
ImageBeacon: Broadcasting Color Images over
Connectionless Bluetooth LE Packets

Chong Shao
Department of Computer Science

Univerisity of North Carolina at Chapel Hill
Chapel Hill, NC 27599

Email: cshao@cs.unc.edu

Shahriar Nirjon
Department of Computer Science

Univerisity of North Carolina at Chapel Hill
Chapel Hill, NC 27599

Email: nirjon@cs.unc.edu

Abstract—This paper describes the first ‘image beacon’ sys-
tem that is capable of broadcasting color images over a very long
period (years, as opposed to days or weeks) using a set of cheap,
low-power, memory-constrained Bluetooth Low Energy (BLE)
beacon devices. We design an image processing pipeline that
takes into account the background and foreground information
of an image and then applies an adaptive encoding method which
priorities more important regions of an image during encoding,
in order to achieve the best quality image under a very strict size
limit. We test our system with different types of RGB images that
contain indoor and outdoor objects, buildings, and road signs. We
empirically determine the tradeoffs between the system lifetime
and the quality of broadcasted images, and determine an optimal
set of parameters for our system, under user-specified constraints
such as the number of available beacon devices, maximum
latency, and life expectancy. We develop a smartphone application
that takes an image and user-requirements as inputs, shows
previews of different quality output images, writes the encoded
image into a set of beacons, and reads the broadcasted image
back. Our evaluation shows that a set of 2–3 beacons is capable
of broadcasting high-quality images (70% structurally similar to
original images) for a year-long continuous broadcasting, and
both the lifetime and the image quality improve when more
beacons are used.

I. INTRODUCTION

In this modern age of the Internet of Things (IoT), it
is now possible to literally glue tiny computers to everyday
objects, so that they can sense, react, and tell their own stories.
The IoT community has embraced wireless standards such as
Bluetooth Low Energy (BLE) and developed programmable
‘beacon’ devices that periodically broadcast a small amount
of preloaded data, while lasting for multiple years on a coin-
cell battery. Broadcast messages from beacon devices typi-
cally contain information about an object, a location, a web-
resource, or just an arbitrary string. This connectionless mode
of BLE does not require a receiver to pair/bond or connect to
a sender, and hence, there is no overhead of connection setup
and no inconvenience of requiring a user to enter pins and
passwords. These broadcast messages are received by a BLE
capable mobile device to obtain relevant information just-in-
time and on-the-spot. Emerging applications of beacon devices
include advertising merchandise in retail stores, identifying
late passengers at the airports, authorizing people at the
hospitals, smarter signage, indoor navigation, and tracking

moving platforms like airline cargo containers, computers on
wheels, museum artworks, or even humans.

Image
Beacons

Snap
Process
Select

write

read

Object

snap

Fig. 1. An image beacon system.
The enabling technology behind these applications is the

ability of a beacon to simply broadcast a few bytes of data
(called UUID) as BLE 4.0 advertisement packets at a rate of
less than 16 bytes/sec. The bound in data rate comes from
the lifetime requirement of these devices. Such a tight budget
on payload size and the maximum data rate have limited a
beacon’s capability to only be able to broadcast an identifier
or a small amount of text (effectively ∼18 bytes). The next
generation BLE 5.0 beacon is expected to have an 8X increase
in broadcasting capacity (∼256 bytes). Such an increase opens
up the possibility to design beacons that can serve larger assets,
e.g., an image, carried by connectionless BLE advertisement
packets. However, even a simple 72×72 PNG image, such as
the Android launcher icon, has a size of over 3KB. To store
and broadcast this image, either we require to use a dozen of
BLE 5.0 beacons, or we will have to accept a very long image
transmission and loading time.

Image compression is a natural way to deal with this
problem. Existing image compression algorithms, however,
fail to achieve the desired compression ratio for an image
to be broadcasted over BLE. Hence, a fundamental challenge
toward realizing an image beacon is to devise an algorithm that
efficiently represents an image using as few bits as possible,
while taking into account the application-driven limits on the
number of usable beacons per image, broadcast message size,
data rate, latency, and lifetime. In an earlier work [14], we
devised an image beacon system that broadcasts binary images

of a few limited categories (e.g., handwritten characters) only.
This paper is a continuation to that line of work, but this time,
we have taken a harder challenge, i.e., to develop a beacon
system that works for color images, e.g., images taken with a
mobile phone.

Being able to broadcast images from beacons enables more
powerful and feature rich applications than the ones supported
by today’s beacons. We envision that like the web has evolved
from serving hypertexts to streaming multimedia contents, the
natural successor of today’s beacon devices would be the ones
that broadcast images. Applications of image beacons would
be in scenarios where there is no Internet connectivity but there
is a need for storing and broadcasting information that can be
best described by an image. For example, coordinating rescue
workers in disaster areas, creating a bread-crumb system
for adventurous hikers and mountaineers, remote surveillance
(when coupled with a camera), or even a simple system just
to let someone know that ‘We were here’. Recently, Google
started to experiment with an idea called ‘Fat Beacons’, where
they are looking into broadcasting html pages over BLE.
However, for lack of a suitable image compression technique,
the pages do not support images.

In this paper, we chase this seemingly impossible goal of
creating an image beacon system that efficiently broadcasts
color images, carried by BLE broadcast messages, over an
extended period of time. We propose a self-contained system
that stores and broadcasts actual image contents as opposed
to IDs, links, or URLs of an image. We assume availability of
no additional information on the broadcasted image from any
other sources – globally (on the web) or locally (on a user’s
smartphone that receives the broadcast).

The crux of the system is an algorithm that analyzes
an image to identify its ‘important’ semantic regions (as
defined by the user or the use case) and then encodes them
differently than the rest of the image to reduce the overall
image size. The image data are written to and read from the
image beacon system using a smartphone application, which
runs the proposed compression and rendering algorithms. We
use the term ‘beacon system’ instead of ‘a beacon’, since a
compressed image may still require more than one physical
beacons to ensure its acceptable quality. Allowing multiple
beacons per image makes the system flexible. It widens our
scope for optimizations and helps satisfy users who are willing
to dedicate more beacons for better results. Besides, until BLE
5.0 is available, we need to simulate its broadcast capacity with
multiple BLE 4.0 devices anyways.

