
MultiNets: Policy Oriented Real-Time Switching of Wireless Interfaces on Mobile

Devices

Shahriar Nirjon1, Angela Nicoara2, Cheng-Hsin Hsu3, Jatinder Singh4, and John Stankovic1

1Department of Computer Science, University of Virginia, Charlottesville, VA
2Deutsche Telekom R&D Laboratories USA, Los Altos, CA

3 Department of Computer Science, National Tsing Hua University, Hsin-Chu, Taiwan
4Department of Electrical Engineering, Stanford University, CA

smn8z@virginia.edu, angela.nicoara@telekom.com, chsu@cs.nthu.edu.tw, jatinder@stanford.edu,

stankovic@virginia.edu

Abstract—In this paper we present MultiNets, a system
which is capable of switching between wireless network in-
terfaces on mobile devices in real-time. MultiNets is motivated
by the need of smartphone platforms to save energy, offload
data traffic, and achieve higher throughput. We describe the
architecture of MultiNets and demonstrate the methodology
to perform switching in Linux based mobile OSes such as
Android. Our analysis on mobile data traces collected from real
users shows that with real-time switching we can save 27.4%

of the energy, offload 79.82% of the data traffic, or achieve
7 times more throughput on average. We deploy MultiNets
in a real world scenario and our experimental results show
that depending on the user requirements, it outperforms the
state-of-the-art Android system either by saving up to 33.75%

energy, or achieving near-optimal offloading, or achieving
near-optimal throughput while substantially reducing TCP
interruptions due to switching.

Keywords-3G; WiFi; TCP; Switching; Offload; Energy;

I. INTRODUCTION

Cellular networks today provide nationwide coverage in

several countries all over the globe. The proliferation in

mobile applications like mobile TV, video on demand, video

conferencing, tele-medicine, and numerous location based

services is attracting an increasing number of consumers.

However, the challenges to effective use of mobile networks

remain manifold. Firstly, the mobile data traffic is soaring at

a high rate. A recent study forecasts that global mobile data

traffic will increase by 39 times with a compound annual

growth rate of 108% over the next five years [2]. Secondly,

the usable battery lifetime of mobile devices has become

alarmingly low with feature packed mechanisms like touch

screens and accurate positioning system. Thirdly, modern

mobile applications typically require high throughput and/or

fast response time which are difficult to deliver with scarce

cellular bandwidth and expensive spectrum.

Contemporary mobile devices come equipped with net-

work interfaces such as WiFi. This offers an attractive

proposition to alleviate the staggering increase in data traffic

over cellular networks owing to high bandwidth and low cost

(or, often no cost) offered by WiFi networks. Although, the

spatial coverage of WiFi is not comparable to the cellular

networks due to short coverage range of the WLAN tech-

nology, the availability of WiFi is becoming more pervasive

in houses, offices, campuses, stores, coffee shops, and even

many public transport systems - locations where most mobile

users tend to spend most of their time.

The state-of-the-art devices tend to leave the choice of

selecting the network to the end-user, which we argue is not

only inefficient but also undesirable in terms of smartphone

usability. A user should instead be able to decide the high

level goal and the device should switch to suitable interface

to achieve that intent. By real-time switching, we mean

activating a new network interface and deactivating the

current one - dynamically and without interrupting existing

connections. Real-time, in this context, stands for switching

interfaces in real-time as opposed to meeting any deadline.

Multifold benefits can be realized by switching in real-time.

For example, battery life is prolonged if the device stays over

the cellular network during its idle time and switches to WiFi

during its data activity. An end-user who is concerned about

the battery life can set the device to energy-saving mode, and

the device can monitor the user’s activity and perform the

switching when appropriate. Similarly, by switching to the

network that has the highest bandwidth, the mobile device

can provide a better user experience with faster data rates.

Switching is also a solution to the skyrocketing data problem

faced by the mobile operators who want to offload data

traffic to WiFi network to conserve cellular bandwidth.

Switching from one network interface to the other is

challenging due to the connection-oriented nature of the

ongoing data sessions. Unless properly dealt with, switching

between interfaces results in interruptions, loss of data, and

undesirable user experience. Existing works that attempt to

solve this problem either require additional infrastructure

supports such as gateways [16], [3], [12], [17], [15], [14]

and masters [11], or require changes in the network pro-

tocols [7], [18], [22], [8], [13], and thus are not practical

2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium

Best Paper Award

since modification to infrastructure tends to be extremely

expensive and modification to a standard network protocols

is not a compatible pathway with regard to existing and

deployed systems and applications.

In this paper we present MultiNets, a pragmatic client-

based solution, which does not require any changes to the

network protocols, and enables existing applications to run

transparently without any modification. MultiNets is able

to switch between cellular and WiFi interfaces in real-time

and makes switching decisions based on one of its three

interface selection policies: energy saving, data offloading,

and performance. These policies address three crucial needs

of a mobile device in being able to conserve battery power,

offload data to WiFi, and increase throughput, respectively.

A user of mobile device equipped with MultiNets can select

one of these high-level policies and MutiNets performs

switching accordingly. We note that, the authors in [5]

characterize TCP flows on iPhones to analyze the feasiblity

of flow migration between interfaces. In contrast to our

work, they do not consider issues such as the policies

determining when to switch, or rigorously quantify different

benefits that are achieved by switching.

We have implemented MultiNets on Android-based

mobile devices. However, the design and principles of

MultiNets are general enough to be adopted in any other

mobile OSes. Like all state-of-the-art mobile OSes, Android

does not perform dynamic switching. Access to network

interfaces in Android is exclusive, i.e., either the cellular

or the WiFi is active at a time. The cellular network is the

default network and is assumed to always be present. On the

other hand, WiFi has to be manually turned on, and typically

the user is prompted to select WiFi when it is available. A

limitation of Android is that switching is not seamless i.e.,

all the TCP connections are bound to be interrupted. Fur-

thermore, when the device is connected to WiFi, switching

back to the cellular network can only be done by manually

turning off the WiFi connectivity. In MultiNets, we obviate

this exclusive network access and make it possible to keep

both the interfaces on simultaneously for seamless and non-

disruptive switching. In addition, this feature can be used

to simultaneously access multiple network interfaces by the

applications that are developed on top of MultiNets.

