
Kinsight: Localizing and Tracking Household
Objects using Depth-Camera Sensors

Shahriar Nirjon
Department of Computer Science

University of Virginia
smn8z@virginia.edu

John A. Stankovic
Department of Computer Science

University of Virginia
stankovic@virginia.edu

Abstract—We solve the problem of localizing and tracking
household objects using a depth-camera sensor network. We
design and implement Kinsight that tracks household objects
indirectly – by tracking human figures, and detecting and rec-
ognizing objects from human-object interactions. We devise two
novel algorithms: (1) Depth Sweep – that uses depth information
to efficiently extract objects from an image, and (2) Context
Oriented Object Recognition – that uses location history and
activity context along with an RGB image to recognize objects
at home. We thoroughly evaluate Kinsight’s performance with
a rich set of controlled experiments. We also deploy Kinsight
in real-world scenarios and show that it achieves an average
localization error of about 13 cm.

I. INTRODUCTION

We interact with varieties of objects at home everyday. We
grab objects, interact with them, and place them somewhere
once we are done with them. Imagine the possibilities that
open if we had a system that could keep account of all the
objects that we interact with in our daily lives. By knowing
what objects one is dealing with, we could infer what activity
that person is doing [13]. By keeping track of the locations of
the objects, we could build a smart search engine for our home
that could answers queries like – where are my eye glasses,
or my tv-remote controller, or my wallet? To materialize such
possibilities, as a first step, we build Kinsight, which detects
human-object interactions, recognizes objects, and keeps track
of the locations of the objects – using its keen sight.

Tracking systems – be it for household objects, or cars and
pedestrians on the road, or the zebras in the wilderness –
can be divided into two broad categories: intrusive and non-
intrusive systems. Intrusive systems [10, 11, 17, 20] attach
small sensors or tags to the object and monitor the tags
remotely. Typically, these are proximity sensing systems. The
downside of using such a system for household object tracking,
e.g., RFID based localization systems [28], is that – first, we
need to attach tags to every object we wish to monitor which is
a burden, and second, to localize the objects, we require a large
number of readers, each costing around $500 − $2, 000 [3].
Non-intrusive systems [8, 24, 33], on the other hand, are
primarily computer vision based. These systems use cameras
and apply high-end image processing algorithms to detect and
track objects in the scene.

Kinsight falls into the category of non-intrusive, vision
based object localization system. It uses a network of Kinects1

to track the human figures in 3D. It detects human-object
1A depth-camera sensor based natural user interface developed at Microsoft.

interactions, samples images of objects in real-time, and
applies image processing and machine learning algorithms to
recognize and localize objects.

Kinsight is designed and optimized for households – con-
sidering various unique features of household objects and
the environment. The task distribution within a Kinsight
node is designed to handle the dynamics of the household
environment at different levels – allowing us to inter-mingle
online and offline algorithms to solve the problem. Unlike
most vision based algorithms that depend solely on images,
Kinsight applies unsupervised learning algorithms to learn the
appearance, likelihood locations, and the activity context of
individual object instances to improve its performance over
time. Installation of Kinsight is easy as the hardware is an
off-the-shelf, commercially available, USB connectible device,
and the software runs as an application. Kinsight offers a cost
effective solution – costing about $120 per sensor which is
4−16 times cheaper than RFID based systems [3] to monitor
the same sized area.

The design of Kinsight is based on a set of assumptions
that we believe reasonable for most multi-person households.
Violation of any of these assumptions may result in a sub-
optimal performance, but the system won’t fail catastrophi-
cally. We throughly evaluate the performance of Kinsight with
a rich set of controlled experiments to analyze its sensitivity to
distance of objects, human motion, sampling rate, colors and
sizes of objects, occlusion and multiple views. To demonstrate
the practicality of Kinsight, we also deploy the system in two
multi-person households and discuss the findings.

The contributions of this paper are the following:
• We design and implement an inexpensive, easy to deploy,

highly accurate, and novel depth-camera sensor system
which is optimized to detect and track household objects’
locations.

• We describe two novel algorithms: (1) Depth Sweep - that
exploits human-object interaction and depth information
to efficiently extract objects from images, and (2) Context
Oriented Object Recognition - that uses location history
and activity context along with RGB images to recognize
objects.

• We evaluate the system under different conditions to
quantify its sensitivity to a wide variety of parameters. We
deploy Kinsight in real-world scenarios and demonstrate
that its average localization error in practical situations is
about 13 cm.

0 250 500 750 1000
0

10

20

30

Time Window (sec)

O
bj

ec
ts

 (
co

un
t)

Cooking

Serving

Eating

Cleaning

(a) Number of objects used within a time window.

46%
17%4%

2%

31%

1
2
3
4
> 4

(b) Modalities of objects’ locations.

CookingServing Eating Cleaning
0

50

100

150

In
te

rv
al

 (
se

c)

Mean Busy Time

Mean Idle Time

(c) Length of idle and busy times.