We have developed a prototype of an image beacon system
using a set of commercially available Estimote beacons [2],
and developed an Android application that takes images of
an object of interest along with user-specified requirements
and constraints on broadcasting the image as inputs, generates
previews of the image to be written, writes the image represen-
tation into a set of beacons, and reads the broadcasted image
back. Figure 1 shows an example scenario where a user snaps
photos of a gnome statue which he is interested in broacasting.
The smartphone application performs image processing on the

phone to produce multiple versions of broadcast image. The
user selects one of these compressed images that satisfies his
requirements (e.g. available beacons, image quality, lifetime,
and image loading latency). The user is allowed to change his
requirements and the app immediately shows options for the
best possible compressed images under those constraints. The
application writes the image data into the beacon system and
the image is broadcasted by the beacons. A reader application
reads the broadcasted image and displays it on the phone.

We perform an in-depth evaluation of the beacon system.
We describe a set of results showing the tradeoffs between
system lifetime and image quality, when the image type
and the number of beacons are varied. We also deploy an
image beacon system indoors, and perform a user study in
a real-world scenario in order to have a subjective measure
of the quality of the received images, where a group of 20
participants are asked to identify objects from their beaconed
images of various resolutions, and locate it among a set of
similar looking objects in the real-world.

The main contributions of this paper are as follows:

• To the best of our knowledge, we are the first to propose
an image beacon system that uses multiple BLE beacons
to broadcast color images over the BLE advertisement
messages.

• We have devised an image approximation algorithm that is
tailored to the need of an image beacon system. We quantify
the tradeoffs between the image quality and the device
lifetime, and determine the best set of parameters, under the
user-specified constraints on the number of beacons, latency,
and expected system lifetime.

• We have developed and evaluated a prototype of an image
beacon system that broadcasts color images of various
types (e.g., near-distance indoor and outdoor objects, road
signs, and buildings). Our evaluation shows that one BLE
5.0 beacon would be capable of broadcasting good-quality
images (70% structurally similar to original images) for a
year-long continuous broadcasting, and both the lifetime and
the image quality improve when more beacons are used.

II. PROBLEM FORMULATION

A. Generic Problem Setting

The problem is formally stated as: given an image x (where
each pixel is represented by b bit) having the dimensions
of N×M, the number of available beacon devices K, the
payload size of each beacon packet C bytes, the maximum
allowable broadcast rate of R packets/sec, and the maximum
allowable latency for an image T, the objective is to find an
approximate representation of the image x̂ so that the lifetime
τ of the beacon system is maximized while the approximation
ratio λ(x, x̂) ∈ [0, 1] of the image is high (λ = 1 means no
distortion). Now, for a single beacon, the broadcast rate:

R =

(
bNM

8C

)
1

T
(1)

For K beacons, considering logK overhead bits for ad-
dressing the beacons, and K times more payload capacity:

R =

(
bNM+ logK

8CK

)
1

T
(2)

Both (1) and (2) are for undistorted images.
The lifetime τ of a BLE device depends on its inter packet

interval and in general, τ ∝ 1
R . Replacing R and incorporating

approximation ratio λ into (2):

1

τ
∝

(
λbNM+ logK

8CK

)
1

T
(3)

The above equation relates the lifetime of an image beacon
system and the approximation ratio of any image compression
algorithm. Ideally, we look for an image approximation algo-
rithm that achieves a sufficiently large λ for a reasonably high
lifetime of the system.

B. Broadcast Capacity of Bluetooth LE

According to the BLE 4.0 specification, the maximum
payload size C available in beacons is 18 bytes. However,
there are 33 reserved characters that cannot be read from the
beacon devices. So, practically the payload size is blog(256−
33)17c ≈ 132 bits ≈ 16 bytes.

The expected lifetime of BLE beacons depends on the
inter-packet interval [5]. For example, a BLE 4.0 beacon would
last up to 3.5 years, if a packet is sent at every second (i.e. R
= 1). Therefore, for a beacon system to last for 3.5 years, its
broadcast bandwidth cannot exceed 16 bytes/sec.

Recently, BLE 5.0 has been announced [1] to offer an
8X increase in broadcast capacity and a 2X increase in
transmission speed. It is scheduled to be released in early
2017. In coming days when BLE 5.0 capable devices will
be widespread, we expect to have a 128 byte sized payload
and about 256 bytes/sec broadcast bandwidth.

C. The Case for Loss-Less Image Broadcast

The size of a typical 72×72 PNG image can be anywhere
between 3 − 13 KB. Therefore, to transmit such an image, a
BLE 4.0 beacon would require 191 − 832 broadcast packets,
or alternatively, we would require up to K = 832 beacons
to simultaneously broadcast different slices of an image. The
latency of a complete image transmission cycle would be up
to T = 13.9 minutes for a single beacon, or 1 second for a
set of 832 beacons.

When BLE 5.0 beacons will replace 4.0, the transmission
latency will drop to 52 seconds for one beacon, or 1 second 52
of them. Therefore, without compressing the image content,
even the new BLE 5.0 beacons will not be able to support a
fast image beacon system with a reasonably small number of
beacons.

D. The Case for Compressed Image Broadcast

If standard image compression algorithms could generate
compressed images that meet the size and quality requirements
of an image beacon system, the problem would have been

already solved. But the fact is, even the best of existing image
compression methods, such as JPEG/JPEG2000 and PNG, are
not capable of optimizing for both quality and size at the
same time. Figure 2 illustrates that JPEG/JPEG2000 generates
extremely poor quality images given a size requirement of 300
bytes even for a very low-resolution (64 × 64 pixels) image.
On the other hand, to have a compressed image of acceptable
quality (having a minimal useful visual information to the
viewer), JPEG/JPEG2000 takes about 2K bytes.

(c)(a) (d)(b)

Fig. 2. A 64x64 resolution image compressed in high/low quality settings
using JPEG/JPEG2000: (a) JPEG high quality, 1963 bytes (b) JPEG2000 high
quality, 2026 bytes (c) JPEG lowest possible quality, 738 bytes (d) JPEG2000
lowest possible quality, 391 bytes.

(a) (b)

Fig. 3. Two types of 64x64 resolution image compressed in PNG (a) from
natural scene, 12112 bytes (b) JPEG2000 high quality, 1012 bytes. PNG is
good for handling images with large uniform color regions.

