [39], a dual-mode use case
was considered. However, that use case was quite simplistic:
in addition to having only two modes, all tasks were shared
and no DRAM constraints were considered.

To our knowledge, we are the first to consider in detail
complexities that arise when attempting to support multiple
modes while ensuring hardware isolation under the notion
of MC scheduling espoused by Vestal [36], which was pro-
posed with the express intent of achieving better platform
utilization. Several of the aforementioned papers do target
MC systems [4, 12, 14, 15, 18, 19, 27, 31, 41], but only pe-
ripherally touch on the issue of achieving better platform
utilization, if at all. Hardware isolation under Vestal’s notion
of MC scheduling has been considered in several prior MC2-
related papers by our group [9, 16, 23, 24, 29, 37], but these
papers do not consider multi-mode systems.

Real-time mode-change protocols are a well-studied topic,
but most of the classic work on this topic focuses on unipro-
cessors. A survey of such work with a fairly comprehensive
bibliography has been produced by Real and Crespo [33]. In
some work pertaining to Vestal’s notion of MC schedulabil-
ity analysis, a task exceeding a PET can cause a criticality
mode change in which lower-criticality tasks may be dropped.
Such mode changes are quite different from functional mode
changes as considered in this paper. Burns recently published
a survey paper in which the differences between these two
kinds of mode changes are discussed at length [5].

6 Conclusion
In this paper, we have provided extensions to MC2 for sup-
porting multiple functional modes. As we have seen, tasks
shared across multiple modes pose a particular challenge,
because they cause hardware-allocation decisions affecting
different modes to become intertwined. Our extended MC2

framework not only supports such tasks but also allows them
to change their criticality levels.

When supporting mode changes in a framework like
MC2, where both hardware-isolation properties must be en-
sured and MC analysis assumptions are employed, numerous
resource-allocation tradeoffs exist. The various offline allo-
cation approaches studied in this paper were selected as
reasonable candidate solutions that expose interesting trade-
offs. We evaluated these tradeoffs via a large-scale overhead-

aware schedulability study. In this study, the WBA and CBA
schemes tended to provide significant schedulability gains
over the NAIVE schemes, and the WBA/PST and CBA/PST
variants faired the best overall. When considering multi-
mode systems, mode-change latencies are also a concern.
In experiments described in Appendix B, latencies for our
mode-change protocol tended to be quite reasonable, usually
on the order of 200ms or less.

The results of this paper open up many avenues for future
work. For example, a wider range of hardware-allocation
options could be explored than was possible to cover in the
space available. Additionally, as explained in Appendix A,
several implementation options for supporting mode-change
protocols exist that warrant further attention. Finally, we have
assumed in this paper that all tasks from all modes fit within
DRAM. This is a very desirable property, but some systems
may exist in practice in which DRAM alone is insufficient
and thus secondary storage devices such as solid-state disks
must be used. Understanding how to page tasks to and from
disks in a way that is reflective of criticality concerns is an
interesting topic that warrants further study.

References
[1] A. Alhammad and R. Pellizzoni. Trading cores for memory bandwidth

in real-time systems. In RTAS ’16.

[2] A Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global
scheduling of real-time tasks. In RTAS ’15.

[3] S. Altmeyer, R. Douma, W. Lunniss, and R. Davis. Evaluation of
cache partitioning for hard real-time systems. In ECRTS ’14.

[4] N. Audsley. Memory architecture for NoC-based real-time mixed
criticality systems. In WMC ’13.

[5] A. Burns. System mode changes - general and criticality-based. In
WMC ’14.

[6] A. Burns and R. Davis. Mixed criticality systems – a review. Technical
report, Department of Computer Science, University of York, 2014.

[7] Certification Authorities Software Team (CAST). Position paper
CAST-32: Multi-core processors, May 2014.

[8] Certification Authorities Software Team (CAST). Position paper
CAST-32A: Multi-core processors, Nov. 2016.

[9] M. Chisholm, N. Kim, B. Ward, N. Otterness, J. Anderson, and F.D.
Smith. Reconciling the tension between hardware isolation and data
sharing in mixed-criticality, multicore systems. In RTSS ’16.

[10] M. Chisholm, S. Tang, N. Kim, N. Otterness, J. Anderson, D. Porter,
and F.D. Smith. Supporting mode changes while providing hardware
isolation in mixed-criticality multicore systems. Full version of this
paper, available at http://jamesanderson.web.unc.edu/
papers/.

[11] M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and
isolation tradeoffs in multicore mixed-criticality systems. In RTSS

’15.