Fig. 1. Study results from two households of four daily activities that use varieties of objects.

II. HOUSEHOLD OBJECT LOCALIZATION

Localization of household objects by tracking is a special
case of the tracking problem, in which, the objective is to find
a mapping between a set of objects and their corresponding
locations. It involves discovery of objects, obtaining their
3D locations, and updating their locations whenever they
are changed. Several distinguishing characteristics make this
problem different than the general tracking problem. These
observations give us the opportunity to apply various optimiza-
tion techniques to design and implement an efficient household
object tracking system. In this section, we describe these
observations, which form the basis of the system assumptions
in Kinsight. While most of these assumptions are readily
understandable from our everyday experiences, in an attempt
to quantify these, we conduct some experiments in two multi-
person households using video cameras and RFID tags. We
use these data in our discussion whenever they are relevant.

A. Human-object interaction is the prime cause of location
changes of household objects.

Tracking algorithms are computation intensive. As the num-
ber of targets grow, running time of these algorithms become
comparable to the frame rate and thus makes it infeasible to
track all of them an once. However, for household objects, we
make a simplified assumption that, objects change locations
due to human interactions only. In our study, we observe this
assumption to be always true. This gives us the opportunity
to design a novel object tracking system, in which, instead of
tracking the objects, we track the human figures in a scene
and keep looking for location changes of nearby objects due
to human-object interactions.

B. The number of objects a person interacts with during an
activity is limited within a limited time window.

A person may interact with many objects during an activity,
but if we count the number of objects that one deals with
within a fixed length time window, the number cannot be
unbounded. The limit comes from the physical limitation in
human movements and working styles. To have an idea about
the relationship between the time window and the number of
objects, we deploy video cameras in the living room, dining
room, and the kitchen of two households. We analyze the
recorded video frames and identify the objects that are used at
any instant during 4 different activities: cooking, serving food,
eating and cleaning – which are typical daily activities that
use varieties of objects. In Figure 1(a), we plot the average

number of different objects that are used in each of these
activities within varying sizes of the time-window. This curve
gives us an important insight i.e. how much a system can
delay the image processing task, given the capability of an
object recognizer. For example, if we plan to accumulate video
frames for 500 seconds before starting to process them, we
need a classifier that may have to deal with 20 different classes
of objects on an average.

C. Objects are mostly stationary and their location-likelihood
function is multi modal.

An object can be at different locations during its lifetime.
But, if we analyze the locations of a specific object over a
period, we see that it tends to stay at some limited number
of specific areas. For example, a coffee mug is most likely
to be at the study desk, or may be in the kitchen table, or in
the kitchen sink. Knowing the likelihood location of an object
adds value to the object recognition task. In our study, we
divide each of the rooms in two households into a number of
approximately 2 square meters zones and use RFID readers to
monitor each zone separately. We record any location changes
of a total of 60 objects for 3 days in these places. We compute
the total time an object stays in each of these zones and analyze
the modality of the distributions. Figure 1(b) shows the pie
chart of the modalities. We see that more than 90% of the
objects have modality of at most 3. This means that, when in
doubt, an object recognition algorithm can use this knowledge
to identify an object by analyzing the likelihood of its being
at some location, or looking for the candidate objects in their
other possible locations.

D. Idle time creates an opportunity for offline processing and
learning.

There are many tasks involved in a system like Kinsight.
Some of these tasks must be performed in real-time e.g.,
tracking human figures, detecting human-object interactions,
and sampling. On the other hand, there are some tasks which
are better done offline. These are mainly the image processing,
classification and data mining tasks that operate on the data
that are collected in real-time and require more computational
time and resources. In Kinsight, we perform the real-time
operations when the system is busy, and the offline analysis is
done when the system is idle. We call a time interval ‘busy’
only if there is a change of location of any object during that
interval. Figure 1(c) shows the average length of a busy time
and idle time intervals for the same activities in Figure 1(a).
We see that, for activities such eating, the average busy time is

as high as 80 seconds, and for activities such as cleaning, the
average idle time is as small as 5 seconds. For a sampling rate
of 200 samples per minute (enough for human activities), in
this example, we have to process about 54 images per second,
which is quite easily achievable with a modern processor.

E. Using only an RGB camera is not sufficient to detect house-
hold objects. Depth information improves detection accuracy.

Most image processing algorithms detect objects by sliding
a window over the image to identify the regions that have
interesting points, corners, edges, or changes in colors within
it. These algorithms are sensitive to the image resolution,
background, and clutter as they depend on the difference of
intensities around each pixel. Having the depth information
for each pixel greatly simplifies and improves these algo-
rithms [14]. By looking at the depth values, it is easier to
determine which pixel belongs to the object, which pixel is
possibly occluding part of the object, and which pixel is part
of the background. In Kinsight, we design and implement
a novel image segmentation algorithm that uses the depth
information to extract objects from an image. Figure 2(a)
shows a simplified example where 2 objects are placed on
a table at different depths. Figure 2(b) shows the distribution
of the number of pixels at different depths. We see 4 different
peaks within the plot corresponding to the edge of the table,
2 objects and the wall at the back, respectively. We identify
these peaks and run image segmentation2 algorithm on the
pixels corresponding to each peak separately to extract one or
more objects at the same depth.