PNG and Vector Graphics image, on the other hand, have
the potential to generate a smaller compressed image that may
fit our constraints. However, these codecs generate smaller
images only if the input image is of a specific type – such
as an image containing a few regions of uniform colors like
a cartoon drawing, or when the shape is not complicated.
This is illustrated in Figure 3. In general, PNG and Vector
Graphics image encoding do not meet the requirements of an
image beacon system that broadcasts color images taken by a
smartphone user.

III. IMAGE BEACON SYSTEM OVERVIEW

In a typical usage scenario of the proposed image beacon
system, a user at first takes pictures of an object with his smart-
phone’s camera. A smartphone application analyzes the image
(which may contain objects, portraits, scenes, shapes, signs,
and/or text), identifies semantic regions on it, and processes
each region differently to produce a compressed version that
satisfies the beacon system’s requirements such as the number
of available beacon devices, maximum allowable loading time,
and lifetime. The user is also shown an interactive preview of
the image so that he can verify it, as well as relax/constrain
the system requirements. Finally, when he is satisfied with
the preview, the image is written into the image beacon
system. The beacon system would then broadcast the image
periodically over BLE, and any other smartphone user would

(a) Multiple View Capture (b) Depth Estimation (c) Depth-Refined Segmentation

Fig. 4. Multiple views of a scene are used to estimate the depth map. Combined with standard image segmentation, this can identify the pixels of an image
that may be of more interest than the rest, e.g. a foreground object.

be able to receive that broadcast and see the image on their
phones.

A. System Design Choices

The design choices we made in developing an image
processing algorithm for the proposed image beacon system
are as follows:

• First, our custom image compression technique is designed
to work for images taken with a smartphone. We assume that
the phone has an on-board IMU in it. The final compressed
image will be a color image with a lower resolution, such
as 64× 64 pixels.

• Second, we make a reasonable assumption that the image
to be compressed is linked to a real-word “thing” like a
near-distance object, a road sign, or a building – which has
one or more regions of interest that a person who took the
picture wants to preserve with a higher priority than the rest.
By exploiting this, we design an image encoding technique
that prioritizes foreground information preservation during
image compression, so that the most important information
in the image is delivered under a given size constraint.

• Third, under a very tight budget for the final image size,
any image compression algorithm would distort the orig-
inal image – which is reflected in different ways such as
lacking boundary details, increased noise, changed colors, or
removal of texture. We introduce the concept of adaptive en-
coding that applies different encodings to different regions
of an image based on the image content (e.g., a road sign vs.
a t-shirt), image regions (foreground vs. background), and
what a user would prefer to preserve (e.g., texture or true
color). The proposed compression algorithm should employ
an adaptive approach that applies the most suitable encoding
technique for different image types and region types, so that
an optimal compression strategy is chosen for a given image
based on its content.

• Fourth, since both capturing an image and writing the
compressed version into the beacon devices involve the
smartphone user in the loop, we provide an interactive user
interface in order to guide the user in taking pictures, and
to preview and select the desired image under a given set
of system constraints.

B. Image Processing Pipeline Overview
For a given set of user-defined beacon system require-

ments, the overall image processing and compression pipeline
(Figure 5) consists of four basic stages: multiple view cap-
ture, depth estimation, depth-refined segmentation, and image
compression. These steps are briefly described in this section,
and elaborated in detail in the subsequent sections.

Multi-View
Capture

Compression

Depth
Estimation

Depth-Refined
Segmentation

Image Pair

Disparity Map
Segmentation

Final Image

User wants to
capture the
road sign

}

Fig. 5. Image processing stages.

• Multiple View Capture: The proposed system requires a user
to capture two or more views of an object – which helps at
a later stage when the depth map is generated. Estimating
pixel depths using a pair of images takes about 2 seconds
on a mobile device. Because processing too many images
would be time consuming, a careful selection of views
(e.g. images having adequate overlaps) makes a difference.
Figure 4(a) shows two views of a mug that have enough
overlap to create a depth map. To guide the user and to select
the best pair of images for depth estimation, we leverage
IMUs of the smartphone. The algorithm is described in
Section IV.

• Depth Estimation: Depth of each pixel is estimated by
finding and matching corresponding ‘feature points’ (e.g.,
corners and edges) in two or more images. The matched
points are then used to generate the camera relative ge-
ometry, so that the depth of every pixel can be estimated.
Figure 4(b) shows two depth maps of the same image.
The left one is the computed depth map, and the right
one is thresholded to separate the background from the
foreground pixels. However, due lack of enough views, low
resolution, and inaccuracies in estimation, depth map alone

is not sufficient to segment semantic regions in an image.
Depth estimation from multiple views is discussed as part
of Section V-A

• Depth-Refined Segmentation: Like depth map, color/texture-
based image segmentation algorithms often fail to iden-
tify semantically different/similar regions in an image. For
example, the left image in Figure 4(c) is the result of
applying marker-controlled watershed segmentation [12] on
the original image. When we overlay this with the depth
map, we obtain a better segmentation, which performs a
much better job in isolating the mug from the rest. This
step is inspired by one of our earlier work [10] that used
RGB and depth images from Kinect sensors. In this work,
we use only images to estimate the depth (previous step)
and then apply this step to get the final segmentation. The
details of this step are in Section V-B.

• Image Compression: The image compression stage takes
both an image (for texture and content information) and
its segmentation map (for semantic region information),
and produces the best quality image under the user-specific
constraints of the beacon system. Until the resultant image
size does not satisfy the system requirements, the algorithm
gracefully degrades the quality of different semantic regions,
starting from the least important one (e.g., the background).
This step is described in detail in Section VI.

IV. MULTIPLE VIEW CAPTURE

A. Need for Multiple Views

The first step of our proposed image processing pipeline is
to guide the user in capturing two or more views of an object
of interest. Further down the pipeline, these images are used to
estimate the depth information of each pixel, so that an image
can be segmented into background and foreground regions,
prior to applying appropriate region-specific encodings.

An alternative to using multiple views is to apply standard
image segmentation algorithms [12], [11], [7], [19] on a single
image. These algorithms groups adjacent pixels of an image
based on information derived from pixel intensity in various
ways. However, in order to obtain a sufficiently accurate
segmentation for the proposed system, we require computa-
tionally expensive algorithms, such as convolutional/recurrent
neural networks [19], which are not suitable for running on
smartphones and does not produce results in real-time.