This paper makes the following contributions:

• We conduct a three months long empirical study and

summarize the TCP characteristics in Android smart-

phones, complementing a similar study with iPhone

users in [4], [5]. We devise a switching technique

which is client-based, transparent to applications, and

does not require any protocol changes.

• We design and implement three switching policies.

Our analysis on usage data collected from real mobile

device users shows that with switching, we can save

27.4% of the energy, offload 79.82% data traffic, or

achieve 7 times more throughput on average.

Back haul

Base Station IP

Web Server
Internet

Base Station

IP3
Phone

IP1

IP2

WiFi AP

Figure 1. A phone is trying to switch TCP sessions from 3G(IP1) to
WiFi(IP2).

• We present MultiNets, which is to the best of our

knowledge, the first complete system of this kind

and demonstrate its performance in a real-world sce-

nario. MultiNets outperforms the state-of-the-art An-

droid system either by saving up to 33.75% energy, or

achieving near-optimal offloading, or achieving near-

optimal throughput while substantially reducing TCP

interruptions due to switching.

II. SWITCHING NETWORK INTERFACES

Switching from one wireless interface to another is not as

trivial as it may appear to be at first. Simply turning on one

interface and turning off the other does not work as it results

in interruptions, partially loaded web pages, loss of data,

annoying error messages and user dissatisfaction in general.

It is rather a challenging problem to transfer connection

oriented data traffic from one interface to another under

the constraints of no user interventions, no interruptions, no

changes of network protocols and requiring no extra support

from the existing network infrastructure.

Figure 1 illustrates this problem briefly. An end host, hav-

ing two interfaces (IP1 and IP2) creates a TCP connection

at it’s port A with the remote server’s (IP3) port B. The con-

nection is uniquely identified by the pair (IP1/A, IP3/B).
We now analyze what happens if the host decides to turn off

its interface, IP1 and wants to continue the communication

over IP2. By changing the routes of all outgoing packets,

the host may be able to send the next data packets using

IP2, but these packets will not be recognized as belonging

to the same session at the server, as to the server, IP1 and

IP2 appear as two different hosts. If we change the packet

headers at the host to carry IP1 as their sources even if

they are sent using IP2, the packets will be either dropped

at IP2’s network or even if they get to the server, the ACKs

will not reach the host as the server will send ACK to IP1

which is closed.

A. Potential for Switching Interfaces

A client based solution that deals with this problem has to

wait for all ongoing sessions over the first interface to finish,

before it turns off the interface and activates the other one in

order to prevent any interruptions. This waiting time can be

theoretically infinite, but in practice, it depends on the usage

0 1 2 3 4 5 6 7 8 9 10 11 12
0

25

50

75

100

Number of Concurrent Sessions

C
D

F

Browser

Email

Maps

Facebook

MyAccount

YouTube

Twitter

Figure 2. A steep rise in CDF in between
1 − 3 indicates that the mean concurrency
lies in that interval.

0

50

100

%
 o

f T
C

P

< 5s

5−15s

15−60s

60−120s

> 120s

Browser
Email

Maps
Facebook

MyAcc
YouTube

Twitter

Figure 3. Applications with high concurrency tend
to have most of their sessions with a lifetime of
< 15 sec.

0 20 40 60 80 100

Twitter

YouTube

MyAccount

Facebook

Maps

Email

Browser

Time (Sec)

Figure 4. Data activity in long sessions are
not continuous, rather they have an average
burst length of ∼ 3 sec.

of the phone and the characteristics of the applications that

are running. To understand the type of data flows in mobile

phones, we conduct a 3-months long experiment to collect

the usage data from 13 Android phone users. These users

are of different ages, demography, sex, and used a variety

of applications. The results are therefore not homogeneous,

rather highly diverse as evident later in Figures 11, 12,

and 13. The results are also consistent with a 3-months long

study involving 27 iPhone users in [4], [5].

In our study, the users used a total of 221 applications,

and 35 of these applications require Internet connectivity. We

analyze the collected data traces of these 35 applications and

study the characteristics of the TCP sessions. We study TCP

since our earlier work shows that almost all (99.7%) mobile

traffic is TCP [4]. From this log, we try to answer three

questions: (1) how many concurrent TCP sessions are there

at any instant of time within a mobile phone? (2) what are

the durations of these sessions? and (3) how much activities

are there over these sessions? Answers to these questions

are crucial since if we see that there are a large number of

TCP sessions having long durations and high data activities,

it is not worthy to wait for them and not wise to close them.

Figure 2 shows the cumulative distribution functions

(CDF) of concurrent TCP sessions of the most popular 7
applications in the order of their usages. This is averaged

over 10-minutes time windows of all users. This figure has

to be studied in conjunction with Figure 3 which classifies

these sessions into five classes based on their durations.

In Figure 2, we observe that the concurrency of the TCP

sessions has a steep rise in between 1− 3. This means that

the average value (∼ 2) lies in this region. Therefore, turning

off the interface at any time may interrupt about 2 sessions

on average, assuming that only one application is active

at a time. In case of multi-tasking phones, the number of

interruptions is not much higher. Applications like Browser

and Twitter seem to show high concurrency (of maximum

10-11), but Figure 3 shows that about 80% of their sessions

have lifetime < 15 seconds. For these applications, we may

on average have to wait for 15 seconds before switching

to the other interface. Applications like Email, Maps, and

T-Mobile’s MyAccount have very high percentage of long

lasting sessions (> 120 seconds) which may seem a barrier

to waiting for them to finish. However, the number of such

long TCP sessions are very small (about 1), and with these

TCP sessions, the applications keep themselves connected

to a specific server (e.g., in case of Google Maps, it is

74.125.45.100) for the entire lifetime, and that explains

why they are so long.