(a) Original image

60 70 80 90 100
0

0.2

0.4

Depth

P
ix

el
 D

en
si

ty

(b) Pixel density

Fig. 2. Pixel density at different depths of (a) is shown in (b). The four
peaks correspond to the table edge, cup, ketchup and the wall, respectively.

F. Context plays a vital role in detecting and recognizing
household objects.

Context plays a vital role in recognizing household objects.
This is specially true when the quality of an image is poor
and the color values do not contain enough information to
distinguish it from others. Although this assumption is true
in general for many vision based systems [21, 23, 29], for
household objects, this is more applicable due to the richness
of available contexts. Sources of context that are used in
Kinsight are: the time of day and light intensity for different
appearances of the same object, depth information for deter-
mining the size and aspect ratio of an object, location history
for determining the probability of an object being at a certain
location, and the correlation among objects for determining
the probability of their being used in the same activity.

2Partitioning a digital image into multiple segments based on pixel disparity.

Object

Loader

Motion

Analyzer

Location

Checker

Sensor

DB

Motion Event

Handler

Filtering

Sampling

Storage

Real-Time

Processing

Object
Recognition

Object

Detection

Location

Update

Post

Processing

Fig. 3. Task distribution within a Kinsight node.

III. SYSTEM DESIGN

Kinsight consists of a network of depth-camera sensors.
Each node within the network has its own sensor, processing
unit and a local database. We assume that all nodes are
stationary. A master node acts as the coordinator, which
manages the central database and communicates to zero or
more slave nodes. Figure 3 shows the task architecture within
a node. Tasks performed at each node are divided into four
operational stages: sensing, motion event handing, real-time
processing and post processing. This section describes these
stages in brief.

A. Sensing

Kinsight uses image, depth, and light intensity sensors. The
image and depth data are obtained using Kinect [30]. The
range limit of a Kinect sensor is approximately 11 feet. This
range can be increased or decreased using special lenses such
as [5]. Kinect connects to a PC via USB and multiple Kinects
are connected to a single PC. The image and depth data
are read as two separate streams. The image stream has a
resolution of 640 × 480 and provides 32-bit colored images
at 30 fps. The depth stream has a resolution of 320 × 240
and provides 16-bit depth value for each pixel. Kinect also
annotates the pixels that are part of a human body and tracks
up to 20 body-joints. The light intensity sensor on a MICA2
sensor board (MTS310) gives us the light intensity.

B. Motion Event Handling

The Motion Analyzer detects the presence and movement
of any human figure within the camera’s view using Kinect’s
skeleton tracking engine. It creates a new session for each
detected skeleton and tracks the 3D coordinates of the body-
joints in real-time until the end of the session. Based on the
relative positions of the joints, it determines the 3D volume
of human-object interaction. The Object Loader loads all the
objects within this volume into the memory from the local
database. These are the objects that might change locations
during this session along with other objects that are not yet
discovered. As the human figure moves, new objects are
loaded into the memory. The Location Checker keeps checking
for any location changes of these in-memory objects in a
round-robin fashion and updates the timestamps of the in-place
objects. If an object is not present at its last recorded location,
or it detects that the human subject is interacting with an object
at this moment, the current session goes into the real-time
processing stage. Otherwise, the session is terminated.

C. Real-Time Processing

When the current session is in real-time processing mode,
it periodically samples the objects that the person interacts
with and stores them in a list as a time series. Each sample
is comprised of the timestamp, color and depth information,
light intensity, and the 3D coordinate of the body joint of
human subject. The color and depth information is taken from
a rectangular window within the current image frame. This
window (we call it- the sampling window) is identified based
on the relative positions of the joints of the human skeleton.
Consecutive windows are compared to filter out images that
are too similar to the previous ones or the quality of the image
is very poor. The filtered samples are then added to a list for
analyzing during the post processing stage. A transition to
the post processing stage happens when the motion analyzer
detects a long absence of motion within the view (e.g. the
human subject moved out of the scene).

D. Post Processing

The post processing stage performs offline analysis to
detect, classify and localize objects. At first, it extracts the
objects from the samples by removing the pixels that are not
part of an object (e.g. the pixels from the background, or any
part of the human body). This is done using the Depth Sweep
algorithm (Section IV-B). It then applies k-means clustering
algorithm to cluster the samples. Ideally, k should be equal
to the number of objects that changed locations during the
session. But since we do not know this ahead of time, we set
k to a larger value, determined by the sequence of presences
and absences of objects within the time series.