B. Challenges with Multiple Views

Even though smartphones cannot run state-of-art image
segmentation algorithms in real time, many other computer
vision techniques, including depth estimation from two views,
can be implemented on them. In order to get a sense of their
real-time performance, we used OpenCV library for Android
to compute the depth map for a pair of 400 × 400 pixel
images. It took about two seconds for the algorithm to finish
on a Nexus 5 phone. This gives us the lower limit for depth

map computation, which may only happen if the user is well-
trained and knowledgeable to know which views or camera
poses would produce the most effective depth map.

A good pair of images is critical in generating a good depth
map. However, the finding of a good pair of images depends
on many factors. The most important of which is a suitable
difference in view angles. It also depends on the distance
between the object/scene and the smartphone. Furthermore,
there are other factors such as lighting, texture and shapes of
the image.

If a real-time depth estimation system could display the
current depth map as the user takes images, it would be easier
for him to generate a good pair of image for depth estimation.
However, depth estimation does not run in true real-time on
most smartphones. In absence of a real-time feedback, a user
has to take the trial-and-error approach, i.e., he has to take two
images, look at the result after two seconds, and then repeat
the entire process until the result looks good. This may lead
to a very long time in just taking the right photos, and result
in a non-smooth user experience.

C. IMU Assisted View Capture
To address this problem, we designed a method to make

use of the inertial measurement unit (IMU) of the phone
to shorten the image capture time and to improve the user
experience. We adopt a machine-learning based approach.

In the offline training phase, we use a smartphone to
capture video/image of multiple indoor and outdoor objects.
We also keep record of the IMU values for each captured
image. The IMU data consists of δxr, δyr and δzr, which
represent the components of the difference vector between the
rotation vectors between a pair of images. The IMU data also
contains xa, ya and za components of acceleration when taking
an image. After this, we run depth estimation for all pairs
of images and estimate its accuracy by comparing the result
against a manually generated ground-truth segmentation.

The segmentation accuracy is measured in terms of in-
tersection over union (IoU), where intersection is defined as
the area of intersections between foreground regions of two
segmentations, and union is defined as the set of pixels either
marked as foreground in the testing segmentation or in the
ground truth segmentation. For a segmentation that is identical
to the ground truth, IoU equals to 1.

Using IoU values as the variable Y, and the IMU data
for the corresponding pair of images as the variable X, where
X = [δxr, δyr, δzr, xa, ya, za], we create a data set for many
pairs of images, and then train a regression tree model to learn
the relationship between the change in IMU values between a
pair of images and an expected quality of depth segmentation.

During the online phase, when the user is taking images
for depth estimation, the trained regression tree model keeps
track of current IMU readings and gives hints about if current
view is a good choice, given the already taken photo(s).

V. DEPTH ESTIMATION AND SEGMENTATION

The second and third stages of the proposed image pro-
cessing pipeline are described together in this section.

A. Depth Estimation

In this step, the depth of each pixel is estimated from
a pair of images. We use a standard algorithm [6] that at
first estimates the ‘disparity’ between the corresponding points
on two images, and then estimated depth from disparity. For
example, if a point P1 on the first image and a point P2

on the second image correspond to the same point P on
the actual physical world object, then (P1 − P2) is called
the disparity between them. Depth of a pixel is, in general,
inversely proportional to its disparity. This is based on the
principle that points in the scene that are closer to the camera
will have larger disparity, and points that are very far away
will be effectively at the same or very close location on both
images. Hence, finding the depth maps is essentially equivalent
to finding the disparity map.

The disparity map is generated by the stereo matching
algorithm described in [6]. The goal of the algorithm is to
find matching pixel blocks in a pair of images. This is also
called the correspondence problem as the it looks for the pixel
coordinates on the image pair that correspond to the same
world point. The disparity map is computed based on the
matching result. The disparity map is a gray-scale map, where
the intensity directly corresponds to depth.

B. Depth-Refined Segmentation

The depth estimation algorithm groups pixels purely based
on depth. It may not group pixel regions even if the regions
share a common appearance pattern. As a result, even an
accurate depth map tends to contain holes in foreground
regions and isolated, incorrectly marked, small, bright regions
in the background. Therefore, it is necessary to introduce other
types of information derived from the image to obtain a cleaner
and better segmentation. The refinement process is described
as follows:

• Thresholding: At first, a binary segmentation of the depth
map is obtained by applying a threshold on depth values.

• Combining with Watershed Segmentation: We combine the
depth-based segmentation map with another image segmen-
tation method which groups pixels into several connected
large regions and is computationally inexpensive to run on a
mobile device. Watershed segmentation algorithm fits these
requirements. However, the traditional watershed segmenta-
tion tends to generate an over-segmented result. Hence, we
adopt the marker-controlled watershed segmentation, which
uses mathematical morphology operations to pre-process an
input image to avoid over-segmentation [6].
At first, the input image is converted into grayscale. Then
we run the marker-controlled watershed segmentation on
the grayscale image. A successful segmentation contains
more than one segmented regions to separate foreground
from background in the image. To determine which region
belongs to the foreground, we apply a voting approach: the
region that includes the highest number of common pixels
with the foreground region in the depth-based segmentation

map is labeled as foreground. Here we denote the number
of common pixels as N , where N is defined as:

N = max
i

C(Wi,D) (4)

Here, i is the index of a region, and Wi is the corresponding
region. D represents the foreground region in the depth-
based segmentation. C(,) computes the number of common
pixels between two regions. If there is another region Wj

for which, C(Wj,D) ≥ 0.8×N , then it is also considered
as foreground. This procedure iterates until no more regions
can be added to the foreground. Having two result segmen-
tation maps, we produce a final map by labeling pixels that
are considered foreground in both maps as foreground.

• Final Refinement: Finally, we perform a pixel-level refine-
ment process. We remove all connected foreground pixel
regions with size less than 1000 pixels because regions
of this size tend to be a background region. Then we
apply two common mathematical morphology operations
erosion and dilation, to clean out any remaining bright pixel
islands in the background and to expand the foreground
regions, respectively. Lastly, we enforce the accuracy of the
segmentation boundary by combining the result with the
labeled watershed foreground region.

VI. IMAGE COMPRESSION

The last stage of the proposed image processing pipeline
is the image compression step. Using the segmentation in-
formation from the previous stage, this step encodes different
segments of an image using different encoding techniques. The
overall goal is to make sure that the resultant image fits the
storage requirement of a beacon system, while making sure
that the foreground regions are the least affected by during
the compression process.