We conduct further investigation to examine the data

activities in these long sessions. Figure 4 shows the presence

of data activity of the longest lasting TCP sessions of each

of these applications for a randomly selected user for the

first 100 seconds as an example. This shows that, the data

activities over these longest TCP sessions are not continuous,

but rather sporadic. Averaged over all usages we see an

average of 3 seconds data activity between any two gaps

over these sessions. This indicates that we may have to

wait on average about 3 seconds for these applications

before switching to a new interface to prevent any data

loss. Although this technique will cause that TCP session

to terminate, luckily, mobile phone applications are written

keeping in mind of the sudden loss of network connectivity.

Therefore, in such cases, when we switch to a new interface,

the application considers it as a loss of connectivity and re-

establishes the connection with the server. We empirically

observed this in all 35 applications.

The characteristics of TCP sessions in mobile phones can

be summarized as follows:

• Average lifetime of TCP sessions is ∼ 2 seconds.

• Average concurrency of these sessions is < 2.

• TCP activities are in bursts of average ∼ 3 seconds.

• There exists some sessions that are alive during the en-

tire lifetime of the application, keeping the application

connected to its server. Disconnections of such sessions

are automatically reestablished by the application.

B. Switching in MultiNets

MultiNets handles connectionless and connection-oriented

sessions separately during the switching. UDP and TCP

are the dominant transport protocols that we have observed

in Android, and therefore we use them in this section for

illustration.

1) Connectionless Sessions: Connectionless sessions

(e.g., UDP) are rare: less than 0.3% traffic amount. They

are easier to switch. UDP applications communicate using

DatagramSocket and each connection is bound to a port

and assigned an IP address of an available interface by the

OS. To switch network interface, MultiNets first turns on

the new interface and removes the default route over the old

interface. We have found that doing so does not affect the

functionality of DatagramSocket: the out-bound traffic

is sent with the IP of the new interface, while the in-bound

traffic is received at the old interface. MultiNets then turns

off the old interface, which initially incurs some packet loss

of the in-bound traffic, but we have observed that, in most

cases, this is handled by the application layer.

2) Connection-Oriented Sessions: Connection-oriented

sessions are mostly TCP, comprising of about 99.7%. These

are trickier to switch as explained earlier. MultiNets per-

forms the following steps for switching these sessions:

Step 1: MultiNets counts the number of ongoing TCP

connections on the old interface. We should not harm these

connections. We exclude the sessions that have gone past

the ESTABLISHED state during the counting.

Step 2: If the count is non zero, MultiNets adds new

routing table entries for all these connections explicitly

specifying the destination address, gateway and mask fields

for the old interface. This is to ensure that the ongoing TCP

sessions still remain in the old interface.

Step 3: MultiNets now brings up the new interface and

adds routing table entries for it including the default route

and removes the default route of the old interface from

the routing table. Any new connections start using the new

interface from now on.

Step 4: MultiNets waits for the ongoing TCP sessions

over the old interface to finish or until a timeout (determined

experimentally) – whichever happens first. Finally, it tears

down the old interface completely and the system moves on

to the new interface.

The users of MultiNets have to configure the WiFi net-

work by providing the authentication information only once.

After that, MultiNets switches the interfaces dynamically

without requiring any manual intervention. The proposed

switching solution in MultiNets is fully client based – it

does not require additional support from the access points

or gateways. Furthermore, MultiNets does not require any

modification to the network protocols. It only reads the

transport information and adds or removes routing table

entries to perform a switch. This is why, existing applications

run transparently on MultiNets without any change. There

is a possibility that during the Step 4 of the switching, a

very long TCP session may get interrupted due to timeout.

We empirically derive that, a timeout value of 30 seconds

is optimum for making this interruption a rare phenomena.

Due to page limitations, we present the details of this

experiment in our technical report in [19]. We notice that

the proposed switching technique may also be applicable to

other applications, e.g., Alperovich and Noble [20] propose

a similar technique to switch among homogeneous WiFi

access points, which is quite different from MultiNets.
3) Switching API: MultiNets uses the API shown

in Figure 5 to switch to a new interface. The method

switchInterface() takes the name of the interface as

an argument and returns either success or failure. Upon

failure, it throws an exception explaining the reason of

failure.

1 SwitchingManager mgr = new SwitchingManager(getSystemService(”SM”));

2 try {
3 if (mgr.switchInterface(mgr.MOBILE) == true) {
4 // Success. New sessions start over 3G now

5 }
6 } catch(SwitchingException ex) { ex.printStackTrace(); }

Figure 5. Using switchInterface() method.

III. DESIGN AND IMPLEMENTATION

The design of MultiNets is modular, consisting of

three principal components – Switching Engine, Monitoring

Engine, and Selection Policy as shown in Figure 6. These

components isolate the mechanism, policy and monitoring

tasks of the system, and allow extending their capabilities

without requiring any changes to the architecture.

A. The Switching Engine

The Switching Engine performs the switching between

cellular and WiFi. It maintains an internal state machine to

keep track of the connectivity status. It also has a Switching

Utility module that performs some low level tasks related to

switching. The Switching Core coordinates these two.
1) The State Machine: Figure 7 shows the state diagram

together with all the states and transitions. The system

remains at NoConnectivity state (S0) when neither cellular

nor WiFi is available, and keeps seeking for a network

to connect to. The states ConnectedToCellular (S1) and

ConnectedToWiFi (S3) are similar. At these states, the device

uses only one wireless interface and periodically checks with

the Selection Policy (see Section III-C) to see if a switch is

needed. The states SwitchingToWiFi (S2) and SwitchingTo-

Cellular (S4) are the transition states. Both of the interfaces

are active during these states, but only the new connections

start over the new interface while existing sessions still

remain in the previous interface. The engine stays at these

states as long as the old interface has active TCP sessions

or until a timeout. Under normal circumstances, the system

moves around within the states {S1, S2, S3, S4} circularly.

To cope with any loss of connectivity, the system makes

some transitions shown in dotted arrows. A loss of WiFi

connectivity at S2 takes the system to S3, but it immediately

starts switching back to cellular upon detecting such a

disconnection.

