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Abstract—We devise an inexpensive and intuitive system for
bus route navigation for locales where public transportation may
serve as a prevalent mode of commute but where technologies
that make arrival predictions through tracking vehicles in transit
through GPS or other means do not exist. These systems typically
require real-time monitoring of traffic variations. We provide
a personalized approach where in a world of pervasive smart
phone use, users may take advantage of sensor data to learn
and personalize their bus routes, and alert them on time when
a bus stop is approaching. We accomplish this through the
development and implementation of two algorithms: 1) turn
detection using on-board compass sensor of a smart phone, and
2) characterizing road segments in terms of turns and thereby
predicting approaching bus stops. We conduct field experiments
on a route with four selected bus stops in the town of Chapel Hill.
Results show that the accuracy of turn detection and detection
of approaching bus stops are 95.7% and 83%, respectively.

I. INTRODUCTION

The built-in sensors on smart phones has encouraged the
development of various convenient applications that users can
interact with to aid them in different aspects of their lives.
One such usage for smart phone sensors is route mapping and
tracking. Map and GPS are some of the most vital features
on a smart phone, and many public transportation systems in
different cities have published their own bus route and alert
systems. One helpful feature that is still lacking on many of
these applications is the ability to recognize a user’s routine
bus route and alert the user when his/her usual bus stop is
approaching. Often on bus rides, passengers might not be
totally attentive on the road and/or bus stop. Missing a bus stop
because of a moment of inattentiveness can be a frustrating
thing. Realizing this issue, we have worked to develop a bus
stop alerting system on Android that includes this feature for
public bus routes.

Our system contains a set of built-in, pre-identified bus
routes. It operates by learning a user’s daily bus route, paying
attention to details such as where the user gets on and get off
regularly. This information, along with the compass sensor
data, is collected and analyzed in order to characterize and
recognize approaching bus stops. The goal of this system is
to send an alert to the user when his or her usual bus stop is
approaching.

†The first three authors are equal contributors to this paper.

Our system delves into several areas of research, one
being accelerometer-based activity recognition. Many works
have been published on context and activity detection using
sensor readings; our work is based on such context recognition.
Another aspect of this bus stop alert system deals with bus stop
arrival information. Various applications exist for bus arrival
prediction using a mixture of GPS and pre-determined bus
arrival information. Such systems have some drawbacks upon
which we wish to improve. Human attention is an area of
research we briefly examine since our system aims to alert
users of their particular bus stops, an application of which
would be most pertinent when someone is not paying direct
attention to the current route conditions.

To create a functional and efficient system, our major
milestone is to be able to characterize and learn road segments
on a specific bus route by using compass sensor values
collected by a smart phone. This process is broken down
into two steps in order to accurately classify a route – 1)
accurately detecting turns, and 2) using turn information to
represent a road segment between consecutive bus stops. Such
characterizations based upon raw compass data is challenging
due to inaccuracies and noise in the data. Normalization
is required to smooth the raw data before classification is
performed using different features we derive from the data.
A benefit of this solution is that it avoids the use of GPS,
which would be a major source of energy consumption for
such a system that is expected to run for an extended period
of time.

More specifically, this process is performed via a sequence
of four steps: 1) data collection, 2) turn detection, 3) encoding
road segments, and 4) classification. Data is collected during
road testing using smart phones, and then used as inputs
to the turn detection algorithm. This process identifies the
performance of a turn while performing normalization on the
data. Such information are encoded into route-specific features
to be used in a simple 1-nearest neighbor classifier.

Our system has been tested against a route system with
several bus stops defined on the route. Each test run includes
both sensor values and real route conditions for testing pur-
poses. Upon evaluation, our turn detection design results in
95.7% accuracy, while the overall bus stop detection performs
at 83% accuracy.

This paper makes the follow contributions:



• We have collected a wide variety of sensor data on mobile
devices on multiple routes in the town of Chapel Hill. We
share our code and data with the community [1].

• We devise two algorithms – 1) to detect turning vehicles
using noisy compass sensor data, and 2) encoding road
segments using turn information to characterize road
segments.