We propose three encoding options for image compression
– discrete cosine transform (DCT) and coefficient reduction,
wavelet transform with coefficient reduction, and foreground
texture triangularization. All three are applied on the input
image and finally the one that produces the best quality image
is chosen as the output. The effect of applying different
encodings is illustrated in Figure 7.

A. Discrete Cosine Transform Encoding

Discrete Cosine Transform (DCT) is a widely adopted
image encoding technique. We integrate DCT encoding into
our compression system as a baseline encoding option. The
benefit of using DCT is that – by reducing low frequency
coefficients of an image (in the DCT transformed space), the
resultant compressed image’s appearance details is removed
first, while it global shape is preserved. This is useful in usage
scenarios when a user wants to preserve the shape of an object
in the image more than its detailed appearance.

At the beginning of encoding, we generate a foreground
image by using the segmentation map to set the background
pixels’ intensity of the input image to zero. The image is then
down sampled to 64×64 pixels. To further reduce the size, we

Selection

Generate
blurred

background

Wavelet
encoding

Generate
Foreground-
Only Image

Images
Segmentation

Triangularization

DCT
encoding

Background

Image Size
Constraint,

and
 User

Preference

Final Image

Best possible
approximation

Best possible
approximationBest possible

approximation

Foreground

Fig. 6. Image compression details.

(b) (c) (d) (e) (f)(a)

Fig. 7. 64x64 resolution building image compressed in high/low quality
settings using our customized DCT/Wavelet/Triangle encoding: (a) Original
image, (b) DCT 342 bytes, (c) Wavelet high 360 bytes, (d) DCT 1114 bytes,
(e) Wavelet 1098 bytes, and (f) triangularization 366 bytes. For a similar
compressed image size, DCT preserves less details than Wavelet method.
But for low quality settings (about 350 bytes), Wavelet-encoded images
have strange color block defects. Triangularization failed to preserves the
information in the original image.

make use of the fact that the quality of an image depends more
on its brightness information than its color information. During
the encoding, at first, an image is transformed into the YUV
space, where Y represents the brightness information and
U/V represents the image color information. We further down
sample U and V channels into 32× 32 pixels, while keeping
the resolution of Y channel intact. Then DCT is applied on all
three channels, followed by a data-reduction step that sets high
frequency components to zero. Finally, the resultant frequency
coefficients are compressed using gzip. The data is sent to the
beacon along with the blurred background image, which is also
encoded using DCT. The size of a DCT compressed image,
SDCT can be expressed as:

SDCT = B(g(d)) + B(g(b)) (5)

Where, B() denotes the bit length, g() denotes the gzip

encoded data size, d is the DCT transformed (reduced coeffi-
cient version) foreground information, and b is the coefficient
of the DCT transformed (blurry) background image data.

At the receiving end, a broadcast image is recovered
by superimposing the foreground image and the background
image. Note that, the background image needs to have the
foreground pixel intensities set to zero, before it is down
sampled. This is done to make sure that the foreground pixel
intensities are not added up twice.

A limitation of this above approach is that, for an image
with a uniform dark background and a foreground having more
details, DCT may yield a ringing artifact close to the sharp
edges, especially in a low quality setting. This problem can
be addressed by switching to using wavelet.

B. Wavelet Encoding

Wavelet is the second image encoding method that we
integrate in the adaptive image encoding process. When com-
pared to DCT, wavelet tends to better handle images whose
backgrounds have an uniform intensity. Similar to DCT, the
best information reduction parameters are sent to the wavelet
encoding module in order to generate the highest quality image
under a given storage limit. We adopt global thresholding of
the wavelet coefficients and Huffman encoding, based on the
method described in [13].

Similar to DCT, prior to encoding the foreground image,
its background pixel intensities are set to zero to obtain the
wavelet data. The down sampled background image (with
zero intensity foreground) is also sent along with the wavelet
data. At the receiving end, wavelet coefficients are inverse-
transformed to generate the foreground image and then super-
imposed on the background image to render the final image.

The size of a wavelet compressed image SW is as follows:

SW = B(H(w)) + B(g(b)) (6)

where, H() denotes the Huffman encoded data, and w
denotes the reduced wavelet coefficients on the wavelet trans-
formed foreground image. All other symbols carry the same
meaning as discussed in the previous section.

The weakness of wavelet encoding is that, for limited
storage requirements (< 500 bytes), an wavelet encoded image
may have unrealistic texture patches after decoding.

C. Triangularization-Based encoding

Both DCT and wavelet encodings blend the geometric
information and texture information of the foreground image.
However, for some cases, an accurate texture information and
a fine-grained boundary representation are not necessary. For
example, a “football” image’s foreground texture and shape
could be decoupled. For a viewer to understand that the
image is about a “football”, a repeated patch of a football’s
surface texture along with an approximate “football” shape
information would suffice. Both DCT and wavelet would
encode too much redundant information for such an image.
To address this, we designed a triangularization-based image

encoding method, which consists of three stages: triangular-
ization, triangle reduction, and color/texture filling. These are
illustrated in Figure 8, and are described as follows:

Filling

Delaunay
Triangularization

Triangle
Reduction

Original Image

Binary
Segmentation

Approximated
Image

Reduced
Mesh

Mesh

Fig. 8. The process of Triangularization-based encoding.

• Triangularization: Given an input image with the fore-
ground/background segmentation, the first step is to gen-
erate a binary boundary map from the segmentation map,
in which, only the pixels on the segmentation boundary
have an intensity of 1. A Delaunay triangularization [4]
is performed on the boundary map. The parameters of are
chosen to produce a high number of triangles to capture
boundary details.

• Triangle Reduction: Having a set of triangles, the next step
is to reduce the number of vertices, iteratively, one vertex
at a time. For this, we compute the sum of distances for
every vertex from its nearest 3 neighbors, and then remove
the one with the minimum sum of distances. The intuition
behind this process is that – a region of vertices group
together densely because of the non-smooth boundary in
the boundary image. Since the goal of removing vertices
is to reduce the details and preserve the general shape
information, we should pick a vertex from dense regions.