Kernel

Switching Core

State
Machine

Switching API

Switching
Utility

(6) switching
action

Switching Engine (1) select
policy

Offload
Traffic

Selection Policy

(3)
switching
needed?

Energy
Saving

Perform
ance

Power

Monitoring Engine
Network

Flow
Wireless

(4) query

(7) change connectivity (5) read

(2)
getstate

Figure 6. MultiNets Architecture.

S1
S4

Cellular

No TCP in WiFi / Timeout

S0

Connected
To Cellular

Switching
To Cellular

Cellular
Available

WiFi
Available

Lost
Both

Lost
Both

No
Connectivity

Lost
Both

Lost
Both

Switching
Needed

Switching
Needed

S2
S3

Connected
To WiFi

Switching
To WiFi

Available

No TCP in Cellular / Timeout

Figure 7. State Diagram.

ConnectivityManager,

WiFiManager

NetworkInfo,

WiFiInfo

ConnectivityService,

WiFiService

MobileStateTracker,

WiFiStateTracker

Kernel

P
u

b
lic

 A
P

I
In

te
rn

a
l
A

P
I

J
N

I
N

a
ti
v
e

 C
o

d
e

s

Android Connectivity MultiNets

NetworkUtils,

WiFiNative

android_wifi_WiFi.cpp,

android_Netutils.cpp

wifi.c,

Ifc_utils.c

SwitchingManager

SwitchingInfo

switching_utils.cpp

swi_utils.c

SwitchingUtils

SelectionPolicy

SwitchingService

MonitoringService

Figure 8. Layered Implementation.

2) The Switching Utility: The Switching Utility provides

the utility methods to perform the switching. It includes the

following tasks – counting the ongoing TCP sessions over a

specific network interface, updating the routing table to keep

the existing TCP sessions over a specific interface, adding

and deleting default routes of the network interfaces, and

connecting, re-connecting or tearing down interfaces. These

methods are called by the core switching module to perform

a switch.

B. The Monitoring Engine

The Monitoring Engine is responsible for monitoring all

the necessary phenomena pertaining to switching. It contains

several different monitors, each of which observes one or

more system variables, and holds the latest values of those

variables. We have implemented 4 monitors – (i) Data Mon-

itor: Monitors the amount of transmitted and received data

over WiFi and cellular interfaces in bytes and packets since

the interface is turned on, (ii) Wireless Monitor: Monitors

the connectivity status, signal strengths, and information of

access points, (iii) Network Flow Monitor: Monitors the

number and state of all TCP and UDP sessions, routing

information from the routing table, and (iv) Power Monitor:

Monitors the state of the battery and its voltage, current, and

capacity. All these monitors are singleton and are created

in an on-demand basis. They have a common interface to

answer to all the queries. The query and its response form a

< key, value > pair. The Selection Policy component (see

Section III-C) issues these queries. The modular design of

the monitors and a common interface to talk to them allow

us to add new monitors into the system and to extend the

capability of the existing monitors easily.

C. The Selection Policy

The Selection Policy defines the policy for interface

switching. By separating the policies from the rest of the

system, we are able to add new policies or modify the

existing ones without requiring any change to the other parts

of the system. For example, one of our policies is based on

the fact that WiFi is much faster than the cellular network.

But in future, this situation may change and cellular data

connectivity may outperform WiFi and thereby requiring a

change in current policy or adding a new policy that lever-

ages that. Currently, we have developed and implemented

three policies which are described next. Only one of these

policies is active at a time. The user of MultiNets determines

which policy is to be used.

1) Energy Saving Policy: The aim of this policy is to

minimize the power consumption. We describe an opti-

mum energy saving algorithm in [19], which requires the

knowledge of future data traffic. For a realistic setup, we

propose a switching heuristic, which is inspired by our

energy measurements. According to this policy, the mobile

device connects to the cellular network when it is idle, and

starts to count the number of bytes sent over the cellular

network after the user launches an application. As soon as

the total amount of data over the cellular network exceeds

a threshold τ , the device decides to switch to WiFi. The

mobile device switches back to the cellular network once the

WiFi network is idle for ζ seconds. We empirically derive the

best τ and ζ values in Section IV-C1. This policy levarages

one fact that the idle power of WiFi is much higher than

that of cellular. Techniques such as [9], [10] may save some

part of the energy that is consumed for scanning WiFi APs–

which accounts for about 40% of the idle energy. But even

after applying such techniques, WiFi’s idle power remains

more than 50 times higher. Hence, switching interfaces

dynamically is a better option to save energy.

2) Offload Policy: The aim of this policy is to offload cel-

lular data traffic to any available WiFi network. According to

this policy, whenever WiFi is available, we switch to WiFi.

We only switch back to the cellular network when WiFi’s

signal strength is dropping below a threshold η dBm. The

advantage of this policy is to reduce data traffic on cellular

networks. But the downside is that, if the network is not

being used, only to keep the WiFi interface idle is more

Method Description

getInfo Returns the status, state and current policy.

activateEngine Activates or deactivates the engine.

setPolicy Sets the current Selection Policy.

switchInterface Request to switch to a particular interface.

useInterface Request to use a specific interface.

Table I
DESCRIPTION OF SWITCHINGMANAGER API.

expensive in terms of energy.

3) Performance Policy: The aim of this policy is to maxi-

mize the network throughput. It achieves this by switching to

the interface with the highest bandwidth. Let, BW (s) and

BC(s) be the bandwidth functions for WiFi and cellular

networks respectively where s denotes the signal strength,

which is read via Android system API. We empirically

derive the bandwidth functions BW (s) and BC(s) in Sec-

tion IV-C3 through extensive experiments. The performance

policy compares the values of these two functions every

δ seconds, and switches to the network interface with the

higher bandwidth.