• We implement an Android application that reads in com-
pass data and implements the algorithms. Our evaluation
shows that the overall accuracy of the system in bus stop
prediction is 83%.

II. MOTIVATION AND PROBLEM

Public transits serve a vital transportation role in cities
where they are readily available. Many people rely on buses
and trains as their everyday mode of transportation. One
trouble people might face riding the bus daily is missing their
bus stop due to inattentiveness during the bus ride. Anyone
would find this to be frustrating along with the precious time
wasted during transit. Because of this, we want to discover a
system to detect a user’s routine bus stop so the user can be
alerted in a timely manner at his or her usual stop.

Some similar systems often utilize a variety of built-
in sensors on smart phones. Some of these most effective
applications, however, often make use of high energy con-
suming sensors such as GPS. This would not be ideal for an
application intended for regular long-period use on a smart
phone. Another option would be to use the built-in compass
and IMU on smart phones. This alternative would provide us
a less expensive way to track a user’s bus activity. While there
are robust solutions that predict bus arrival time, no existing
solution exists to connect our problem with this approach. We
thus want to introduce a bus stop alert system that can provide
route tracking functionality dependent only on a smart phone’s
compass and IMU.

In order to accomplish this, the main challenge we’ve
identified is fingerprinting the route and specific bus stops.
Route and bus stop detection would be a simple problem with
the use of GPS. However, to rely solely on accelerometer and
compass information provides some difficulty. Given a set of
accelerometer and compass values collected over a period of
time, we need to be able to characterize and classify each
section of a bus stop with a section defined as the path from
one bus stop to the next.

III. SYSTEM DESIGN

In this section, first, we introduce the system architecture,
and then detail its specific components.

A. System Overview

The current system uses a smart phone’s built-in sensors
to read in accelerometer values and compass data as the bus is
in motion. The data is then extracted and processed so that it
can be used as an input to a turn detection module, which we
rely on as a basis for path and bus stop recognition. For this
step, a module is used which is able to detect left and right

turns. The detailed road information is further encoded as bus
route specific data and used as training data for classifying
individual stops. Figure 1 shows the overall system.

Fig. 1. The four building blocks – data collection, turn detection, segment
encoding, and classification modules, and their relationships are shown.

B. Reading Sensor Data

In order to properly classify bus movements, sensor data
collection is performed by following a bus route on a car. The
route is shown in Figure 2. Instead of collecting data on a bus,
we used a car to expedite the data collection process and to
have more control over it. We made sure that the speed, route
taken, and stops are as close to an actual bus ride as possible.

Fig. 2. Route taken during our initial data collection phase.

Multiple rounds of driving were completed and sensor data
were collected throughout the entirety of the ride. All available
sensors were used and tracked, but the time stamp along with
accelerometer, magnetometer, gyroscope, and compass data
were the most relevant parameters related to our problem. For
testing and comparison purposes, the GPS information was
also collected along with the bus stop markers, which we took
note of when we reached a bus stop.



C. Detecting Turns

We design an algorithm for detecting turns which is
reliant upon a smart phone’s magnetometer and accelerometer
sensors. These two sensors are used in conjunction to produce
‘compass’ readings that are represented in degrees ranging
from 0 to 360.

We employ a simple interval and threshold based strategy
to understand when a vehicle makes a turn. The interval
decides the length of an array, which is used to keep the last
n degree values. In our experiments, we found that n = 50 is
ideal for turn detection. Our sensor readings come in at a rate
of about 100 ms each, i.e., 10 readings/second, so a threshold
of 50 means that our algorithm looks for degree values from
the last 5 seconds. We find that a liberal view on how many
degrees define a turn is the best approach. We settle on the
number of 30 degrees after trying several values.

The proposed algorithm executes every time a new sensor
reading comes in and decides whether or not a vehicle is
making a turn at every execution. First, we shift all elements in
our array of compass values by 1 unit to the left, and then fill
the last space in the array with the newly read degree value.
If the last element and the first element in the array have a
difference of greater than 30, our predetermined threshold, it is
considered a turn. Specifically, if the first element in the array
subtracted from the last element in the array has a difference
of greater than 30, the current point in time is considered a
right turn. If the last element in the array subtracted from the
first element in the array has a difference of greater than 30,
the algorithm determines that the user is making a left turn. If
the algorithm detects that a turn is being made, it classifies it
as ‘LEFT’ or ‘RIGHT’. If the algorithm detects that a turn is
not being made, a special value of ‘-9999’ is put in the turn
column.

