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ABSTRACT
Increasing deployment of body cameras by the law enforce-
ment agencies makes us rethink the relation between the
camera and the public. In contrast to current implemen-
tations of a body camera that use a power-hungry default
configuration and can only be turned on and off by an of-
ficer, we propose an idea that the camera should be au-
tonomous and active all the time. By leveraging the infor-
mation from an on-board inertial measurement unit (IMU),
these autonomous cameras should dynamically adjust their
configuration in order to keep the device under the desired
energy budget. To enable such a system, we propose a dis-
tributed adaptive model predictive controller for a system
of body cameras, which allows the collaboration between
multiple cameras which is currently not available in existing
implementations.
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1. INTRODUCTION
In recent years, we have witnessed some upsetting con-

flicts between the law enforcement personnel and the public.
Among many solutions proposed to deal with this problem
is the use of body cameras [8]. A body camera is a wearable
device that records video during an event and provides evi-
dence on what happened during future investigations. How-
ever, the current policy let the law enforcement agencies de-
termine whether or not to release those footages, and thus
create an unbalance in transparency and power. In this pa-
per, we envision a body camera that is autonomous and is
always active, whose control is not in the hands of the law
enforcement officers, and the public has the same right to the
recorded videos. We hope that such a device will bring the
intended mutual trust between the law enforcement agencies
and the communities they serve.
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Existing implementations of body cameras typically con-
sist of an on/off switch that is controlled by its wearer. This
design suits the purpose in an ideal scenario but not in many
real-world situations as the officer cannot predict when to
turn on the camera and may forget to do so. There are some
implementations which trigger the camera on when a gun is
pulled within a certain distance, however, it is still missing
the information as for how the situation has developed. We
argue that the body camera needs to be autonomous and
active at all time. However, due to the constraints of the
system such as battery life, processing power, and storage
size, the system needs to be adjusted accordingly. When
there is no event, the body camera should be in a low power
mode which will only record information in case of an emer-
gency. This configuration will allow the camera to record as
much information as possible, without requiring significant
modifications to it or a bulky battery pack.

Furthermore, current body cameras do not support collab-
orations when there are multiple cameras present – which is
usually the case where more than one officers respond to the
same scene. These situations require more attention as they
are usually more chaotic. We propose that by leveraging
the system configuration, pose, and position of each cam-
era, the scene can be recorded more efficiently. In contrast
to a centralized system, our controller does not depend on
other cameras which may become inoperable and lose in-
formation. The proposed controller guarantees the camera
records at a certain standard and improves the performance
in a cluster of cameras. We make the following contributions
in this work:

• We design and implement a low-cost, open-source body
camera prototype. We identify the system variables that
are sensitive to output power and video quality and model
those variables.

• We propose an adaptive model predictive controller that
optimizes the system in terms of power consumption and
video quality to guarantee the desired system lifetime.

• We perform a simulation-based evaluation of the controller
in both single camera and collaborative scenarios. Results
show that the lifetime of the proposed system is 33%-40%
more than the baseline.

2. BACKGROUND

2.1 Context Recognition
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Figure 1: Model predictive controller

Human Activity Recognition (HAR) has being studied ex-
tensively and numerous methods have been proposed. There
are challenges in this area such as intraclass variability, in-
terclass similarity, and null class problem [3]. To solve these
problems, researchers have proposed to use different sensors
like IMU, GPS, and camera. The method for data segmen-
tation, which is required for recognition at a certain time
point such as sliding window, energy based, and additional
sensors [3] [1], is crucial to the classification accuracy. Af-
ter the data is processed, a classifier like Dynamic Time
Warping (DTM) [2], Hidden Markov Models(HMMs) [4] or
kNN [9] [5] is used for training and classification. These
steps is referred as activity recognition chain and a more
detailed review can be found in [3].

2.2 Feedback Control
A feedback controller is to observe the output signals of

the unit under control and to compute and apply the right
input signal to the unit. A standard feedback controller like
PID [6] controller requires an accurate model of the system
which is extremely difficult to acquire due to the presence
of disturbance as the system operates in an open, real-world
environment, especially for the ones that involve human.
Adaptive controllers [10] are a special kind of feedback con-
trollers which can update the model to better describe the
system.

A Model Predictive Controller (MPC) [12] uses a dynamic
model of the plant to predict its future outputs and opti-
mizes the control signals by solving an optimal control prob-
lem over a finite future horizon. Figure 1 shows a model
predictive controller and its inputs and outputs over time.
The plant in the figure is the unit being controlled. In the
figure, y(t) is the output of the system, r(t) is the reference
output, and u(t) is the control input. The shaded area on
the left denotes the past and the area on its right (t, t + N)
is the finite prediction horizon. At each time point t, pre-
dicted outputs and manipulated inputs are computed by the
controller over the finite time horizon t + 0, . . . , t + N , and
only the first input u(t) is applied to the system.