D. Layered Implementation

We have closely studied the software architecture of the

data connectivity in Android. Like Android, the implemen-

tation of MultiNets is layered. Classes and methods of our

system that are similar to those of Android are implemented

at the same layer. Yet, our system is vertically distinguish-

able from Android as shown in Figure 8. At the bottom of

the architecture, we have the unmodified Linux Kernel. Right

above the Kernel, we have a layer of native C/C++ modules

that perform the lower level tasks of file I/O to get all the

information used by the Monitors and some socket I/O to

add, remove or update routing table entries. We improve

the implementation of Android’s ifc_util.c, route.c,

and netstat.c by adding these non-existing modules

and put them into our own module swi_utils.c. But

no changes are made into the network protocols. These

modules are wrapped by JNI and are called from the Internal

Classes layer. The Switching Service, Monitoring Service

and Selection Policy are implemented as system services at

the Internal Classes layer. These services are created during

the device start-up and they run as long as the device is

running. We have modified the Android’s System Server to

start these services when the device starts. All the changes

are done by adding 209 lines of C/C++ code and 650 lines

of Java code to Android (Eclair 2.1).

We provide API to configure and control the Switching

Engine which is described in Table I. We use this API to

extend Android’s built in wireless control settings applica-

tion so that the Switching Engine can be stopped, restarted

and configured to run in different modes from the application

layer. When the engine is stopped, this API can also be used

by the application programmers to switch interfaces, send a

specific flow using a specific interface, or to use multiple

interfaces simultaneously. Two of the methods in the API are

very useful from the application programmers’ point of view.

The first one is, the switchInterface() method, which

allows the programmers to switch interface when needed.

This is useful for those kinds of applications that need to

send sensitive data (e.g. user credentials) over the cellular

network, but for all other purposes prefer to be on WiFi. An-

other important method is, the useInterface() method.

It is useful to send or receive data using a specific interface

for a specific connection. Note that, it does not switch the

interface, rather if the preferred network is available, it sends

the data using that interface for the specified connection

only. With this method, an application can use multiple

interfaces simultaneously. Figure 9 shows an example usage

of this method. Both of these methods are requests to the

switching system. The requests may fail if the application

does not have proper permissions or the Switching Engine

is currently running.

1 SwitchingManager mgr = new SwitchingManager(getSystemService(”SM”));

2 String ip = ”12.71.54.184”; int port1 = 5050, port2 = 5051;

3 InetAddress a = InetAddress.getByName(ip);

4 try {
5 if (mgr.useInterface(a, mgr.MOBILE)){
6 Socket ms = new Socket(ip, port1);

7 // transfer sensitive data over secured cellular network.

8 }
9 if (mgr.useInterface(a, mgr.WIFI)){

10 Socket ws = new Socket(ip, port2);

11 // transfer less sensitive data over public WiFi.

12 }
13 } catch(SwitchingException ex){ ex.printStackTrace(); }

Figure 9. Using useInterface() method.

IV. EVALUATION

We present three sets of experiments in this paper. First,

we discuss the system overhead. Second, we describe a set of

experiments, where we apply the three switching policies on

the 3 month long collected data to demonstrate the benefits

of switching. Third, we demonstrate the performance of

MultiNets in a real world scenario.

A. Experimental Methodology

1) Hardware Setup: All experiments are performed on

multiple Android Developer Phones 2 (ADP2) [1]. The

mobile devices are running MultiNets which is developed

on top of Android OS (Eclair 2.1-update 1). The devices

are 3G-enabled T-Mobile phones that use 3G, EDGE, GPRS

and WiFi 802.11 b/g connectivity and are equipped with an

528 MHz ARM processor, 512 MB flash memory, 192 MB

RAM, and 1 GB microSD card.

2) Software Setup: We have developed a data logger that

is capable of logging various important information of the

running applications within the phone periodically and send

it to a remote server. 13 volunteers from our research lab,

including research scientists, graduate students, faculty, and

staffs of age group 25 to 35, were equipped with these

Benchmark Description

Linpack Solves dense NxN system of linear equations.

Fps2d Measures 2D graphics frames per second.

CMark Measurements performance of java programs involving
prime generation, loop, logic, method, and floats.

Graphics Draws opacity and transparent bitmaps.

Cpu CPU performance of MWIPS, MFLOPS, and
VAX MIPS (SP and DP).

Mem Memory copy operation.

File File create, write, read, and delete.

Table II
DESCRIPTION OF THE BENCHMARKS.

Linpack Fps2d Cmark Graphic Cpu Mem File
0

5

10

Benchmarks

O
v
e
rh

e
a
d
(%

)

10 sec 5 sec 1 sec

Figure 10. A monitring interval of 5 sec or more keeps the overhead
below 5%.

phones with our data logger and they carried around the

phones to wherever they wanted and used them for both

voice and data connectivity for 90 days. The information that

we collect from these logs include the names and types of the

applications, the frequency and the duration of their usage,

and the data usage information for each wireless interface

for each user. For each of these applications, we have the

total number of bytes and packets transmitted and received

over cellular and WiFi. We modified the Linux’s netstat

tool for Android to get the information about all the TCP

and UDP sessions, which include IP addresses, ports, start

time, and durations.

We then implement a traffic generator to reproduce the

data sessions. The traffic generator replays the exact same

sessions as that are in the log except for that they are

now using different server IPs which are situated in our

lab instead of the original ones. We load the information

about all the sessions into the traffic generator running on

the phone and start a process that replays those sessions.

B. System Overhead

The Switching Engine starts several background system

services at the device startup. Running such system services

may add additional overhead to the system. The goal of this

experiment is to derive a minimal sleeping interval for the

monitoring services so that their overhead is reasonable. We

run a set of benchmarks on the device, with and without

the Switching Engine and compare the two scores. None of

these benchmarks use any data connectivity and, hence, no

switching happens during this experiment. The overhead is

due to the engine’s continuously monitoring and checking

for an opportunity to switch only. We use seven sets of

benchmarks that are available in Android Market that has

been downloaded 10, 000 to 50, 000 times. Table II describes

the benchmarks.

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

Users

E
n
e
rg

y
 (

K
J
 /

 D
a
y
)

12 13

50

100

150

200
Optimum

Actual

Heuristic

Figure 11. Energy saving heuristic cuts down the average daily energy
usage by 27.4% and is close to optimum.

