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Abstract

In this paper, we propose a predictive mainte-
nance scheme for centralized HVAC systems by au-
tonomous monitoring and analyzing their acoustic
emissions. Our proposed solution allows a building
to be retrofitted to monitor its HVAC without hav-
ing to modify the existing infrastructure. Our ap-
proach is to employ an energy-efficient, low-cost, and
distributed acoustic sensing platform to capture and
process audio signals from HVAC systems. As part
of this project, we develop audio models of a running
HVAC system using a combination of unsupervised
and supervised machine learning techniques with a
human-in-the-loop for fault identification and predic-
tion.

Introduction

Centralized HVAC systems are the primary means to
control the indoor climate and to maintain its occu-
pants’ comfort in over 88% of the commercial build-
ings in the USA [4]. HVACs are also one of the most
expensive systems in commercial buildings in terms
of both installation or replacement cost, and energy
consumption. Failure of an HVAC system is, there-
fore, detrimental to our well-being as well as to the
finances. A notable consequence of faulty HVAC sys-
tems is the sick building syndrome, which leads to
respiratory problems attributed to poor ventilation,
low or high humidity, and unfiltered airborne parti-
cles and chemical pollutants in the buildings. With
adults spending over 40% of their average daytime
at workplaces, a proactive prognosis of HVAC system
performance cannot be overlooked.

Most HVAC failures are fixable but are extremely
costly [20]. A number of HVAC problems if not
repaired early, lead to costlier repairs, or even the
need to replace the system entirely. For instance,
if the blower motors are left running at a compro-
mised state, they strain other heating and cooling
components. Likewise, continued running of a faulty
condenser fan stresses the system, and causes com-
pressor failures [7]. Identifying and repairing such

problems early can save building owners a consider-
able amount of money. However, due to the lack of
an effective, low-cost, and continuous assessment and
prognosis mechanism for detecting under-performing
HVAC units, it is extremely difficult to determine
whether a repair, retrofit, or permanent retirement of
an HVAC system is warranted. For a systematic prog-
nosis and life-cycle management of centralized HVAC
systems, what we need is a robust, inexpensive, and
easily deployable system, so that impending failures
can be detected early. Such a system will save money,
and help us breathe healthy. It will also reduce neg-
ative environmental impacts of HVAC systems as it
will help decreasing the number of retired units that
find their ways to the landfills, which in turn, will
reduce escaped contaminants that have been shown
to deplete the ozone layer [14]. Keeping an HVAC
system functioning properly also keeps it energy effi-
cient.

A key to repairing HVAC systems before a total fail-
ure is early identification of problems. Similar to
many other mechanical systems, noise is a key in-
dicator of impending failures in HVAC systems. For
instance, squealing or screeching could indicate a bad
belt or motor bearing problem [2]. InspectAPedia [9],
the free encyclopedia of building and environmental
inspection, testing, diagnosis, and repair, has a de-
tailed classification of HVAC noises. We hypothe-
size that by employing a smart, low cost distributed
acoustic sensor system that uses machine learning al-
gorithms to learn and classify these noises in real-
time, we will be able to detect faulty HVAC compo-
nents, predict HVAC failures, and help building own-
ers predictively maintain their HVAC systems in a
cost-effective manner.

The proposed Smart Audio SEnsing-based HVAC
Maintenance (SASEM ) system has a single unify-
ing intellectual focus, i.e., enabling predictive main-
tenance of building equipment by autonomous moni-
toring and analyzing their acoustic emissions. Using
audio signatures to predict equipment failure requires
more than simply connecting a microphone to a dig-



Table 1: Typical Faults in HVAC Systems.