[12] G. Giannopoulou, N. Stoimenov, P. Huang, and L.Thiele. Schedul-
ing of mixed-criticality applications on resource-sharing multicore
systems. In EMSOFT ’13.

[13] D. Guo and R. Pellizzoni. A requests bundling DRAM controller for
mixed-criticality systems. In RTAS ’17.

[14] M. Hassan and H. Patel. Criticality- and requirement-aware bus
arbitration for multi-core mixed criticality systems. In RTAS ’16.

[15] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling
DRAM memory accesses for multi-core mixed-time critical systems.
In RTAS ’15.

[16] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson.
RTOS support for multicore mixed-criticality systems. In RTAS ’12.

[17] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A pre-
dictable cache-aware memory allocator. In ECRTS ’11.

[18] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and P. Ca-
zorla. A dual-criticality memory controller (DCmc) proposal and
evaluation of a space case study. In RTSS ’14.

[19] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A
predictable and command-level priority-based DRAM controller for
mixed-criticality systems. In RTAS ’15.

[20] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajku-
mar. Bounding memory interference delay in COTS-based multi-core
systems. In RTAS ’14.

[21] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for
practical OS-level cache management in multi-core real-time systems.
In ECRTS ’13.

[22] H. Kim and R. Rajkumar. Memory reservation and shared page
management for real-time systems. Journal of Sys. Arch., 60:165–178,
Feb. 2014.

[23] N. Kim, M. Chisholm, N. Otterness, J. Anderson, and F.D. Smith.
Allowing shared libraries while supporting hardware isolation in mul-
ticore real-time systems. In RTAS ’17.

[24] N. Kim, B. Ward, M. Chisholm, J. Anderson, and F.D. Smith. At-
tacking the one-out-of-m multicore problem by combining hardware
management with mixed-criticality provisioning. Real-Time Sys.,
2017 (to appear).

[25] N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D.
Smith. Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning. In RTAS

’16.
[26] O. Kotaba, J. Nowotsch, M. Paulitsch, S. Petters, and H. Theiling.

Multicore in real-time systems – temporal isolation challenges due to
shared resources. In WICERT ’13.

[27] Y. Krishnapillai, Z. Wu, and R. Pellizzoni. ROC: A rank-switching,
open-row DRAM controller for time-predictable systems. In ECRTS

’14.
[28] LITMUSRT Project. http://www.litmus-rt.org/.
[29] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos.

Mixed criticality real-time scheduling for multicore systems. In ICESS
’10.

[30] J. Musmanno. Data intensive systems (DIS) benchmark performance
summary, Aug. 2003.

[31] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive WCET analysis lever-
aging runtime resource capacity environment. In ECRTS ’14.

[32] R. Pellizzoni, A. Schranzhofer, J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore sys-
tems. In DATE ’10.

[33] J. Real and A. Crespo. Mode change protocols for real-time systems:
A survey and a new proposal. Real-Time Sys., 26(2):161–197, 2004.

[34] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. Phatak, R. Pel-
lizzoni, and M. Caccamo. A real-time scratchpad-centric OS for
multi-core embedded systems. In RTAS ’16.

[35] P. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In RTAS ’16.

[36] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS ’07.

[37] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared
caches more predictable on multicore platforms. In ECRTS ’13.

[38] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee. Analysis and implemen-
tation of global preemptive fixed-priority scheduling with dynamic
cache allocation. In RTAS ’16.

[39] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee. vCAT: Dynamic cache
management using CAT virtualization. In RTAS ’17.

[40] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicoore
platforms. In RTAS ’14.

[41] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
access control in multiprocessor for real-time systems with mixed
criticality. In ECRTS ’12.

A Mode-Change Protocol Implementation
In Sec. 3, we focused on hardware-allocation options. Here,
we turn our attention to changes we made to MC2’s runtime
scheduler. The code for these changes is available online.13

Protocol requirements. A mode-change protocol is invoked
when a mode-change request (MCR) is initiated by the ap-
plication. When an MCR occurs, the mode-change protocol
enacts the requested mode change. The goal is to do so as
quickly as possible while maintaining safety (e.g., terminat-
ing a partially completed job from the old mode might be
problematic as an inconsistent system state may result).

In designing our mode-change protocol, we sought to
maintain as an invariant that, when changing from one mode
to another, the jobs of high-criticality Level-A/B tasks from
both modes do not experience any performance degradation
or interference. Since such tasks are HRT and periodic and
have harmonic periods (and start execution at time 0), the
most straightforward response is to enact mode changes only
at Level-A/B hyperperiod boundaries, because any Level-
A/B job from the prior mode will have finished by then.