After the clustering, we get a fair amount of samples in
each cluster. The samples within each cluster are then matched
against the existing objects in the database. A context oriented
object recognition algorithm (Section IV-C) is used to find a
match. For each cluster, if a match is found, the new samples
are added to the existing object; otherwise, a new entry is
created in the database and the samples are added to it. The
location of an object is computed from the relative position
of the object within the sampling window, depth values of the
object, and the 3D coordinates of the body-joint (stored during
sampling) of the interacting person.

The post processing stage also adds activity context to each
object. An activity context is a list of < object, score > pairs,
where the score corresponds to the portion of time an object
is in use during a session. The score is computed from the
number of objects that are in each cluster. For example, if
the human subject interacts with his coffee mug, milk jar, and
sugar bottle during the session, and we have 600, 300, and 100
samples of these 3 objects respectively, we define the context
as: c = {< mug, 0.6 >,< milk, 0.3 >,< sugar, 0.1 >}.
We look up the context definition library, and either we find a
similar context that has the same set of objects with very close
scores, or we add this new context definition to the library. The
context is then associated to the newly added objects into the
database for later use.

IV. ALGORITHMS

A. Sampling Window Estimation

The most common technique for detecting objects within
an image is to slide one or more windows of different sizes
and scales, and to determine which of these windows contain
an object [32, 34]. This method is not suitable in a real-time
setup due to its computational cost and latency. Instead, we
use a trained linear regression learner to determine the size
and position of the sampling window y in O(1), in real-time.
We use the 3D coordinates of the spine, hip, shoulders, knees,
hands and wrists, and the sizes and depths of the in-memory
objects to compute a 32× 1 sized feature vector x. Assuming
y a 4×1 vector, where the 4 elements correspond to the width,
height, and the left-top coordinates of the sampling window,
we estimate y by ŷ(θ) = θ × x. Here, θ is a 4 × 32 matrix,
which we learn using linear regression with a least-squared-
error cost function.

B. Depth Sweep and Object Extraction

The Depth sweep algorithm takes image and depth data as
inputs and performs image segmentation to identify possible
objects within a scene. This algorithm is applied during the
object detection and extraction in the time series analysis.
Unlike most segmentation algorithms [9, 16] where the entire
image is treated as a whole, we use depth information to
process a subset of the pixels. Often the reduction in the
number of candidate pixels is 50− 100 times (e.g. 640× 480
vs. 64× 64), which substantially reduces the running time of
the segmentation algorithm and improves efficiency.

The steps of the algorithm are the following:
Step 1: Compute a B-bin histogram of the number of pixels

for the entire depth range, and normalize it to obtain the pixel
distribution h(di).

Step 2: Apply EM algorithm [26] to fit h(di) to a mixture
of Gaussian distributions.

Step 3: For each Gaussian (µi, σi), take the set of N
pixels within the depth range [µi ± 1.96 σi/

√
N], to perform

image segmentation using [9]. Note that, multiple objects are
extracted from the same depth range in this step.

In our implementation, we use B = 100, and set the
parameter of EM algorithm to 10. An optimization in applied
in Step 3 when extracting a single object from a sampled image
during the time series analysis. Since we know the depth of the
interaction point (e.g. depth of wrist), we pick the Gaussian
whose mean is the closest to the depth of the interaction point,
and apply image segmentation only once to extract the object.

C. Context Oriented Object Recognition

The object recognition algorithm takes an image sample s,
represented by the RGB pixel values p, current 3D location l
and activity context c as inputs, and matches the sample with
the objects {vj} in the database V . It determines the most
likely class vNB of s using a Naive Bayes classifier using the

following equation:

vNB = argmax
vj∈V

P (vj |p, l, c)

= argmax
vj∈V

P (p|vj)P (l|vj)P (c|vj)P (vj) (1)

Here, we assume all objects vj ∈ V are equally probable
and the pixel values, location, and activity context are indepen-
dent. This might not be always true, e.g., some activities are
done at a particular location in some households. But having
those independent makes the system more flexible.

We obtain P (p|vj) by computing the similarity of the
feature vectors of the two images using Bhattacharyya Co-
efficient [6]. The 1 × 40 feature vector contains three 8 bin
color histograms corresponding to 3 color channels, and one
16 bin histogram corresponding to key-points generated using
the technique in [22]. We use the depth and light intensity
values to select the appropriate object from the database.

To compute P (l|vj), we divide the view volume of the
camera into unit sized equiprobable cubes {lk} and determine
which cube l falls into. From the location history of each object
vj ∈ V , we compute P (l = lk|vj) by counting the number of
occurrences vj ever visited location lk.

We compute p(c|vj) by taking the normalized contextual
score associated with c for vj in the activity context definition
library C. But finding c in the first place is a bit tricky since
according to the definition of activity context (Section III-D),
we require to know the classes of all the clusters in order to
compute the context. Hence we follow the following steps to
compute c:

Step 1: For all samples si, we perform an initial class
assignment using P (c|vj) = 1 in Eq. (1) and store the
probability P (vj |p, l, c) along with the class labels.