Category Device Typical Faults Acoustic Detections

Equipment

Fan

Pressure drop is increased Subject to Test
Overall failures of supply and return fans Yes
Decrease in the motor efficiency Yes
Belt slippage Yes

Duct Air leakage Subject to Test
Heating coil Fouling (fin and tube) leads to reduced capacity Subject to Test
Cooling coil Fouling (fin and tube) leads to reduced capacity Subject to Test
Preheating coil Fouling and reduced capacity Subject to Test

Actuator
OA, RA and,EA dampers

A damper is stuck or a faulty position Yes
Air leakage at fully open and closed positions Yes

Heating coolingcoil,
preheating coil valve

A valve is stuck broken or wrong position Yes
Leakage occurs at fully open and closed valve Yes

Sensor

SA, MA, OA, RA temp Failures of a sensor are offset, discrete or drift No/Causal
MA, OA, RA humidity Failures of a sensor are offset, discrete or drift No/Causal
OA, SA, RA flow rate Failures of a sensor are offset, discrete or drift No/Causal
SA and zone pressure Failures of a sensor are offset, discrete or drift No/Causal

Controller

Motor modulation Unstable response Yes
Heating/cooling valve Unstable response No/Causal
Flow difference The system sticks at a fixed speed Subject to Test
Static pressure Unstable response Subject to Test
Zone temperature Unstable response No/Causal

OA, RA, EA, SA, and MA stands for outside, return, exhaust, supply, and mixed air.

ital signal processor; it requires the development of
novel hardware and software that are low cost, low
maintenance, easy to deploy, and take into consid-
eration the variations in noises produced by differ-
ent equipment, acoustically hostile building environ-
ments, and false positives and negatives during classi-
fication. We create novel hardware and middle-ware
for audio data gathering using wireless acoustic sensor
networks and cloud computing. We also develop ef-
fective machine learning-based classifiers to identify
acoustic characteristics of building equipment. The
three specific aims of this research are:

• Unsupervised Acoustic Modeling: We de-
vise unsupervised clustering methods to auto-
matically identify the states and transitions of
a running HVAC system under normal/healthy
condition. Deviations from the ‘ideal state’
(which is dynamic and an outcome of a con-
tinuous learning process) is identified using this
model to discover ‘potential’ faults and failures.

• Human-in-the-loop Fault Learning: We use
the concept of human-in-the-loop to verify the
state of an HVAC system to retrain our data for
supervised learning. A knowledgeable human op-
erator is notified with the location of the seem-
ingly faulty component and asked to make the
final identification. Both in cases of an actual
fault or a false alarm, the acoustic models will
be retrained to include this new knowledge, as
labeled by a human.

• Engineering a Low-Cost Sensor System:
We develop a low-cost acoustic sensing platform
for audio data collection and on-board process-
ing. The platform is built using off-the-shelf
hardware components, and costs around $100-
$200 per typical air handling room of an HVAC

system, which is less than $0.10 per square foot
in commercial buildings.

Background: HVAC Faults and Their
Relations to Acoustics
Acoustic sensing methods rely on the rich information
provided by sound, where small shifts and changes in
its spectro-temporal characteristic reliably indicate
differences in the behavior, performance or content
of a system. Examples include acoustic pulse reflec-
tometry [22, 19] and acoustic emission analysis [21].
Soundscape capture and analysis [18] has been used
to learn about the diversity of sound sources includ-
ing sounds generated by the environment [13] and bi-
ological organisms [12]. Over the past few decades,
microphones and microphone arrays have been im-
plemented in order to monitor the propagation of
sound in urban environments and to detect acous-
tic events [15, 10]. More recently, the same principles
have been used in monitoring factory machinery and
the maintenance and detection of faults in engines
using their noise signatures [5, 1]. Because of the re-
liability of sound behavior, sound emission analysis
serves as a dependable alternative to other sensing
modes for predictive maintenance. Typical faults in
the air handling room of an HVAC system are dis-
cussed in [6], and we summarize them in Table 1.
Table 1 shows four major types of HVAC components,
devices for each category, typical faults for each type
of device, and the potential for using acoustic sensors
in detection a fault. All actuator faults and some of
the equipment faults are detectable from their sounds.
These are labeled ‘Yes’ in the last column to indicate
so. These devices produce mechanical noises that
change as they wear out. On the other hand, sen-
sors and controllers are digital, and because they do



Figure 1: System Architecture of SASEM.

not produce any sounds their failures are not directly
detectable. However, many of these faults are inter-
related. For example, failure of a temperature sensor
will have an effect on the fan, heating- and cooling-
coil, and to some extent, on the duct. Hence, these
failures can be inferred by learning the causal rela-
tionship between different components. These are la-
beled as ‘No/Causal’ in the table. Finally, some of
the devices make noises that are too generic that hu-
man hearing is not capable of distinguishing them.
However, by carefully training machine learning clas-
sifiers, these sounds can be distinguished from one
another.