• Color/Texture Filling: We provide two options for filling a
triangle – with texture or with a single color. For texture,
we choose to fill all triangles with a limited set of textures
which are derived from regions surrounded by each triangle.
To reduce the number of textures, we take an average of
textures from different triangles. Fig. 9 shows the process.
For each triangle, we transform it to a fixed-size triangle by
an affine transform, and then compute one or two average
textures for all triangles. For the case of two textures, we
apply k-means algorithm.
The size of the compressed image using triangularization

encoding with color filling STc, and with texture filling STt

are as follows:

STc = B(g([v, c, f]) + B(g(b)) (7)

STt = B(g([v, c, i]) + B(g(t)) + B(g(b)) (8)

Here, v denotes the location of the vertices, c denotes the
connectivity list, f denotes RGB color values, i denotes the

texture index, and t denotes the reduced DCT coefficients on
the texture patch transformed using DCT. All other symbols
carry the same definition as in previous sections.

Compute
Average

Reorder
and
DCT

Texture Data

}Affine
Transform

Affine
Transform

...

Triangles with Texture Transformed Texture

Averaged Texture

...

Fig. 9. Triangle texture averaging process.

VII. EMPIRICAL EVALUATION

In this section, we describe a series of empirical eval-
uations. First, we evaluate the performance of IMU-guided
multiple view capture and depth-refine segmentation. Then
our image compression approach is compared with JPEG
encoding. After that, we describe a set of results that quantifies
the trade offs between the beacon system lifetime and image
quality, when the image type and number of beacons are
varied. We also perform a full system evaluation involving
real users, which is described in Section VIII.

A. Experimental Setup

In all of our experiments, we have used Estimote model
REV.F2.3 Radio Beacon [2] having a 32-bit ARM Cortex
M0 CPU, 256 KB flash memory, 4 dBm output power, 40
channels (3 for advertising), and 2.4-2.4835 GHz operating
frequency. We vary the BLE broadcast interval for a beacon
between 100 ms to 2,000 ms. However, an encoded image
(broadcasted from multiple beacons) reaches a user’s device
in less than 1 second. The transmission power is set to -12
dBm, which limits the range of each beacon to about 30
meters. The image writing and reading application runs in
a Nexus 5 smartphone having a 2.26GHz quad-core Qual-
comm Snapdragon 800 processor, 2 GB RAM, BLE v4, and
runs Andriod 6. We mimic BLE 5.0 broadcast packets by
a set of rolling BLE 4.0 packets. The rolling mechanism is
implemented by configuring the Estimote Location beacons
to broadcast customized advertising packets. The customized
data is received from an Android compatible LightBlue Bean
device [3] via the beacon’s GPIO, configured as an UART
interface.

We use four types of images in our experiments: images
containing road signs, common indoor and outdoor objects,
and buildings. Examples of these images are shown in Fig-
ure 10. Indoor object images are taken from a 50cm - 150cm

distance. Outdoor objects and signs are taken from 2m to 5m
distance. Building images are taken from far. All images are
cropped into square shaped images, and are down-sampled
to 288 × 288 pixels prior to compression for a fast disparity
map and watershed result computation. Each image is down
sampled to 64 × 64 pixels before writing into the beacon
system.

Fig. 10. Test images used in the empirical evaluation.

The two main metrics that are used in the experiments
are structural similarity (SSIM) scores, and device lifetime
in months. We measure these two under different conditions
and show their tradeoffs. The structural similarity scores are
used to measure the quality of the produced images when
compared to the original ones. The device lifetime is estimated
from its relation to a beacon’s transmission frequency. Before
each experiment, we program the beacons to set a transmission
frequency and use the corresponding estimated device lifetime
(as reported by the Estimote beacon API) in our experiments.

B. Performance of IMU-Guided Multiple View Capture

We evaluate the accuracy and time to capture multiple
views with and without the guidance of IMU. Recall that,
the regression tree model takes IMU data and predicts if
the current smartphone positioning is good for taking an
image for depth estimation, given an already taken image.
In the evaluation, for each test, a set of images and their
corresponding IMU readings are recorded. If the predicted
image produces the best segmentation result when compared
to other images in the set, we record this test result as
a ‘hit’, otherwise, a ‘miss’. The accuracy of prediction is
determined by the ratio of ‘hits’ to total tests. A total of
four tests are performed separately for indoor and outdoor
objects. For indoors, there is 1 miss over 4 tests, whereas for
outdoors, the model correctly identifies the best image pair for
all tests. The model for outdoor objects is more robust since

the smartphone’s rotation angle shows smaller variations and
usually the phone is held vertical. Indoors, users often take
pictures of an object from its above, from its below, or from
the same hight, which results in a large variation in angles.

Figure 11 shows the expected time for finding a good pair
of images with and without the assistance IMU. We observe
that the average time to obtain the depth map from a pair
of images takes about 2 seconds, which includes the time to
focus, raw image processing, and disparity map computation.
Since the IMU-guided system predicts a good pair in real time,
it significantly decreases the time from 8 seconds to 2-2.5
seconds.

w/o IMU with IMU
0

5

10

T
im

e
(s

)

Indoor
Outdoor

Fig. 11. Performance of IMU-guided view capture.

C. Performance of Depth-Refined Segmentation

We compare our depth-refined segmentation method
against a segmentation approach that is purely based on the
depth map. We use intersection over union (IoU) as the
evaluation metric. We tested our segmentation method on 20
images of four types: road signs, buildings, indoor and ourdoor
objects. For each set, we manually generate the ground truth
segmentation. Figure 12 shows the result. We observe that our
segmentation technique, which combines depth information
and watershed segmentation information, outperforms depth-
only approach by up to 26%. Our method performs better in
cases where the object and the background has larger different
in depths, e.g., signs and indoor objects.

Sign Building Indoor Outdoor
0

0.5

1

Io
U

Depth-Refined Depth-Only

Fig. 12. Performance of depth-refined segmentation.

D. Comparison with JPEG

In this experiment, we compare our proposed image encod-
ing method with JPEG. For an in-depth illustration, we use the

picture of an apple as our test image. We compare four dif-
ferent options of our adaptive image encoding methods in the
comparison, i.e. DCT-based, wavelet-based, triangularization
with color filling, and texture filling. We measure the quality of
a compressed image using Structure Similarity (SSIM) [16]. A
SSIM score ranges from 0 to 1, and two identical images have
the best SSIM score of 1. We compute the SSIM value between
every compressed image and the original image. We plot the
SSIM versus compressed image size in bytes in Figure 13.