Step 2: Using the class labels found in Step 1, we compute
a new activity context c′. Let, cm ∈ C be the context that
minimizes ||cm − c′||.

Step 3: For each sample, we again compute its class
using context cm in Eq. (1), and compute the degradation of
probability obtained in Step 1.

Step 4: If the mean degradation over all samples is less
than a threshold α, we choose cm as the context; otherwise
we insert c′ in C as a new context and use c′.

The idea here is to find an initial context c′ using only
the location and pixel values, and use it to find the closest
context cm. Note that, cm will always be a looser fit than c′

since p(cm|vj) ≤ 1. The value of α controls how much we
would rely on an existing context, as compared to having a new
context. We pick an α of 0.1, a small value, so that Kinsight
is not confused by two similar contexts that are actually from
different activities.

D. Occlusion and Multiple Views

A single depth-camera provides only one view which
may not be enough to continuously track the objects due
to occlusions. More than one sensor provides more views,
more samples and more accuracy in object recognition and

localization. In Kinsight, each node independently detects,
recognizes and localizes the objects within its view. Once the
session is over, the master node queries other nodes to send
their local database information. This includes the updated
locations, samples and contexts of all the objects that are
stored in the local database. Objects from the slave nodes
are combined with the master’s by matching the location
and timestamps of each object. The locations obtained in a
slave node’s coordinate system is converted to the master
node’s coordinate system using an affine transformation. The
transformation matrix is automatically computed by Kinsight
during the first few seconds of the very first session when the
system starts. Both the Kinects during this period record the
3D coordinates of a body joint (e.g. head) and the recorded
coordinates are then collected at the master node to compute
the transformation matrix.

E. Objects with Multiple Copies

Multiple copies of the same object are treated different by
Kinsight. This is inherently handled by design, as to Kinsight,
an object’s identity includes its current location along with
its image and contextual information. Despite this, a possible
way to trick Kinsight is to mask its view and then swap the
locations of two copies of the same object. To handle such a
situation, when an in-memory object, loaded into the memory
by the object loader, is out of sight of the location checker, it
is removed from the database prior to entering into the real-
time stage. Later at some point, when the user again interacts
with the object, it is added to the database as a new object.

V. EXPERIMENTS

We conduct a number of experiments to evaluate the
performance of Kinsight. These experiments are performed
using Kinect sensors connected to a laptop having a 2.3
GHz Intel Core i5 processor and 4 GB RAM. We label 48
household objects and 80 locations with numeric tags, and ask
the human subjects to move objects according to randomly
generated scripts. The list of items includes personal items
(e.g., phone, wallet, keys), stationary (e.g., pen, boxes, stapler),
utensils (e.g., cups, bottles, pots), toys (e.g., dolls, cars), and
entertainment (e.g. xbox, remote controller). A subset of these
items are shown in Figure 4. Location contexts of these items
are generated following the distribution as in Figure 1(b), and
activity contexts are generated by restricting the number of
objects for each session. This is done to control the variations
of different variables to see how they influence the system.
For each movement of an object, Kinsight classifies the object
and stores its identity and the location. Localization error is
measured by taking the Euclidean distance between the actual
location of an object and the location where Kinsight thinks
the object currently is. Localization error is thus generated
from two sources: (1) measurement error (when the object
is classified correctly), and (2) recognition error (when the
localization error is due to misclassification).

Fig. 4. A subset of the objects that are used in the experiments are shown.

A. Distance

The farther an object is from the sensor, the less number of
pixels we get from it. This affects the quality of the sampled
image and produces localization error due to poor recognition
in absence of contextual information. This is evident from
Figure 5(a) where we see that, the localization error increases
with distance, but the increase is due to recognition error.
Figure 5(b) shows that, when we apply context, the recog-
nition error becomes 8 − 10 times smaller, the measurement
error becomes mostly constant with distance, and overall we
have an average localization error of 12.54 cm. Note that,
context has an indirect effect on the measurement error. For
example, at 3.0 m distance, we see about 65% reduction in
misclassification in 5(b) than in 5(a). This results in more data
points for the measurement error case in 5(b) than in 5(a) and
hence we observe a different and more confident mean for the
measurement error in 5(b).

1.2 1.8 2.4 3.0
0

20

40

60

Distance (m)

E
rr

or
 (

cm
)

Measurement

Recognition

(a) Without Context

1.2 1.8 2.4 3.0
0

20

40

60

Distance (m)

E
rr

or
 (

cm
)

Measurement

Recognition

(b) With Context (Kinsight)

Fig. 5. Effect of distance from camera.