Model predictive controllers have several advantages such
as explicitly handle constraints on inputs and outputs, and
the performance is optimized by solving an open-loop op-
timization problem. These controllers are widely used in
different industrial application areas such as air and gas,
chemicals, and food processing [11, 7].

3. DESIGN CONSIDERATIONS

C1 C2

C3

Figure 2: System overview. C1, C2, and C3 are body
cameras.

3.1 Overview
Body camera can present in various environments where

it can work alone or in collaboration with others. In an en-
vironment where there is only one camera presents, the con-
troller only considers the context it is in. Based on the mea-
surements from the inertial measurement unit (IMU), bat-
tery status and internal analysis, the controller will change
the camera configuration to maximize the video quality while
keeping the system within the intended energy budget. This
allows the camera being turned on all the time but not
consume many resources whether its battery life or storage
space.

In a collaborate fashion where multiple body cameras are
present as shown in Figure 2, camera C1 and C2 are record-
ing the scene from the same angle while camera C3 is record-
ing from the side. The different system status and position
of each camera can be used to incorporate collaboration be-
tween multiple cameras. The controller in each body camera
will take into account of other cameras’ presence, however,
the configuration does not rely on others which may go of-
fline at any point in time.

3.2 System Goals
The goal of this system is to have a body camera con-

troller that can adjust the configuration according to the
environment it is in, thus allows the body camera to be al-
ways active but does not consume excessive energy or only
recording at a low quality.

3.2.1 User Context
The quality of the video is based on the current context

that the officer is in. The context is determined based on
the state machine and IMU measurements. We define the
set of contexts as in-car, walking, running, and confronting.
If the officer is sitting in a car, there is no need to record at
a higher frame rate or a better quality as the scene is mostly
static. However, in a confronting context which can result
in violence, the camera needs to preserve the maximum in-
formation thus requires a high-quality video that is suitable
for the context. The different context forms a state machine
as shown in Figure 3 which we use to track which state the
camera is currently in.

3.2.2 Collaboration of Camera Cluster
During an intensive situation, multiple body cameras may

present. We argue that the information preserved would not
be maximized if all cameras are set to the same configura-
tion. Consider a situation where multiple cameras are facing
the same direction, some cameras can record at a higher res-
olution but a lower frame rate to get a clear view of the scene



In-car Running

Walking Confronting

Figure 3: State diagram.

and other cameras can record at a lower resolution with a
higher frame rate to get the detailed action sequence of the
event. The frame rate and resolution have a lower bound
in this situation which allows for guaranteed video quality
when treat cameras individually, thus the controller does not
depend on others. However, if the battery is low on the cam-
era, the resolution and frame rate will be further dropped
automatically as recording something is better than noth-
ing. In Figure 2, camera C1 and C2 can use complementary
resolution and frame rate settings, as for C3, it will choose
the configuration which can find the balance between qual-
ity and power consumption. The cameras will also help each
other to save power.

3.2.3 Adaptive Model Predictive Control
The body camera is resource constraint device which re-

quires us to minimize the utilization and lower the power
consumption when possible. The controller controls the pa-
rameters of the camera and CPU usage to minimize power
consumption. The time horizon of the controller is adaptive
due to the fact that different officers have different behav-
iors. For instance, one officer normally spends 15 minutes
in confronting context and another officer for 30 minutes.
Furthermore, the system model requires updates for any in-
accurate modeling and refinement for each single unit.

The controllable parameters we are interested in are res-
olution, frame rate, camera sensor mode, and controller ac-
tivation interval. The parameters are set according to cur-
rent context and power requirements. The predefined sys-
tem model and cost function will optimize the configuration
for our objectives while remaining in the constraints. For
instance, if the current context is in-car, the controller will
lower the frame rate and resolution to reserve power. The
configurations and current system status are in a dynamic
relation which a heuristic approach is not capable of han-
dling all situations.

4. CONTEXT RECOGNITION
Context recognition is a crucial component of our con-

troller. We use an IMU sensor to perform human activity
recognition for four types of activities: running, walking,
sitting, and standing. The detected activity is used to tran-
sition between two states in the state machine of Figure 3.
We choose IMU’s 3-axis accelerometer data to extract fea-
tures, which we found to be more accurate in activity de-
tection than using a combination of accelerometer with gy-
roscope and magnetometer. The mean and variance of each
axis are extracted for a time window. Inspired by the work
in [1], multiple time windows are combined to create more
features. In our implementation, we choose 0.7 and 1.4s time
windows, which give us a total of 18 features. To balance
the constrained nature of the body camera and accuracy
requirements, we use a kNN [5] classifier. Based on initial
cross-validation experiments, we set k = 11 to ensure a sta-
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Figure 4: User Rating vs. Frame Rate
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Figure 5: User Rating vs. Video Resolution

ble performance which achieved an accuracy of over 90%. A
set of three consecutive classification results, {xi}, is used
for majority voting to detect an activity.