An edge case we have to consider is the shifting of compass
readings between the 0 and 360 degree mark. In order to
handle this edge case, we simply set the first element in the
degree array with the newly read degree value and repeat
the turn algorithm with new limits on what is considered
the interval (or the end of the array). We then increment the
new interval at every new degree reading until it reaches our
original interval, 50. A more detailed view of the algorithm is
provided by Algorithm 1.

The most significant issue we have encountered when
implementing this algorithm has been the instability of the
magnetometer sensor at crucial times. This caused the compass
readings to fluctuate significantly, resulting in the detection of
false turns. Figure 3 shows a map of a route we took with a
car while collecting sensor data. The plot in Figure 4 shows
the degree values that were converted from the accelerometer
and magnetometer sensor readings.

As seen in Figure 4, degree fluctuations occur at periodic
time intervals when the car was not turning. An example
can be seen between times 160,000 and 320,000. Fluctuations
between this time interval results in two false turn detections.
In order to combat these fluctuations, we implemented an

Algorithm 1 Detect Left and Right Turns
arr ← SHIFT LEFT(arr)
turn← 30
arr[interval − 1]← newDegree
from← arr[0]
to← arr[interval − 1]
beforeTo← arr[interval − 2]
if abs(beforeTo− to) > 180 then
arr[0]←to
interval← 0

else
if to− from > 0 then

if to− from > 30 then
// Right Turn Detected.

else
// Going Straight.

end if
else

if from− to > 30 then
// Left Turn Detected.

else
// Going Straight.

end if
end if

end if
if interval < 50 then
interval++

end if

Fig. 3. Another route that produces false turn detections due to fluctuations
in magnetometer readings, unless appropriate measures are taken.

averaging technique that was applied to each of the incoming
new degree values. To implement this, the array holding
previous degree values is shifted to the left one element, then
the sum of every element in the array plus the new degree
value is added to the total. Then this running total is divided
by the length of the array of the interval for previous degree
values collected. This results in smoothing of the overall
data trend and minimizes fluctuations that war responsible for
false turns detected by the algorithm. The result is shown in
Figure 5.
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Fig. 4. Degree values over time without smoothing results in an accumulation
of false turn detections.

Fig. 5. False turn detections eliminated after smoothing.

D. Encoding Road Segments

The goal of this step is to encode a road segment between
two consecutive bus stops into a suitable format so that 1) the
encoded representation is consistent when we drive a vehicle
along the same road segment at different times, and 2) it is
capable of distinguishing different road segments.

We employ a simple encoding scheme that is computa-
tionally efficient and meets the above two criteria. Each road
segment is represented with a triplet of the form (τ, λ, ρ),
where each element represents the total length of the encoded
string (τ ), number of left turns (λ), and the number of
right turns (ρ), respectively. The algorithm is presented in
Algorithm 2.

To illustrate the encoding scheme, we show an example of
a bus loop that contains four road segments that are connected
at four bus stops. The loop is shown in Figure 6. As a first
step of encoding, we convert all the raw compass readings
into turns using the turn detection algorithm described in the
previous section. Then a long series of ‘LEFT’ and ‘RIGHT’

Algorithm 2 Encode Segment
// global_len ≡ length of segment string
// global_r, global_l ≡ number right/left
turns
// global_n ≡ number of trials for given
segment
global len, global r, global l, global n = 0

for each pass of segment do
Read count from
global len← global len+ len
global r ← global r + r
global l← global l + l
global n++

end for

global len← global len/global n
global l← global l/global n
global r ← global r/global n

return (global len, global l, global r)

Fig. 6. An example route to illustrate segment encoding of four road segments
separated by four bus stops on a loop.

values are expressed in a compressed form by bundling
together consecutive ‘LEFT’ and ‘RIGHT’ as ‘L’ and ‘R’
respectively. Table I shows this form of encoding for each of
the four segments of the road for three different passes through
the same segment. We observe that the encoding of the same
segment for different passes are highly consistent with each
other, and encodings of different segments are clearly distinct.