Unfortunately, this simple approach could be problematic
for Level-C tasks. Each such task is sporadic and SRT, so
one from the old mode could have a partially completed
job at any Level-A/B hyperperiod boundary. Such a job
can be either run to completion or aborted. However, in
the latter case, some undo code may be needed in order
to avoid introducing inconsistencies. These approaches are
subject to many tradeoffs, the resolution of which would be
tightly coupled with application-level requirements. Such
requirements are beyond the scope of this paper, so we take a
simple approach here: after an MCR is received, we first halt
any Level-C task that is part of the old mode but not the new
mode and wait until any currently executing jobs of such
halted tasks complete; we then enact the mode change at
the first following time point that is a hyperperiod boundary
with respect to all Level-A/B tasks on all CPUs.
High-level implementation description. Implementing our
mode-change protocol involved introducing new state infor-
mation into the MC2 scheduler. Fig. 9 shows these states.
The system is in the Stable state when the MC2 scheduler is
scheduling tasks from a single mode and no mode change
has been requested. When a mode change is requested via
an MCR, the system transits to the Pending state, where it
remains until all partially completed jobs of halted Level-C
tasks have completed, as discussed above. When the last such
job completes, the system transits to the Ready state, where
it remains until the next Level-A/B hyperperiod boundary of
the current mode is reached, at which point the mode change
is enacted and the system transits back to the Stable state.

In our implementation, any task can issue an MCR via a
system call in which a new mode is specified. While in the
Pending state, any new MCRs that are received are ignored.
In LITMUSRT, the Pending state is implemented using a
scheduling plugin that causes a callback in the scheduler to

13https://wiki.litmus-rt.org/litmus/Publications

������

���	
��

���	

��������	
��

��������
��������������

�����������

��	�����

�������

Figure 9: State machine of mode change process.

be invoked whenever real-time jobs complete. This callback
is used to keep track of the number of Level-C jobs that are
still executing. The LITMUSRT plugin also makes it possible
to prevent the release of new jobs of halted Level-C tasks.

The Ready-to-Stable transition is actually enacted by per-
CPU Level-A mode-change-handling tasks that exist in every
mode. These special tasks’ periods are equal to the Level-
A/B hyperperiod in the current mode, and they are given the
highest priorities within each mode,14guaranteeing that they
run first after the hyperperiod boundary. For each mode, the
system maintains a global list of Level-C tasks along with
core-specific lists of Level-A and -B tasks. When the system
is in the Ready state, the special tasks provide the scheduler
with the correct lists of tasks for the new mode.

B Case Studies
For the mode-change protocol proposed in Appendix A to be
considered reasonable, mode-change latencies should not be
too high. To get a sense of such latencies, we conducted case-
study experiments in which various multi-mode task systems
were executed and mode-change latencies recorded. We con-
structed ten such task systems for each scenario shown in
Fig. 8 using synthetic benchmark programs as exemplars
of more-deterministic computations and programs from the
DIS benchmark suite [30] as exemplars of less-deterministic
computations. We ran each of these task systems for five min-
utes on an ARM Cortex A9 platform. We collected 3.5GB
of scheduling data and measured mode-change latencies by
randomly initiating MCRs, with an average spacing between
MCRs of approximately one second. For each initiated MCR,
we measured the length of time between the following Level-
A/B hyperperiod boundary and the Level-A/B hyperperiod
boundary where the requested mode change was actually
enacted (the two might be the same if Level-C tasks have
been halted by the first Level-A/B hyperperiod boundary
after the MCR is received). The time between the occurrence
of an MCR and the next Level-A/B hyperperiod boundary
is uninteresting because the requested mode change cannot
occur in this interval according to our protocol. The length
of this interval is very short in any case, and if necessary,
our reported mode-change latencies could be pessimistically
rounded up by the length of a single Level-A/B hyperperiod.

Across all of our experiments, the maximum latency was
193.70ms, and the average latency was 60.52ms. These
latencies are in accordance with release delays of new-mode
tasks given in [33].

14In our schedulability study presented in Sec. 4, mode-change-handling
tasks were given the shortest period at Level A because MC2 schedulability
analysis requires the highest-priority Level-A task to have the shortest
period. Allocating the shortest period in analysis conservatively models
runtime behavior while meeting MC2 schedulability-analysis requirements.