Overview of SASEM

Our proposed design of SASEM comprises of a mi-
crophone, a microcontroller, and a WiFi module for
audio signal capturing, on-board processing, and in-
formation communication. First, audio signals are
captured with microphone and features are extracted
from audio frames. After signal acquisition and fea-
ture extraction, we perform unsupervised clustering
to detect a deviation of the machine from its ideal
state. If the deviation is above an empirically learned
threshold, we send an alert to the admin to verify the
fault. Using this verification, a supervised learning
method is trained for failure detection. Moreover,
our system provides a visual interface for advanced
warning of failures to owners and property managers.

Figure 1 shows the system architecture of SASEM,
which consists of two major high-level blocks: sensor
nodes and back-end processing. The sensor nodes are
responsible for signal acquisition and on-board acous-
tic processing to identify and communicate potential
faults. The back-end server is responsible for both
classifying actual faults and alerting the human op-
erator.

Figure 2: Acoustic Modeling.

The three major tasks corresponding to acoustic mod-

eling, fault labeling, and development of the SASEM
system are described next.

Task 1 – Unsupervised Acoustic Modeling

We employ an unsupervised approach in order to
model and encode the regular pattern in the acoustic
time-series data, and to discover if a running HVAC
system has deviated from its regular pattern of oper-
ation at any point in time. We use an unsupervised
clustering-based machine learning approach [23] as
opposed to a supervised algorithm [11] in order to
make sure that our technique does not require train-
ing for every type of acoustic components, or com-
ponents made by different manufacturers, or compo-
nents running in different environments. A clustering
algorithm does not require labeling of the data. In-
stead, it creates clusters of similar data points with-
out labels. For different types of HVAC components
and different environments, the number and size of
clusters may be different, but the proposed algo-
rithm automatically learns and models this for a given
HVAC system, e.g., during the first week after the in-
stallation of the system. Besides identifying the clus-
ters, our system also models the transitions among
clusters over time so that it captures the temporal
dynamics of the HVAC system. The overall process
is shown in Figure 2, and the steps of modeling the
HVAC’s temporal acoustical dynamics are as follows.

• Step 1: The audio stream is converted to a
stream of 50ms frames and passed through a
frame-level feature extraction stage where Mel-
Frequency Cepstral Coefficients (MFCC) [24] are
computed for each frame. As part of the pre-
processing step, we apply standard filtering [3]
and noise compensation technique [17] to reduce
background noise from the signals.

• Step 2: The k-means clustering algorithm is
used to cluster similar audio frames. Cluster as-
signment is used as an encoding for each frame.
This step maps acoustic frames to 1 of k clusters
{C1, C2, C3, · · · , Ck} and produces a sequence of
clusters.

• Step 3: Transition probabilities,
P (Cn|Cn−1, Cn−2, · · · , Cn−l) to one cluster



given l previous clusters is estimated over
time. The exact value of l (look-back states) is
estimated empirically.

Once the transition probabilities are in steady state,
a sequence of unlikely transitions would mean that
the HVAC’s behavior is unusual with respect to the
currently learned model. Note that, modeling the
normal HVAC is a continuous learning task, which
is susceptible to high false positive rates at the early
stage. To mitigate this, we employ a human-in-the-
loop approach that is described next.

Task 2 – Human-in-the-Loop Fault Learning

If an HVAC system deviates from the ideal state be-
yond a tolerance value, an alert is sent to the sys-
tem administrator with the location of the seemingly
faulty component. The location of a fault is deter-
mined by solving by using blind source separation
techniques. The admin verifies the condition to label
the true or false positive case. Both in cases of an ac-
tual fault or a false alarm, the acoustic models will be
retrained to include this new knowledge, as labeled.
It is expected that as time goes by, the number of
required human interventions will be decreased.

Heat XCG Condenser Duct Vent

Figure 3: Distributed Acoustic Sensing in SASEM.