TABLE I
ENCODING SEGMENTS AS STRINGS

Pass 1 Pass 2 Pass 3
Segment 0 LRL LR LR
Segment 1 RLRL RLRRLRL RLRRLRLL
Segment 2 L L L
Segment 3 RLL RLL RLL

While the above string-based encoding meets our criteria,
the encoding length is not uniform (e.g., segment 2 has a



longer length than others) and hence, computing the similarity
between two different encodings is non-trivial. Hence, we
convert each of these strings into a triplet (τ, λ, ρ) and use an
average of multiple passes to empirically determine the mean
values of τ , λ, and ρ for each road segment. This process is
illustrated in Table II, where the last column represents the
final encoding of each segment.

TABLE II
ENCODING SEGMENTS AS TRIPLETS

Pass 1 Pass 2 Pass 3 Final Encoding
Segment 0 (3,2,1) (2,1,1) (2,1,1) (2.33, 1.33, 1.00)
Segment 1 (4,2,2) (7,3,4) (8,4,4) (6.33, 3.00, 3.33)
Segment 2 (1,1,0) (1,1,0) (1,1,0) (1.00, 1.00, 0.00)
Segment 3 (3,2,1) (3,2,1) (3,2,1) (3.00, 2.00, 1.00)

Algorithm 3 Classify Segment
Si: encoding of the ith segment.
GET a sequence of turns
count NumLength, NumLeft, NumRight

Form encoding E(NumLength, NumLeft, NumRight)
c = argmin

i
‖Si − E‖

E. Segment Classification

The final step of our system is to classify an encoded
segment as one of the n segments of a route. For this, we
use a simple 1-nearest neighbor algorithm (Algorithm 3) to
classify an encoded segment E(τ, λ, ρ) based on its Euclidean
distance from the previously encoded mean encoding of all the
segments Si(τ, λ, ρ). We use the following equation to classify
a segment:

argmin
i
||Si(τ, λ, ρ)− E(τ, λ, ρ)|| (2)

where, the operator ||x|| denotes the l2-norm of the variable
x. As an illustration, we consider the values in Table II. We
take each of the 12 entries in the middle and compare it
with the four final encodings to determine its class. Out of
the 12 entries, this approach correctly classifies 10 of them.
The two entries (Segment 0 Pass 1, and Segment 0 Pass 2)
are incorrectly classified. Such errors can be eliminated using
more training of the classifier.

IV. EVALUATION

A. Experimental Setup

In all of our experiments we use a LG G4 smart phone
with an Android Marshmallow operating system to collect and
log sensor data. The G4 has a Hexa-core (4x1.4 GHz Cortex-
A53 2x1.8 GHz Cortex-A57) CPU, an Adreno 418, 32 GB of
internal storage, and 3 GB of RAM. It comes with a suite of
sensors including an accelerometer, a gyroscope, a proximity
sensor, a compass, a barometer, a color spectrum sensor, and
an A-GPS.

To prepare the data for our experiment, we create CSV files
with each row representing time slices of 100 ms and columns
representing accelerometer, magnetometer, and degree values
as well as left and right maneuver detections, when they were
actually being made, and when we were stopped at certain
bus stops. We produced a new CSV file for each run we made
with the phone. The bus route we drove is shown in Figure 4
and Figure 6.

We use the magnetometer and accelerometer sensors to
compute compass degree values, which are used as inputs
in the turn detection algorithm. The biggest challenge to our
turn detection algorithm has been the instability of the magne-
tometer sensor as environmental factors heavily influenced its
readings. This issue has been especially prevalent in times of
high traffic on our bus route. Typically, high degrees of traffic
are encountered between the hours of 4:00 PM and 6:30 PM.
A work around to that is to create separate models for different
road conditions and/or times of the day.