Figure 10 shows the benchmark scores of the device

for running the Switching Engine at 10, 5, and 1 seconds

sleeping intervals. The scores are normalized to the scores

achieved by a phone running original Android. We see that

the more the sleeping interval, the smaller the overhead and

the closer the score is to that of without running the engine.

But if this interval is large, the responsiveness of the engine

becomes lazy. We therefore run the engine in 5 seconds

interval which keeps the overhead below 5% and at the

same time the responsiveness is also good. Note that, this

overhead is due to the polling style implementation of the

monitoring engine and is not an inherent problem of the

switching technique itself. A more efficient implementation

of the engine is left as our future work.

C. Trace Driven Experiments

1) Energy Efficiency: Using the energy model in [19],

we estimate the average daily energy consumption for each

user in our data traces. We have considered data transfer

over WiFi and 3G, and also considered the idle power. We

then compute the optimum energy consumption of each

user assuming they switched optimally. We use dynamic

programming to get this optimum value, which is described

in [19]. While the algorithm achieves the optimum energy

consumption, it assumes that the future data usage is known,

which is not realistic. Therefore in MultiNets, we use a

simple heuristic to switch interfaces. As data communication

in WiFi is cheaper, for switching from 3G to WiFi, we use

a data threshold of τ KB. If the phone crosses this limit,

we switch to WiFi. On the other hand, since idle power of

WiFi is much higher than 3G, we switch the phone back

to 3G when data activity is absent over WiFi for the last

ζ seconds. We systematically tried various τ and ζ values

using the data traces, and found that τ = 1 KB and ζ = 60
seconds minimizes the deviation from the optimum energy

saving. Therefore, we use these two values throughout the

paper if not otherwise specified.

Figure 11 shows the average daily energy consumptions

of all the users for three strategies: optimum, actual and the

heuristic that we use in MultiNets. This figure shows that

switching optimally saves on average 24.17 KJ energy per

user per day, which is as high as 89−179 KJ for some users

(e.g., 12, 13). We also see that our simple heuristic achieves

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

Users

O
ffl

oa
d

(M
B

 /
D

ay
)

12 13

50

100

150
Actual Usage

Offload Mode

Figure 12. An average of 22.45 MB more data per day per user is
offloadable using dynamic switching.

near-optimal energy consumption with an average deviation

of only 13.8%, and we are able to cut down the daily energy

usage by 27.4% (21.14 KJ) on average.

2) Offloading Traffic: In order to estimate how much data

traffic we are able to offload from 3G to WiFi network with

MultiNets, we analyze the data traces that we have collected.

For each user, we compute the average daily WiFi usage and

compare it to the amount of data that is possible to offload

if MultiNets was used. Our offloading strategy is to switch

all 3G traffic to WiFi whenever we find a connectible access

point. We consider an access point connectible if and only

if its signal strength s is above η = −90 dBm and has

been used by the user in the past. The threshold −90 dBm

is derived from real experiments: when the signal strength

is below it, the WiFi is not usable. Figure 12 shows this

comparison for each of the users. We see that, for some

users (e.g., 3, 7) we are able to offload 11− 14 times more

data, and for some users who does not tend to use available

WiFi at all (e.g., 13) this difference is about 150 MB per

day. Considering all users, with switching, we are able to

offload on average 22.45 MB of data per day per user which

is 79.82% of the average daily usage (28.13 MB).

3) Performance: Performance of web applications get a

significant boost by switching to the interface with the higher

bandwidth. In our data trace, we have recorded the signal

strengths of both the cellular and all available WiFi networks

at 30 seconds intervals. We conduct extensive measurements

using iperf tool to find the correlation between signal

strength s and bandwidth B. We run iperf server on

our server, and iperf client on Android phones, and

iperf packets traverse through the Internet. We have taken

measurements in both indoor and outdoor environments and

report the average of 10 measurements at varying signal

strengths in Table III. We define the bandwidth function

BW (s) (for WiFi) and BC(s) (for cellular) using linear

interpolations on measurement samples in this table.

Using the bandwidth functions, we calculate the average

daily throughput of each user for his actual usage, and we

also do the same if MultiNets was used. Figure 13 shows

that, with MultiNets, it is possible to achieve an average

throughout of 2.58 MBits/sec, which is 7 times more than

the actual usages. For some users (e.g., 1, 2, 4, 13) this gain

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

Users

T
hr

ou
gh

pu
t

(M
B

its
 /

S
ec

) Actual Performance Mode

Figure 13. The achievable throughput is 7 times higher with switching.

is about 14 − 24 times. These are the users who tend to

remain in the 3G network even if WiFi is available for them

to connect.

Note that, based on our measurement results, even if

we take decisions to switch based on the signal strengths,

state-of-the-art 3G network being always slower than WiFi,

the policy selects WiFi almost as if it were in Offload

mode. This is, however, not always true, e.g., with the rapid

advancement of cellular data network technology, this gap

is diminishing. Our measurements with recent High Speed

Packet Access Network (HSPA+) in Table III shows that this

network is about eight times faster than 3G. We believe, in

near future, cellular networks will have a comparable band-

width to WiFi, and the performance mode of MultiNets will

have a higher impact at that moment. Finally, measurement

studies report that WiFi throughput may be lower than 3G

throughput under certain practical circumstances [3].

WiFi HSPA+ 3G

Signal Bandwidth Signal Bandwidth Signal Bandwidth
(dBm) (Mbps) (dBm) (Kbps) (dBm) (Kbps)

≤ −50 8.58 −65 929 −63 138
(−50,−60] 7.06 −73 858 −89 115
(−60,−70] 6.16 −89 746 −101 104
(−70,−80] 3.99 −97 509
> −80 1.25

Table III
BANDWIDTH OF WIFI, HSPA+, AND 3G AT DIFFERENT SIGNAL LEVELS

MEASURED BY IPERF

D. Real Deployment

To quantify the performance of our system in a real-

world scenario, we conduct actual experiments at Stanford

University campus. We have chosen this campus since

it has WiFi connectivity both inside and outside of the

buildings and also has several areas where WiFi is either

completely unavailable or has a very poor signal strength.