Task 3 – Engineering a Low-Cost Acoustic
Sensor System

Robust and efficient integration of recent develop-
ments in wireless sensor networks and cloud comput-
ing technologies for the purpose of acoustic anomaly
detection of HVAC systems has not been previously
attempted. A critical challenge is developing a low-
cost hardware platform with a sufficiently small form
factor that can capture the necessary audio signatures
at the required fidelity. To overcome the challenges
and to develop a novel technology for soundscaping
centralized HVAC systems, we propose an embedded
audio monitoring device that includes a microphone,
a microcontroller, and a WiFi module. These em-
bedded devices are capable of continuously recording
audio data at an appropriate sampling rate, as well
as of performing real-time on-board data processing
and classification. These devices will be placed at dif-
ferent locations throughout the building as part of a
network and will coordinate with one another to pro-

cess audio data and transmit events to a base station
as shown in Figure 3.
Our choice of sensors and the computing platform is
based on the system’s requirement in terms of accu-
racy as well as the cost of deployment. We record
audio at maximum of 44.1 kHz as the system con-
siders only the audible frequency range. For this, a
low-cost, omnidirectional microphone that supports
44.1 kHz sampling rate and does not attenuate sig-
nals at low frequencies is sufficient. For on-board
data processing, an ARM-based microcontroller unit
is sufficient to process audio in real-time [16]. For
communication purpose, we choose to use WiFi as
opposed to low-power Bluetooth LE, as WiFi offers
sufficient bandwidth and the device is powered using
wall-power.

Experimental Evaluation
Testbed and Datasets

We conduct a long-term experiment where we mon-
itor the air handling unit (AHU) room of Harn Mu-
seum of UFL in real-time using a smartphone net-
work. We use smartphones as opposed to the pro-
posed custom platform to quickly setup a 3-node
acoustic sensor network that captures acoustic signals
and seven other types of on-board sensor readings
(accelerometer, gyroscope, humidity, light, tempera-
ture, magnetometer, and pressure) from three AHUs
of the HVAC. The deployment is shown in Figure 4.
Although this setup is not low cost (each Samsung
Galaxy S4 costs around $500 in the consumer mar-
ket), for a quick deployment and to initiate the data
collection as early as possible while we are building
the final sensing platform, this was a suitable option.

Figure 4: Smartphone based deployment.

We have been collecting these data since May 1, 2016.
A custom smartphone application is developed to
capture audio signals at 44.1 kHz and all other sensors
at 100 ms internal. After capturing, we perform ba-



sic data cleaning operations, including detection and
removal of human voice, and ship them to a secure
server maintained by the University of Florida. From
the server, these data are periodically downloaded
and analyzed in Matlab.

In order to validate our algorithm’s performance on
audio data recorded from unknown HVAC systems
that are not part of our testbed, we use another on-
line data set [8]. The data set contains 49 recordings
(1.65 GB, 61 minutes, 24bit/96kHz quality) of fans,
heaters, and coolers of various HVAC systems.

Result 1 – Acoustic Pattern Estimation

C1 C2 C3 C1 C2 C3

C1 0.076 0.017 0.013 C1 0.066 0.01 0.008

C2 0.017 0.759 0.004 C2 0.01 0.814 0.002

C3 0.013 0.004 0.097 C3 0.008 0.002 0.08

(b) Transition Matrix 2(a) Transition Matrix 1

Figure 5: The similarity between transition matrices
computed on two different time spans are noteworthy.
This phenomenon provides an empirical validity of
our acoustic modeling strategy.

In Figure 5, two transition probability matrices (us-
ing 3 clusters) computed on two completely disjoint
and independent time spans (524,280 frames each)
are shown. The similarity between corresponding
cell-values tells us that our proposed acoustic-based
HVAC state modeling strategy is fairly stable. With
more data and larger number of clusters, these two
matrices will converge to steady-state values– which
are used to discover potential faults in HVAC sys-
tems.

Result 2 – Spectral Analysis

Figure 6 shows example spectrogram plots of eight
audio clips recorded near a pump, two fans, four boil-
ers, and between two AHUs inside these three build-
ings. One of the clips also contain human voices in the
background. The horizontal axis of each of the spec-
trograms denotes time (up to 60s), the vertical axis
denotes the frequency (up to 22.05 kHz), and the col-
or/shade denotes the power/frequency (dB/Hz), from
-30dB (yellow/lighter shades) to -150dB (blue/darker
shades).