B. Performance of Turn Detection

To test our turn detection algorithm, we take three runs
with four stops each while running an Android application that
collects compass degree values. The accuracy of the algorithm,
when compared to the ground truth values for turns recorded
by a human operator is 95.7%. Figure 7 shows the number
of detected and missed left and right turns. We observe that
except for only one left turn, the algorithm has been successful
in detecting all the turns.

Fig. 7. The accuracy of left and right turns detection is over 95.7%.

Sometimes, the turn detection algorithm is susceptible to
detecting false turns, especially when a route has a high degree
of curvature. For example, the path between bus stops 1 and 2,
called segment 1, displayed in Figure 6 has this characteristic.
False turns encoded in segment 1 are seen because of this.
Table III shows the distributions of true and false detected left
and right turns. ‘True Left’ or ‘True Right’ mean the vehicle
has made an explicit left or right turn that is detected correctly
by the phone. ‘Actual’ represents turns recorded by the user.
‘False Left’ or ‘False Right’ means that the phone detected a
turn while the user was not making one.

C. Performance of Segment Detection

Fortunately, false turns proved to be a characteristic of
particular segments. If a large amount of false turns were



TABLE III
DISTRIBUTION OF TRUE AND FALSE TURN DETECTIONS

Actual Pass 1 Pass 2 Pass 3
True LEFT 6 5 6 6

True RIGHT 2 2 2 2
False LEFT 0 2 1 2

False RIGHT 0 2 4 4

detected in a segment, it was interpreted as a path with a road
with a high degree of curvature. It could then be more easily
differentiated from a segment with a more regular path. Our
process of encoding the turns, transforming them into useful
values, and classifying segments is described in Section III-E.
Figure 8 is a chart displaying the runs per segments and the
ones that are correctly detected by the classifier. Unlike our
turn detection algorithm, our segment detection algorithm is
not run in real time; we evaluated the algorithm offline after
the trips. We leave it as a future work to integrate this step into
the main smart phone application and perform a user study to
understand its full potential.

Fig. 8. Detections of total runs per segment

V. RELATED WORK

There have been plenty of research done on the subject of
activity recognition utilizing some combination of accelerom-
eter based sensor readings. [3] presented a system for context
recognition relying on GPS and accelerometer. Similarly, [5]
also worked on context recognition, but their system incor-
porates audio for classification and provides a solution that
optimizes power consumption. Some more specific instances
of activity recognition include Nuricell [6], a system that
detects specific road conditions such as bumps and breaks
using accelerometer, microphone, GSM, and GPS.

Another category of works we looked into was bus arrival
predictions. Many of these rely solely on the bus arrival and
running data to make their predictions. [2] examined bus
arrival prediction using methods such as support vector ma-
chine (SVM), artificial neural network (ANN), and k-nearest
neighbours algorithm (k-NN) with bus arrival information.
GPS information is another method that can be used for these
research, as presented in [7]. Their system uses GPS to display
bus location, and they have also worked out an algorithm that

can calculate the corresponding bus delay. [8] developed a
GPS based system that helps cognitively disabled people to
know when to get off a public transportation system.

The last area of research we have studied is the works that
addresses driving patterns and habits such as inattentiveness,
drowsiness, and aggression on the road. Many such systems
require the use of camera [9], [10]. [9] uses camera infor-
mation for eye closure detection as their primary method for
drowsiness detection, while the CarSafe app [10] collects both
camera and sensor readings from accelerometer and gyroscope
to identify a common set of dangerous driving behaviors
and road conditions. Their method uses computer vision and
machine learning algorithms to detect road conditions and
facial expressions simultaneously. Another system [4] makes
use of sensor fusion (accelerometer and gyroscope readings)
and Dynamic Time Warping for driving event recognition and
aggression categorization and elaborates more on detection of
various driving maneuvers.

VI. CONCLUSION

In this paper we present a system for bus route navigation
and notification that can effectively work in city environments
to detect a user’s regular bus routine and make bus stop pre-
dictions. Our design avoids dependence on GPS functionality
and instead relies on compass sensors, which are far more
energy efficient. We perform a system evaluation and showed
our design produces 83% accuracy in bus route and stop
detection. Our future work includes performing additional in-
depth testing on various bus routes, real-time integration of
segment detection, and improving upon turn detection and
segment detection accuracy.
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