High availability of WiFi is important for us since we

want to demonstrate that our system is switching back to

3G to conserve energy even in presence of WiFi. On the

other hand, loss and reconnection of WiFi connectivity is

important to demonstrate that our system is capable of

switching smoothly. We take 4 ADP2 phones with us. Two

of these have our system installed and the other two run

Android (Eclair 2.1). All 4 phones are fully charged and

their screen brightnesses are set to the lowest level. For a

fair comparison, we use our traffic generator to replay the

Figure 14. We encounter 37 WiFi APs, average signal strengths of −68.46
dBm (inside) and −82.34 dBm (outside), and 28 WiFi disconnections
during the tour.

same data traffic in all of them. The traffic generator runs

in the phone and sends and receives data over the Internet

to and from our server which is situated in our lab at 4
miles distant from the campus. The phones replay the traffic

patterns of the most popular 6 applications from our data

traces having sessions of varying numbers, durations, delays

and concurrencies. Once started, the phones run each of

these applications for 10 minutes followed by a 10 minutes

break, repeatedly one after the other. We log the transmitted

and received bytes, signal strengths, MAC addresses of WiFi

APs, battery current, voltage, and capacity into the file

system of the phone every 2 seconds for later analyses.

1) Energy Efficiency: In this experiment, we configure

one of our phones into the energy saving mode. We take

another two phones that run Android– one with WiFi en-

abled, and the other staying over 3G only. We start the traffic

generator in all 3 phones and begin our 168 minutes long

campus tour starting from the Computer Science building.

We move around all 5 floors of the building for an hour,

then take an hour long round trip tour within the campus,

and finally get back to the building to spend the rest of the

tour as shown in Figure 14. During this tour, we encounter

37 different WiFi APs, an average signal strength of −68.46
dBm inside the building and −82.34 dBm outside the

building, 28 disconnections from WiFi to 3G, and a total of

49 switchings by our system. Using the instantaneous values

of current and voltage obtained from the log, we compute

the energy consumption of each of these phones and plot

the cumulative energy consumption in Figure 15. Despite

the fact that the battery voltages and currents read from the

Android system are not in high precision, we still see a clear

difference of the energy consumption among these 3 phones.

We see that for the same data traffic, our system achieves

about 28.4%− 33.75% energy savings as compared to state

of the art Android systems.

2) Offloading and Throughput: In this experiment, we

compare the offloading and throughput of our system with

those of the state-of-the-art Android. In MultiNets, we set

the switching timeout to be 30 seconds. Recall that, cellular

network being much slower than WiFi, the outcomes of

Offload and Performance modes are the same, although their

decision mechanisms are completely different. Therefore, we

0 30 60 90 120 150
0

50

100

150

Time (min)

E
ne

rg
y

(J
)

EnergySaving Mode

Android (3G Only)

Android (WiFi ON)

Figure 15. Energy saving mode saves about 28.4%− 33.75% energy as
compared to Android.

present them together in Table IV. This table also gives the

achievable lower and upper bounds of Android on offloading

and throughput. The lower bound is derived by disabling

WiFi interface (3G Only), and the upper bound is achieved

by always switching to WiFi whenever it is available (WiFi

ON). This table shows that: MultiNets (i) leads to three

times higher throughput than the Android lower bound,

(ii) achieves near-optimal offloading and throughput, and

(iii) experiences zero TCP disconnections throughout the

experiments, while Android upper bound results in eight

TCP disconnections.

System Offload Throughput Disconnections

(MB) (kbps) (Count)

MultiNets 45.41 116.20 0

Android (3G Only) 0 39.29 0

Android (WiFi ON) 44.54 116.26 8

Table IV
FOR NEAR-OPTIMAL OFFLOADING AND THROUGHPUT, MULTINETS

EXPERIENCES NO TCP DISCONNECTIONS THROUGHOUT THE

EXPERIMENTS.

3) Energy Efficiency vs. Offload Trade-off: It is interest-

ing to see the trade-offs between the energy savings and

offloading. Table V shows that, MultiNets in energy-saving

mode consumes about 55.85% less energy than offload

mode, but sacrifices about 14.25% of offloading capability.

The reason behind is that, energy saving mode keeps the

phone in 3G while it is idle. When data transmission starts,

it keeps the phone in 3G mode for a while before completely

switching to WiFi, and hence the overall WiFi offloading is

slightly lower in this case. This experiment illustrates that,

users of MultiNets achieve different objectives by putting

the system in different modes.

Mode Energy Consumption Offload

(J) (MB)

Energy Saving 90.36 38.94

Offload 204.65 45.41

Table V
ENERGY SAVING MODE SAVES 55.85% MORE ENERGY, BUT SACRIFICES

14.25% OFFLOADING.

V. RELATED WORKS

Switching among multiple network interfaces of a mobile

device has been considered in the literature. New protocols

in various layers have been designed to support switching

among access networks. Wang et al. [7] propose a rate

control algorithm for multiple access networks, which needs

to be integrated into application-layer protocols. Kim and

Copeland [18], and Wu et al. [22] propose TCP variants

that result in better performance by switching among access

networks. Mobile IP [8] uses foreign/home agents to forward

network traffic from/to a smartphone that move among

access networks but incurs additional network latency. Mo-

bile IP v6 [13] uses optimized routes for lower network

latency, but it still relies on deploying foreign/home agents

for mobility management. In contrast to MultiNets, widely

deploying TCP variants and mobile IP agents in the Internet

incurs tremendous costs and burden, and may take years to

be done.

Gateways between smartphones and the Internet can be

used for accessing multiple network interfaces. Balasubra-

manian et al. [3] design a system to reduce the network traf-

fic over cellular networks by transmitting delay tolerant data

over WiFi and real-time data over cellular networks. Sharma

et al. [15] propose a system that uses gateways to aggregate

network resources from multiple access networks among

several collaborative smartphones. Armstrong et al. [21]

use a proxy to notify the phone via sms about content

updates and suggests interface to use. Unlike MultiNets,

gateway solutions require deploying expensive gateways,

incurs additional network latency, and may need users to

configure the proxy settings in applications.