5. DESIGN OF CONTROLLER
In this section, we discuss the design of the proposed body-

cam controller. We name the scenario where a single camera
is present as local environment and a cluster of cameras as
collaboration environment.

5.1 Local Environment
In a local environment, the controller only takes into ac-

count the internal control inputs, which are the current cam-
era status, context, and battery level. To define the objec-
tive function of the controller that maintains the desired
quality level of captured videos, at first, we conduct a user
study on how human users rate the quality of a video when
its resolution and frame rate are varied. We record a video
at a high quality and convert it to multiple videos having
different configurations. At first, we ask the users to rate
the videos which have the same resolution but have differ-
ent frame rates. The mean value of the normalized score for
each frame rate is shown in Figure 4. We find that it becomes
harder for an average user to notice the difference when the
frame rate exceeds 25 frames per second. We then ask the
users to rate the videos which have the same frame rate
but are of different resolutions. The result is shown in Fig-
ure 5. From the result, we find that the users can easily tell
the difference and prefer a higher resolution. Based on this
study, we assign each camera configuration (i.e. resolution
and frame rate) a score that represents human perception
quality.

For the controller, we define its objective as to match the
actual power consumption to a reference value (e.g., set by
policy or learned during deployment) while maintaining a
certain quality level. For instance, if the targeted battery
life of the system is 8 hours, the camera with a single con-
figuration will drain its battery linearly during that period.
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Figure 6: Body camera controller

In that case, the linearly dropping battery level will be the
reference at any point in time. We define the cost function
to optimize as:

J = (b− br)2 +

N∑
i=0

wiS(xi − xr
i ) (1)

S(x) =
1

1 + e−a·x − 0.5 (2)

Where, b is the future battery level after applying the cam-
era setting for the time step, br is the reference battery level,
xi and xr

i are the controlled variable and the reference for
controlled variable, wi are the weights of these variables, S is
the sigmoid function shown in Equation2, where a is tuned
for the desired controller property. The sigmoid terms are
used to reward or penalize certain behavior in each context,
and each context has its own reference values for control
variables and weights.

The model predictive controller needs to optimize over a
finite time horizon. The horizon is set to the next five likely
contexts and their durations, given the current context. The
sequence of contexts and their durations are adaptive and
refined for each bodycam over time. The battery power con-
sumption for each camera configuration is updated to mini-
mize the impact of any inaccuracy in system modeling and
changes in hardware performance such as battery degrading.

5.2 Collaboration Environment
For a collaboration environment, the weights in Equa-

tion 1 are used to reflect the difference between multiple
cameras. For instance, if camera A has more remaining bat-
tery than B, B’s controller chooses a lower power hungry
configuration. We employ the magnetometer of the IMU
to determine the direction of a camera, and if there are
multiple cameras facing approximately the same direction,
they choose different settings to improve the dynamics of
the video quality for different analysis purpose.

6. SYSTEM IMPLEMENTATION

6.1 Hardware Design
We have implemented a prototype of the proposed body

camera which is shown in Figure 7. We use a Raspberry Pi
Zero and a Pi Camera Module V2 as the main components.
We connect an IMU to the Raspberry Pi via I2C. The IMU
has LSM9DS0 chip on-board with a 3-axis accelerometer, a
3-axis magnetometer, and a 3-axis gyroscope.

We use a PowerBoost 1000C power supply to charge the
battery and to supply 5V to the Raspberry Pi. For the
battery monitoring, we use a MCP3008 ADC chip to mea-
sure the battery voltage and convert that to a percentage

Raspberry Pi Zero W

Pi Camera Module

IMU

MCP3008 
ADC

Charger
Battery

(a)

(b) (c)

Charging 
Port

Vent

Switch

Figure 7: Body camera. (a) All components are shown.
Battery is under Raspberry Pi Zero. (b) Right-front
view. Camera near the vent. (c) Left view. Switch,
charging port, and clip.

level used by the controller. For this conversion, we use an
empirically estimated model. We measure the voltage over
time for four batteries of the same model by draining their
battery for a constant current. The relation between the
voltage and remaining percentage is shown in Figure 8.
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Figure 8: Batter Voltage vs. Remaining Percentage

6.2 Software Design
We use the picamera Python library to control the camera

configuration and scikit-learn Python library for kNN [5]
classification. We choose 0.1s as the interval to collect IMU
data which acquires sufficient information under minimal
CPU utilization. The battery voltage is queried every 10s
and the percentage is calculated from the average voltage
over 30 seconds.