We observe that, different units have different spec-
tral characteristics that can be leveraged to identify
a unit. For example, maximum acoustic power ex-
erted by a pump, a fan, and a boiler at any time is in
the ranges of −53.4±13.6 dB/Hz, −62.3±7.4 dB/Hz,
−28.3±5.24 dB/Hz, respectively. Furthermore, some
of these units have special acoustic signatures identi-
fiable by detecting a special acoustic event, e.g., the
pump in H2 occasionally makes a sound that excites
all frequencies.

The presence of voice is identifiable by observing the
change in human voice frequency range in the spectro-

grams. For example, the same fan in H3 and H4 show
slightly different spectral plots due to the presence of
voice. Therefore, by using spectral subtraction, voice
can be removed from the audio signals to preserve
privacy. However, since the AHU rooms are in gen-
eral not accessible to people other than the admins,
privacy is not a major concern in such places.
The location also has an effect on the acoustic char-
acteristics. For example, boilers in Phillips Center
(P1 and P2) are similar in spectral characteristics,
boilers in SW Rec Center (R1 and R2) are also simi-
lar to each other, but there is a significant difference
between boilers from these two places. Hence, by
modeling the spectral characteristics of each unit, it
is possible to identify the unit’s type and location,
remove background noise and, if necessary, human
speech, and detect expected/unexpected events.

Result 3 – HVAC Component Recognition

In this experiment, we evaluate the performance of
the proposed audio-based HVAC component recogni-
tion algorithm. We divide and categorize the data
set [8] into eight classes. The first column in Figure 7
shows the types of HVAC components which includes
two kinds of fans, two kinds of cooler components,
two exhausts, a pressure meter, and a ventilation mo-
tor. For each sound file, we take 25 ms of audio sam-
ples and extract MFCC audio features. We use a
support vector machine (SVM) classifier to classify
these frames. Figure 7 shows an 8 × 8 matrix where
each entry shows the accuracy of classifying one type
of sound in presence of another one. For example,
the first row shows that the proposed algorithm has
97% − 99.7% accuracy when it tries to recognize an
unstable fan in presence of a cooling fan, an exhaust
door, a pressure meter, or a ventilation motor. But
the accuracy drops to 92.7% − 93.1% when there is
a cooling cooling compressure or an industrial-grade
exhaust fan is present. The accuracy of the algo-
rithm can be further improved if we consider addi-
tional information such as the location of the com-
ponent and/or when we combine classification results
from multiple acoustic sensors.

Conclusion and Future Work
Through SASEM, we aim to develop and mature the
science of using acoustic signals for system assessment
prognosis of centralized HVAC systems. Our next
step is to build the energy-efficient low-cost sensing
platform comprising of a network of embedded de-
vices. Moreover, we will develop a decision support
system with an optimization model and a visualiza-
tion platform. The optimization model will help de-
cision makers choose the optimal timeframe for retir-
ing centralized HVAC systems with a short-term and
long-term decision horizon. The visualization plat-
form will allow acoustic-based system assessment and
prognosis through simulation and learning, and en-
able interactive user functionalities for data analysis



Figure 6: Spectrogram plots of different AHU units within the three buildings.

 F1 F2 C1 C2 E1 P1 E2 V1 

Fan 

Unstable 
F1 - 99.7 93.1 97.0 99.3 98.8 92.7 99.1 

Cooler 

Fan 
F2 99.7 - 93.9 97.5 99.0 97.6 96.4 99.1 

Cooling 

Compressor 
C1 93.1 93.9 - 94.0 91.2 93.6 93.4 92.7 

Cooling 

Unit 
C2 97.0 97.5 94.0 - 92.7 94.1 97.1 91.2 

Exhaust 

Outdoor 
E1 99.3 99.0 91.2 92.7 - 93.3 93.7 96.9 

Pressure 

Meter 
P1 98.8 97.6 93.6 94.1 93.3 - 92.9 96.5 

Exhaust 

Industrial 
E2 92.7 96.4 93.4 97.1 93.7 92.9 - 95.7 

Vent 

Motor 
V1 99.1 99.1 92.7 91.2 96.9 96.5 95.7 - 

 

Figure 7: Accuracy of HVAC component recognition
from audio signals.

and control.
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