B. Speed

The speed of limb movement has adverse effect on the
accuracy of human figure tracking. Kinsight alleviates this
problem to some extent by tuning the smoothness parameters
of Kinect’s skeleton tracking engine[4]. But, for a given sam-
pling rate, we get a lower number of samples with increasing
speed. This affects the image recognition task as we have
a smaller number of samples for each object. Figure 6(a)
quantifies this error by plotting the localization error at various
speeds when we do not use context. We see that, as the speed
grows beyond 50 cm/sec, Kinsight makes more classification
errors, which results in higher localization error. Figure 6(b)
shows that the recognition errors are 5 − 11 times reduced
when we use context.

C. Sampling Rate

Kinect provides skeleton data at 15 frames/sec which is the
maximum sampling rate Kinsight can achieve. This gives us
enough data to reduce localization error due to misclassifi-
cation. But with this highest rate, we accumulate on average

25 50 75
0

20

40

60

Speed (cm/sec)

E
rr

or
 (

cm
)

Measurement

Recognition

(a) Without Context

25 50 75
0

20

40

60

Speed (cm/sec)

E
rr

or
 (

cm
)

 Measurement

Recognition

(b) With Context (Kinsight)

Fig. 6. Effect of speed of movement.

120 MB of data per second during the real-time sampling
stage, which may take several seconds to process afterwords.
We therefore analyze the trade off between the sampling
rate and localization error. We control the sampling rate by
dropping frames. Figure 7(a) shows that both portions of the
localization error are reduced when the sampling rate is as
high as 10 samples/sec. But the same error margin is achieved
in Figure 7(b) at a lower frequency of 4 samples/sec when we
use context.

4 6 8 10
0

20

40

Samples / sec

E
rr

or
 (

cm
)

Measurement

Recognition

(a) Without Context

4 6 8 10
0

20

40

Samples / sec

E
rr

or
 (

cm
)

Measurement

Recognition

(b) With Context (Kinsight)

Fig. 7. Effect of sampling rate.

D. Appearance

To see the effect of color and size variations, we test
Kinsight with multiple sets of objects, each having a different
degree of color and size variation. In Figure 8, we take 3
sets of objects: (1) regular – household objects except for
the duplicates, non-rigid, and transparent ones, (2) copy –
objects that have multiple copies, and (3) transparent – objects
that are transparent or non-rigid. In absence of contextual
information, (2) and (3) makes classification error of 28% and
60%, respectively. By using contexts, we are able to eliminate
16% errors from (2), and 30% from (3). The remaining errors
in (2) are due to the fact that some of the copies were too close
(within 13 cm) to each other to be distinguishable by Kinsight.
And in (3), the remaining errors are caused by the transparent
objects that were not properly visible by the camera.

In Figure 9, we take 4 sets of objects: large, medium, small,
and tiny, having average dimensions of 30×24×19, 21×12×7,
11× 9× 8, and 8× 4× 3 cm3, respectively. For the first two

Regular Copy Transparent
0

20

40

60

E
rr

or
 (

cm
)

 Measurement

Recognition

(a) Without Context

Regular Copy Transparent
0

20

40

60

E
rr

or
 (

cm
)

 Measurement

Recognition

(b) With Context (Kinsight)

Fig. 8. Effect of color variation.

sets, the mean localization error of Kinsight is 8.84 cm. For
small objects, Kinsight reduces the misclassification from 47%
to 13%, and keeps the localization error within 16 cm. But
for tiny objects, although the misclassification is reduced from
74% to 46% when we use context, the remaining errors are
still significant. These errors are caused by those tiny objects
that were more than 2.5 m away from the sensor, and therefore,
we do not get enough pixel information from them.

Large Medium Small Tiny
0

20

40

60

E
rr

or
 (

cm
)

Measurement

Recognition

(a) Without Context

Large Medium Small Tiny
0

20

40

60

E
rr

or
 (

cm
)

Measurement

Recognition

(b) With Context (Kinsight)

Fig. 9. Effect of size variation.

E. Multiple Views

So far in the experiments, we have used only one Kinect
sensor. But multiple Kinects might be beneficial in some
environments where there are high chances of occlusions.
For example, to monitor an L-shaped region, we place two
Kinsight nodes (a master and a slave) at the two ends of the
region. The master node has a greater view area, and the slave
node helps the master to monitor the portion that is occluded
to the master. Figure 10(a) shows the localization error by only
the master only, only the slave, and the combined system. We
see that the combined network has a very high accuracy in
localizing the objects. The reason is explained by Figure 10(b).
The master alone sees and correctly classifies 46% of all the
objects, 22% are seen and correctly classified by the slave,
30% are correctly classified by both, and only 2% are missed
by both. Using this two node system, 98% of the objects are
correctly recognized – yielding to a localization error of 11.7
cm.

Master Slave Combined
0

20

40

60

E
rr

or
 (

cm
)

Measurement

Recognition

Only Only

(a) Localization Error

Master Slave Both None Combined
0

25

50

75

100

S
ee

n
an

d
C

or
re

ct
ly

R
ec

og
ni

ze
d

(%
)

Only Only

(b) Coverage

Fig. 10. Using multiple views.