0 500 1000 1500 2000

Size (bytes)

0

0.5

1

Q
ua

lit
y

(S
S

IM
)

DCT
Wavelet
Color Triangle
Texture Triangle
JPEG

Fig. 13. Image quality versus image size for different encoding methods.

The result suggests that JPEG is able to generate a com-
pressed image with a higher quality (SSIM close to 1). How-
ever, such a high quality image has the size larger than 2 KB.
When JPEG is set to compress an image into lower than 1KB,
the image quality drops sharply. On the other hand, our im-
age compression method is based on foreground/background
separation. The background in a compressed image is always
blurred. This makes our method impossible to get a high SSIM
score larger than 0.8. But our method is able to allocate bits
more efficiently under a tight space constraint. This makes
our method (when using wavelet/DCT encoding) outperform
JPEG when the compressed image size is about 800 bytes. The
plot also shows that our method can compress an image into
as low as 240 bytes (left most point on the wavelet method
curve), which is impossible with JPEG, even in its lowest
quality setting.

Triangularization with color filling option performs the best
for this test case, and the compressed image size stays less than
500 bytes, while triangularization with texture filling encoding
fails to generate a good compressed image.

Besides JPEG, we also studied several other image com-
pression techniques [9][17][18]. But none of these yield suit-
ably small sized images.

E. Effect of Image Type

In this experiment, we test how our image encoding
method’s performance changes as we vary the type of input
images. We consider four categories of images, i.e., road
signs, buildings, indoor objects, and outdoor objects. For each
image, our algorithm selects the best compressed image from
different versions of the adaptive encoded images based on
SSIM score. Then we compute the average image quality for
a given lifetime for each category of images. We simulate
a BLE 5.0 beacon in this experiment to store and read the

images. We limit our system to deliver the image data within
0.5 second from one beacon.

The result shown in 14 suggests that, on average, indoor
object images achieves the best quality over all types. The
building images are best approximated if the beacon system
broadcasts packets at a higher frequency, sacrificing the system
life time. The road sign images have relatively lower quality
that other images, but they tend to last for up to 28 months
on a single battery.

5 10 15 20 25

Battery Life (months)

0.2

0.4

0.6

0.8

Q
ua

lit
y

(S
S

IM
)

Sign
Building
Indoor
Outdoor

Fig. 14. Image quality versus beacon battery life for different image types.

F. Effect of Number of Beacon Devices

We explore the impact of the number of beacons on image
quality. Since each beacon in a system of beacons can be set
to broadcast different parts of an image, the more beacons we
have, the better quality images we can generate by utilizing
the additional space. This is based on the assumption that the
image loading time and the device lifetime requirements are
fixed.

In this experiment, we vary the number of beacons, and
record the SSIM of the best quality compressed image gen-
erated by our system. The best image is chosen from the
adaptive-encoding results with the highest SSIM score.

We plot the SSIM scores for various expected system
lifetime in Figure 15. The experiment results suggest that as
the number of beacons is increased from 1 to 3, for the beacon
system to have an expected lifetime of e.g., 32 months, the
quality of produced images also increases from 0.45 to 0.69.

0 20 40 60

Battery Life (months)

0.2

0.4

0.6

0.8

Q
ua

lit
y

(S
S

IM
)

1 beacon
2 beacons
3 beacons

Fig. 15. Image quality versus device lifetime for various number of beacons.

VIII. REAL DEPLOYMENT

We deploy an image beacon system in an indoor envi-
ronment to evaluate the ability of image beacons in deliv-
ering visual information of various real-world objects. An

approximated image stored in the beacon system contains an
object’s shape as well as its texture information. The goal of
this deployment experiment was to understand how an image
beacon system delivers these two kinds of information of an
image.

To have a subjective measure of the performance of an
image beacon system, we conduct a user study involving
20 participants. Each participant is given a smartphone that
receives image broadcasts from four different beacons placed
inside a room. The goal of the user is to identify the objects
in all four images, and then locate them in the room.

The four broadcasted images are of an apple, a chair, a text
book and a computer mouse. For each image, we compress
it under three size constraints: 256 bytes, 512 bytes, and
768 bytes, and obtain the best quality image produced by
our compression algorithm under the constraint. The images
compressed in three levels along with the original image are
shown in Figure 16. We choose these sizes to mimic 1, 2, and 3
BLE 5.0 beacons, respectively; but our actual implementation
used a rolling mechanism with BLE 4.0 (connected with
an Arduino), as described earlier. Each user is progressively
shown a better quality image until he is able to identify the
object in the room.

We make sure that there are at least 3 objects in the room
that are similar to the one that the user is looking at on his
phone. To test if an object’s texture details are preserved, for
the apple test case, we put another apple having a green/red
mixed color and an orange next to it. For the book test case, we
put two other similar sized books next to it that have different
covers. To test if an object’s shape details are preserved, for
the chair test case, we add another two chairs of the same
color. For the mouse test case, we add an iPhone and a mac
mouse. Figure 17 shows photos of the objects along with the
objects that we added to introduce confusions.

The experiment results are shown in Figure 18. For each
size limit, we plot the number of correct guesses by our
participants for various categories of images. We observe that,
as expected, when the image size limit is larger, participants
tend to perform better. Even with the lowest size, at about
50% images were always guessed correctly by the participants.
Therefore, with 3 or more beacons, the image quality of our
system is high enough to let people distinguish very similar
objects.

IX. DISCUSSION

Our proposed image beacon system only considers sta-
tionary objects. This is an inherent problem of any depth
estimation technique. In such case, we have to resort to texture
or color based segmentation.

Our IMU-based prediction algorithm uses a regression tree
model. Its prediction accuracy is lower indoors than outdoors.
A robust model, may train a separate regression tree for
different cases, such as one model for taking images on objects
below the phone, one model for objects on the same height to
the phone.

Fig. 16. Test images compressed in three quality levels.

Fig. 17. Photos of the object used in the experiment.

256 Bytes 512 Bytes 768 Bytes
0

10

20

C

or
re

ct
 G

ue
ss

es

(m
ax

. 2
0)

Book
Mouse
Chair
Apple

Fig. 18. Responses from user study.

A property of marker-controlled watershed segmentation
algorithms is that they always generate a clean segmentation
result. Our combined segmentation method does not fully
exploit this feature. We could further enhance the power of
combining depth estimation and watershed results by deploy-
ing a smarter foreground region growing method.