Bank 3 Bank 4

16 Colors

Mode-0
CPU-0
Tasks

Mode-1
CPU-0
Tasks

Mode-0
CPU-1
Tasks

Mode-1
CPU-1
Tasks

Mode-1
CPU-0
Tasks

Mode-1
CPU-1
Tasks

(a) LBA DRAM Allocation

CPU 0
Levels
A & B

Level C
&
OS16 Colors

8 Ways 8 Ways

CPU 1
Levels
A & B

(b) LBA LLC Allocation, Mode 0

CPU 0
Levels
A & B

Level C
&
OS16 Colors

8 Ways 8 Ways

CPU 1
Levels
A & B

CPU 0
Levels
A & B

CPU 1
Levels
A & B

(c) LBA LLC Allocation, Mode 1

Figure 10: DRAM and LLC allocations under LBA.

CBA/PST [1]
CBA/RST [2]

WBA/PST [3]
WBA/RST [4]

LBA/PST [5]
LBA/RST [6]

(a)

[2,4,6]

[1,3,5]

(a) (Many, C-Heavy, L., H., M., L., H., Reg.)

[1,2,5]
[3,4,6]

(b) (Many, All-Mod, L., M., M., L., L., Reg.)

[2,4,6]

[1,3,5]

(c) (Few, All-Mod, L., M., H., H., L., Red.)

Figure 11: Representative schedulability plots for LBA compared to CBA and WBA.

C MILP-Based DRAM Allocation
In Sec. 3, we noted an alternative to CBA, denoted here as
MILP-based allocation (LBA). Under LBA, our MILP tech-
niques for determining LLC color allocations are extended
to determine DRAM color allocations as well, with LLC
way allocations being fixed. Here we briefly explain this
allocation scheme and the changes to our MILP and compare
the performance of LBA to CBA and WBA.

Consider a task set with two modes and all Level-A and
-B tasks allocated to the first two CPUs, with no tasks shared
between modes. Fig. 10 shows a simplified version of LBA
for the LLC and DRAM banks assigned to these tasks. In
this simplified version, LBA determines a placement of the
doubled lines in each inset. Since the MILP determines an
allocation of DRAM colors, it simultaneously determines
an allocation of LLC colors. As a result, LLC ways must
be fixed in the MILP. Note that, while the modes can share
color allocations on the same bank, each mode maintains
LLC-color isolation at Levels A and B, as demonstrated by
the shaded Level-A and -B allocations for Mode 1 in Fig. 10.
Also, although per-bank color allocations for each mode are
(for simplicity) shown as contiguous in Fig. 10, this is not
required. For instance, in Mode 0, tasks on CPU 0 could be
allocated Colors 2, 5, and 11 in Bank 3, as long as these
colors are not used by Mode-0 tasks on CPU 1 in Bank 4.

Modifying the MILP that determines LLC color alloca-
tions so that it also determines DRAM color allocations is
relatively straightforward, although the new MILP is (obvi-
ously) more complex. However, since LBA fixes way alloca-
tions, it still may have disadvantages over CBA and WBA.

Overall, however, LBA explores a much larger combina-
tion of LLC and DRAM allocations than either CBA or WBA.
CBA and WBA only search for schedulable LLC allocations
under one DRAM allocation per task set. LBA’s more thor-
ough exploration of available hardware allocations comes at
the expense of greater computational complexity to model
DRAM page allocations. As a result, LBA demonstrates
a tradeoff between achievable schedulability and runtime
performance when compared to CBA and WBA.

We evaluated this tradeoff by testing the schedulability
of LBA with PST and RST for a subset of scenarios in
our larger schedulability study (specifically, the scenarios
shown in Fig. 8) and compared it to schedulability under the
corresponding CBA and WBA variants. To curb potential
schedulability loss due to fixing way allocations, we consid-
ered LBA under three fixed way allocations: four, eight, and
twelve ways allocated to Level C with remaining ways allo-
cated to Levels A and B. The results of these experiments are
shown in Fig. 11. Observe that CBA and WBA performed
nearly as well as LBA under either RST and PST. These
results indicate that our CBA and WBA heuristics perform
well even without the more rigorous and computationally
intensive search for schedulable DRAM and LLC allocations
done by LBA.

While a wider range of experiments would be desirable
for comparing the performance of CBA and WBA to that
of LBA, LBA’s runtime performance is a limiting factor
affecting the number of experiments that can be performed
in a reasonable amount of time. The experiments for Fig. 11
took 132 CPU-days to run.