VI. REAL DEPLOYMENT

We deploy Kinsight in two multi-person households to
evaluate its performance in real-world setups. We conduct

experiments in the living room, study room, and the kitchen
of the households. The largest room has the dimension of
11 × 10 square feet. We attach about 70 paper tags on the
surfaces that may hold an object (e.g. tables, sofas, floor,
walls), measure and note the coordinates of the tags, and
video-tape the daily activities of the human subjects to obtain
the ground truth. The activities are – (1) cleaning, (2) coffee
making, (3) cooking, (4) eating, (5) entertainment (watching
tv, playing indoor games, talking on phone), (6) studying and
working on computers. These activities are chosen since they
are very common in every household, and such activities are
often studied for various reasons e.g. activity recognition [13]
and wellness [36]. The duration of these activities are about
5−20 minutes. Each activity is performed at least twice. Later,
we analyze the video-tapes manually to note the objects and
their locations (the location of the nearest tag) every 5 seconds.
We use one Kinect per room, and program Kinsight to log the
objects (a sample image per object) and their locations every
5 seconds.

1 2 3 4 5 6
0

20

40

E
rr

or
 (

cm
)

Measurement

Recognition

(a) Household 1

1 2 3 4 5 6
0

20

40

E
rr

or
 (

cm
)

Measurement

Recognition

(b) Household 2

Fig. 11. Localization errors for six activities: (1) cleaning, (2) coffee making,
(3) cooking, (4) eating, (5) entertainment, and (6) study.

Figure 11(a) and Figure 11(b) show both sources of the
localization errors for the six daily activities in the two
households, respectively. In household 1, the best results are
obtained during entertainment, cleaning, and coffee making
activities. These activities in this household use a small num-
ber of (3− 5) easy to distinguish items, e.g., game controller,
Rubic’s cube, coffee cups and maker, dish wand, plates, etc.
Larger errors are observed in cooking, eating and studying,
as these activities involve a large number of small items,
such as, pens, sharpener, spoons, forks, spice bottles, etc.
In household 2, we see similar trends as in household 1
for coffee making, entertainment, and cooking. But the other
activities e.g. cleaning and study show different trends. The
differences occur as inhabitants in household 2 use different
types of objects such as transparent bottles (washing liquid) for
cleaning, books and laptop for studying, and have a different
way of handling objects. Overall, the average localization
errors in these two households are 12.13 cm and 13.55 cm,
respectively.

VII. DISCUSSION

Kinsight achieves its best performance when it has a good
view of the object. We observe a performance degradation
when the objects are either transparent or very small and far.
This is a common limitation for any vision based system; Yet,
Kinsight is useful in a household setup where a vast majority
of the objects are not from any of these categories. Losing
track of the objects due to occlusion or hiding might happen

if the camera position is odd. Suitable placement of the camera
or adding more sensors alleviates the situation, but may not
solve the problem completely. However, even in those cases,
Kinsight is able to tell where the object was last seen, which
we think is also valuable. Although Kinsight is built on Kinect
sensors, the design and principles of Kinsight are applicable
to any depth-camera sensor system. The present Kinect sensor
has a range limit of 11 feet. But the amount of attention
it has received from the research community, we believe, it
will encourage several manufacturers to build more powerful
hardwares in coming days, and more and more systems like
Kinsight will appear.

VIII. RELATED WORKS

There are numerous works in computer vision research
pertaining to object detection, recognition and tracking. We
mention a few that are recent, and refer readers to [37] for
a survey. [12, 15, 16] detect objects by performing image
segmentation and contour detection. These are detectors for
general objects and do not use any contextual information. [21,
23] use contexts to improve object recognition accuracy, but it
is either supplied during training or extracted from the image
itself. [24, 33] are model based approaches for tracking single
objects in real-time; [8] tracks multiple objects simultaneously,
but is not real-time. The differences between these works and
ours are that, ours is a more specialized system dealing with
only household objects, we learn object instances (not class),
and we go beyond images to use location and activity contexts.

Some recent works use depth data along with RGB image
for human pose estimation [30], illumination invariant track-
ing [27], 3D mapping for mobile robots [18], and human
activity detection [31]. [19] describes a template matching
algorithm that uses depth to detect objects in images. But they
require to search the whole image for a match, while Kinsight
selects only a subset of pixels that are close to the depth
of human-object interaction point. [7] uses depth to enhance
object tracking. But unlike Kinsight, they track each object
separately.

Localization with RFID [20, 25, 28, 35] and WSN [10, 11,
17] technologies have been studied by many. There are also
a number of commercial products that uses RFID or similar
technologies [1, 2]. But these systems are intrusive, i.e., require
us to attaching tags to every object we want to keep track of,
and the readers are expensive.