7. EVALUATION

7.1 System Measurement
Our system identification model is generated through the

measurements of different settings performed in this section.
We measure the power consumptions of the Raspberry Pi
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Figure 9: Field of view for each sensor setting.

0 5 10 15 20 25 30 35 40
Frame Rate (fps)

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

1920x1080
1600x900
1280x720
1024x576
854x480

Figure 10: Power consumption with sensor mode 4.

Zero W and Raspberry Pi Camera Module V2. The Pi Cam-
era module sensor has 7 modes in total, which are shown in
Figure 9. In this paper, we use mode 2 and 4, which utilize
the full sensor area and have the same field of view. For
mode 2, the frame per second rate varies from 0.1 to 15, and
for mode 4 it is varied from 0.1 to 40.

We measure the power consumption of the system for dif-
ferent resolutions and frame rates. Due to constraints of
the Raspberry Pi platform, the maximum frame rate for
1920x1080 resolution is 30 frames per second, however, the
camera module is capable of recording at 40 frames per sec-
ond in mode 4.

Figure 10 shows the power consumption measurements of
the system when we use sensor mode 4. In this mode, the
native resolution of the sensor is 1640x922. As a result,
the common resolutions we choose in this paper requires the
system to re-size the video. For 1080p resolution, the system
sizes up the resolution, which degrades the video quality
in contrast to down-size the video from a higher resolution
captured from the camera. As shown in Figure 11, the power
consumption is higher in mode 2 than it is in mode 4 due
to the use of the full sensor which requires more power, and
so is resizing and encoding. Due to the downsizing of the
video to 1080p, the video quality is higher than it is in sensor
mode 4.

We also measure the power consumption of the system un-
der different CPU utilizations. The measurements are shown
in Figure 12. As expected, when the camera is running at
a higher resolution and frame rate, the CPU utilization in-
creases.

7.2 Algorithm Evaluation
We conduct simulation-based experiments (based on real

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Frame Rate (fps)

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

1920x1080
1600x900
1280x720
1024x576
854x480

Figure 11: Power consumption with sensor mode 2.
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Figure 12: Power Consumption vs. CPU Utilization.

data and real measurements) to evaluate the performance of
the body camera controller for both local and collaboration
environment.

7.2.1 Local Environment
We design a sequence of contexts for this environment:

in-car (0.5), walking (0.1), confronting (0.5), walking (0.1),
in-car (0.6), running (0.1), confronting (1), walking (0.2),
and in-car (0.5), where the number in the parentheses is the
duration in hours. Using our pre-defined weights, the simu-
lation results are shown in Figure 13. The reference model
is a configuration which lasts for 8 hours on a fully charged
9.6Wh battery. The referenced 1.2 W power consumption
corresponds to 1080p at 15 fps, 900p at 18 fps, 720p at 24
fps, 1024x576 at 28 fps, and 480p at 29 fps. These config-
urations are not of good quality. The baseline model is the
camera running at 900p at 40 fps. Our controller chooses the
same setting as the baseline model for confronting and low
frame rate for in-car. Our method has a remaining battery
of 4.97Wh at the 3.5-hour mark, which is 33.6% more than
the baseline model with a remaining battery of 3.72Wh.

7.2.2 Collaboration Environment
We use the same setting as in Section 7.2.1 for the col-

laboration environment. However, we modify the scenario
so that the second confronting context has another camera
present with a higher battery level. In this scenario, the
camera uses the weights and reward for more power savings.
The results are shown in Figure 14. The controller chooses
a lower resolution that saves some power but still records
at a high frame rate. The remaining battery is 5.21Wh at
3.5-hour mark, which is 40.1% more than the baseline and
4.8% more than in Section 7.2.1.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose an adaptive model predictive

controller for body cameras which improves information preser-
vation while reducing energy consumption. The controller is
adaptive and its performance improves over time. A fast and
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Figure 13: Simulation of the controller compared to base-
line implementation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (h)

3

4

5

6

7

8

9

10

Ba
tte

ry
 (W

h)

Controller
Reference
Baseline

Figure 14: Simulation of the controller with collabora-
tion compared to baseline implementation

computation effective context recognition method is used in
this system. We also presented a cost effective way to proto-
type a body camera which can be used in different research
projects.

In the future, we intend to implement and fine tune the
controller on our body camera system and evaluate its per-
formance in real world scenarios for a longer period of time.
We plan to recruit more volunteers to collect IMU data and
evaluate the effects of different parameters on the accuracy
of classification.
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