A master/slave solution [11] chooses an always-connected

access network as the master network, and uses other

access networks as slave networks for opportunistic routing.

Different from MultiNets, deploying master/slave solutions

requires complete control over multiple access networks,

which is difficult due to business reasons. Higgins et al. [6]

propose intentional networking where applications provide

hints to the system and system chooses the best interface

opportunistically. In contrast, MultiNets is completely trans-

parent to the existing aplications. Rahmati et al. [5] demon-

strate the feasibility of TCP flow migration on iPhones, but

they do not address or rigorously quantify the policies and

different benefits of switching interfaces.

VI. CONCLUSION

In this paper, we consider the problem of real-time

switching between multiple network interfaces on mobile

devices. We first conduct a three month long empirical study

to understand the TCP characteristics on Android devices.

Based on this study, we design a client based solution to the

switching problem. We then present the MultiNets system

that uses this technique to dynamically switch between

WiFi and cellular networks based on three policies: energy

efficiency, offloading data traffic, and higher throughput.

Our evaluation results show that our system outperforms

the state-of-the-art Android either by saving up to 33.75%

energy, or achieving near-optimal offloading, or achieving

near-optimal throughput while substantially reducing TCP

interruptions due to switching.

REFERENCES

[1] Android Developer Phone 2 (ADP2). http://en.wikipedia.org/wiki/Android

Dev Phone.

[2] Cisco Visual Networking Index: Forecast and Methodology 2009–2014.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/

ns827/white paper c11-481360.pdf.

[3] A. Balasubramanian, R. Mahajan, A. Venkataramani. Augmenting Mobile 3G

using WiFi. In Proc. of MobiSys, San Francisco, USA, March 2010.

[4] A. Rahmati, C. Shepard, A. Nicoara, L. Zhong, J. Singh. Mobile TCP Usage

Characteristics and the Feasibility of Network Migration without Infrastructure

Support. In Proc. of MobiCom (Poster Session), Chicago, USA, September

2010.

[5] A. Rahmati, C. Shepard, A. Nicoara, L. Zhong, J. Singh. Seamless flow

migration on smartphones without network support. Technical Report 2010-

1214, Rice University, December 2010.

[6] B. Higgins, A. Reda, T. Alperovich, J. Flinn, T. Giuli, B. Noble, D. Watson.

Intentional networking: opportunistic exploitation of mobile network diversity.

In Proc. of MobiCom, Chicago, USA, September 2010.

[7] B. Wang, W. Wei, J Kurose, D. Towsley, K. Pattipati, Z. Guo, Z. Peng.

Application-Layer Multipath Data Transfer via TCP: Schemes and Performance

Tradeoffs. Elsevier Performance Evaluation, 64(9-12):965–977, October 2007.

[8] C. Perkins. Mobile IP. IEEE Wireless Communications Magazine, 35(5):84–99,

May 1997.

[9] G. Ananthanarayanan, I. Stoica. Blue-Fi: enhancing Wi-Fi performance using

bluetooth signals. In Proc. of MobiSys, Wroclaw, Poland, June 2009.

[10] K. Kim, A. Min, D. Gupta, P. Mohapatra, J. Singh. Improving Energy Efficiency

of Wi-Fi Sensing on Smartphones. In Proc. of INFOCOM, Shanghai, China,

April 2011.

[11] K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J. Makela, R. Pichna,

J. Vallstron. Handoff in Hybrid Mobile Data Networks. IEEE Personal

Communications, 7(2):34–47, April 2000.

[12] N. Thompson, G. He, H. Luo. Flow Scheduling for End-Host Multihoming. In

Proc. of INFOCOM, Barcelona, Spain, April 2006.

[13] P. Nikander, J. Arkko, T. Aura, G. Montenegro. Mobile IP Version 6 (MIPv6)

Route Optimization Security Design. In Proc. of IEEE Vehicular Technology

Conference (VTC’03-Fall), Orlando, USA, October 2003.

[14] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, S. Banerjee. MAR: a

Commuter Router Infrastructure for the Mobile Internet. In Proc. of MobiSys,

Boston, USA, June 2004.

[15] P. Sharma, S. Lee, J. Brassil, K. Shin. Handheld Routers: Intelligent Bandwidth

Aggregation for Mobile Collaborative Communities. In Proc. of BroadNets, San

Jose, USA, October 2004.

[16] R. Chalmers, K. Almeroth. A Mobility Gateway for Small Device Networks.

In Proc. of IEEE International Conference on Pervasive Computing and Com-

munications (PerCom’04), Orlando, USA, March 2004.

[17] S. Kandula, K. Lin, T. Badirkhanli, D. Katabi. FatVAP: Aggregating AP

Backhaul Capacity to Maximize Throughput. In Proc. of NSDI, San Francisco,

USA, April 2008.

[18] S. Kim, J. Copeland. TCP for Seamless Vertical Handoff in Hybrid Mobile

Data Networks. In Proc. of IEEE Global Telecommunications Conference

(GLOBECOM’03), San Francisco, USA, December 2003.

[19] S. Nirjon, A. Nicoara, C. Hsu, J. Singh, J. Stankovic. MultiNets: Policy Oriented

Real-Time Switching of Wireless Interfaces on Mobile Devices. Technical

Report CS-2011-08, University of Virginia, October 2011. http://goo.gl/DDAuj.

[20] T. Alperovich, B. Noble. The Case for Elastic Access. In Proc. of the MobiArch,

Chicago, USA, September 2010.

[21] T. Armstrong, O. Trescases, C. Amza, E. Lara. Efficient and transparent dynamic

content updates for mobile clients. In Proc. of MobiSys, Uppsala, Sweden, June

2006.

[22] X. Wu, M. Chan, A. Ananda. TCP HandOff: a Practical TCP Enhancement for

Heterogeneous Mobile Environments. In Proc. of IEEE International Conference

on Communications (ICC’07), Glasgow, UK, June 2007.