IX. CONCLUSION

In this paper, we describe Kinsight which uses a depth-
camera sensor network to detect and track household objects’
locations. Kinsight discovers objects from human-object in-
teractions, uses unsupervised learning techniques to recognize
objects from their appearance, location history and activity
contexts, and updates the locations of the objects. We evaluate
Kinsight in both controlled and uncontrolled environments to
quantify its sensitivity to a wide range of parameters and to
demonstrate its practicality. In real-world scenarios, Kinsight’s
average localization error is about 13 cm.

REFERENCES
[1] Finder. yankodesign.com/2011/11/03/keycontrol/.
[2] KeyRinger. keyringer.com.
[3] RFID FAQ. rfidjournal.com/faq/20/86.
[4] Skeletal Tracking Fundamentals. channel9.msdn.com/Series.
[5] Nyko zoom lets you play kinect in a closet. PCWorld, Sept. 2011.
[6] Aherne, F. et al. The Bhattacharyya metric as an absolute similarity

measure for frequency coded data. Kybernetika, 1997.
[7] C. Bibby and I. Reid. Real-time tracking of multiple occluding objects

using level sets. In CVPR, June 2010.
[8] W. Brendel, M. Amer, and S. Todorovic. Multiobject tracking as

maximum weight independent set. In CVPR, June 2011.
[9] T. Chan and L. Vese. Active contours without edges. Image Processing,

IEEE Transactions on, Feb 2001.
[10] H. Chenji and R. Stoleru. Mobile sensor network localization in harsh

environments. In DCOSS, June 2010.
[11] J. Eckert, R. German, and F. Dressler. Alf: An autonomous localization

framework for self-localization in indoor environments. In DCOSS, June
2011.

[12] I. Endres and D. Hoiem. Category independent object proposals. In
ECCV, 2010.

[13] J. W. et al. A scalable approach to activity recognition based on object
use. In ICCV, Oct. 2007.

[14] Q. W. et al. Reduced-complexity search for video coding geometry
partitions using texture and depth data. In VCIP, Nov. 2011.

[15] S. Gould, T. Gao, and D. Koller. Region-based segmentation and object
detection. In NIPS, 2009.

[16] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik. Semantic
contours from inverse detectors. In Proc. of ICCV, 2011.

[17] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher.
Range-free localization schemes for large scale sensor networks. In
Proc. of MobiCom, 2003.

[18] E. Herbst, P. Henry, X. Ren, and D. Fox. Toward object discovery and
modeling via 3-d scene comparison. In ICRA, may 2011.

[19] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab,
and V. Lepetit. Multimodal templates for real-time detection of texture-
less objects in heavily cluttered scenes. In ICCV, Nov. 2011.

[20] L. Ni and D. Zhang and M. Souryal. RFID-based localization and
tracking technologies. Wireless Communications, IEEE, April 2011.

[21] Y. J. Lee and K. Grauman. Object-graphs for context-aware category
discovery. In In Proc. of CVPR, June 2010.

[22] V. Lepetit and P. Fua. Towards recognizing feature points using
classification trees. Technical report, 2004.

[23] C. Li, D. Parikh, and T. Chen. Extracting adaptive contextual cues from
unlabeled regions. In Proc. of ICCV, 2011.

[24] B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust tracking using
local sparse appearance model and k-selection. In CVPR, June 2011.

[25] X. Liu, M. D. Corner, and P. Shenoy. Ferret: Rfid localization for
pervasive multimedia. In Ubicomp, 2006.

[26] G. McLachlan and T. Krishnan. The EM algorithm and extensions,
volume 382. John Wiley and Sons, 2008.

[27] H. Nanda and K. Fujimura. Visual tracking using depth data. In CVPRW,
june 2004.

[28] B. Nemmaluri, M. Corner, and P. Shenoy. Sherlock: automatically
locating objects for humans. In Proc. of MobiSys, New York, NY, 2008.

[29] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Be-
longie. Objects in context. In ICCV, oct. 2007.

[30] J. Shotton, A. FItzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake. Real-time human pose recognition in parts
from single depth images. In proc. of CVPR, June 2011.

[31] J. Sung, C. Ponce, B. Selman, and A. Saxena. Human activity detection
from rgbd images. CoRR, 2011.

[32] A. Torralba, K. Murphy, and W. Freeman. Sharing visual features for
multiclass and multiview object detection. PAMI, may 2007.

[33] L. Vacchetti, V. Lepetit, and P. Fua. Stable real-time 3d tracking using
online and offline information. PAMI, Oct. 2004.

[34] P. Viola and M. Jones. Robust real-time object detection. In IJCV, 2001.
[35] C. Wang, H. Wu, and N.-F. Tzeng. Rfid-based 3-d positioning schemes.

In INFOCOM, May 2007.
[36] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan,

Y. Wu, L. Fang, and R. Stoleru. Context-aware wsn for assisted-living
and residential monitoring. IEEE Networks, July/Aug 2008.

[37] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM
Comput. Surv., 38, December 2006.