Animated images (e.g., GIFs) are not supported by the sys-
tem. However, with additional optimization for time-domain
redundancy, we believe it is possible to develop image beacons
that supports animation.

X. RELATED WORK

Previously, a binary images beacon system citeshaoyears
was developed to enable BLE beacons to store and broadcast
binary images. The limitation of the system is that it only

supports a limited category of binary images such as hand-
written characters, shapes, and symbols.

A rich set of image segmentation methods exists in the
literature. In the past decade, more modern techniques involv-
ing machine learning has been invented. State of art neural-
network based method [19] can achieve a very accurate result
(highest score 90.4 on IoU evaluation on airplane type testing
data). The method is based on neural-network and conditional
random field. However, this method is computationally ex-
pensive to run on a cellphone. Otsu’s method [11] is based
on finding a separation on image pixel intensity histograms,
which does not take care of local image structure. Gabor filter
segmentation is based on finding edges in an image using
Gabor filtering. Marker-controlled watershed methods [12] use
mathematical morphology to pre-process the data, followed
by a watershed segmentation. This avoids over segmentation,
which is a weakness of traditional watershed method.

The notion of foreground / background information can be
obtained by disparity estimation with semi-global matching[6].
The method enforces smoothness in the neighbor matching
process to reduce matching errors.

Shapiro [15] developed an image encoding technique
named embedded zerotree wavelet (EZW) encoding, which is
computationally expensive and slow. Said and Pearlman [13]
developed a better wavelet-based image encoding method
based on set partitioning in hierarchical trees. This method
gives similar image compression performance in terms of
quality and size, and the same time it achieves a faster
computation time. We have used this method in our system.

Lu et al. [8] introduced a piece-wise linear image encoding
method using surface triangularization. Their triangularization
algorithm fits the image surface in a top-down manner. The
idea is to apply a constrained resource planning to allocate
the least amount of triangles while achieve a small image
approximation error. Their experiment results shows that the
triangularization method compresses images with a compact
code length with a guaranteed error bound. But their method is
limited to approximating gray-scale images and theit target is
to achieve near lossless compression, while our ImageBeacon
system’s triangularization method supports color images, and
is a lossy compression method in general.

XI. CONCLUSION

In this paper, we described a system involving beacon
devices and smartphones with BLE receiving functionality.
Our system allows a user to generate an approximation of
an input color image, write the approximated image into the
very limited beacon device storage, and receive compressed
images from beacon devices’ broadcast packets. The main
contribution of this work is the overall system construction, the
adaptive encoding image compression method, the evaluation
of various parameters of the system, and quantifying the trade-
off between image quality and beacon battery lifetime for our
image compression method. Our work widens the usage of the
energy efficient, long-lasting beacon devices by allowing easy

storage and access of custom image data in scenarios where
there is no Internet connection.

Out system will perform at its best with the beacons that
adopts the upcoming Bluetooth 5.0 standard. A future work
is to evaluate the different aspects of the system performance
as the Bluetooth 5.0 is released and gets popular. Moreover,
a ‘fat-beacon’ standard is under development at Google, that
allows an even higher broadcast transmission capacity for BLE
beacons. The goal of that standard is to equip beacon devices
with the ability to broadcast basic web contents to smartphones
in absence of the Internet connectivity. It will be meaningful
to study the application of our image beacon system combined
with a fat beacon.

REFERENCES

[1] Bluetooth 5.0 Press Release. http://tinyurl.com/hvrosf5.
[2] Estimote Beacons. https://estimote.com/.
[3] Lightblue bean. punchthrough.com/bean.
[4] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf.

Computational geometry. In Computational geometry, pages 1–17.
Springer, 2000.

[5] A. Dementyev, S. Hodges, S. Taylor, and J. Smith. Power consumption
analysis of bluetooth low energy, zigbee and ant sensor nodes in a cyclic
sleep scenario. In Wireless Symposium (IWS), 2013 IEEE International,
pages 1–4. IEEE, 2013.

[6] H. Hirschmuller. Accurate and efficient stereo processing by semi-global
matching and mutual information. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05),
volume 2, pages 807–814. IEEE, 2005.

[7] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[8] T. Lu, Z. Le, and D. Yun. Piecewise linear image coding using
surface triangulation and geometric compression. In Data Compression
Conference, 2000. Proceedings. DCC 2000, pages 410–419. IEEE, 2000.

[9] S. A. Mohamed and M. M. Fahmy. Binary image compression using
efficient partitioning into rectangular regions. Communications, IEEE
Transactions on, 43(5):1888–1893, 1995.

[10] S. Nirjon and J. A. Stankovic. Kinsight: Localizing and tracking
household objects using depth-camera sensors. In 2012 IEEE 8th
International Conference on Distributed Computing in Sensor Systems,
pages 67–74. IEEE, 2012.

[11] N. Otsu. A threshold selection method from gray-level histograms.
Automatica, 11(285-296):23–27, 1975.

[12] K. Parvati, P. Rao, and M. Mariya Das. Image segmentation using
gray-scale morphology and marker-controlled watershed transformation.
Discrete Dynamics in Nature and Society, 2008, 2009.

[13] A. Said and W. A. Pearlman. A new, fast, and efficient image codec
based on set partitioning in hierarchical trees. IEEE Transactions on
circuits and systems for video technology, 6(3):243–250, 1996.

[14] C. Shao, S. Nirjon, and J.-M. Frahm. Years-long binary image broadcast
using bluetooth low energy beacons. In Proceedings of the International
Conference on Distributed Computing in Sensor Systems (DCOSS 2016),
2016.

[15] J. M. Shapiro. Embedded image coding using zerotrees of wavelet
coefficients. IEEE Transactions on signal processing, 41(12):3445–
3462, 1993.

[16] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. Image
Processing, IEEE Transactions on, 13(4):600–612, 2004.

[17] S. Zahir, K. Dhou, and B. Prince George. A new chain coding based
method for binary image compression and reconstruction. PCS, Lisbon,
Portugal, pages 1321–1324, 2007.

[18] S. Zahir and M. Naqvi. A new rectangular partitioning based lossless
binary image compression scheme. In Electrical and Computer Engi-
neering, 2005. Canadian Conference on, pages 281–285. IEEE, 2005.

[19] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. Torr. Conditional random fields as recurrent neural
networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1529–1537, 2015.

