
sMFCC : Exploiting Sparseness in Speech for Fast
Acoustic Feature Extraction on Mobile Devices – a

Feasibility Study

Shahriar Nirjon1, Robert Dickerson1, John Stankovic1, Guobin Shen2, Xiaofan Jiang3

1Department of Computer Science, University of Virginia
2Microsoft Research Asia, Beijing, China

3Intel Labs China, Beijing, China
{smn8z, rfd7a, jas9f}@virginia.edu, jacky.shen@microsoft.com, fred.jiang@intel.com

ABSTRACT
Due to limited processing capability, contemporary smart-
phones cannot extract frequency domain acoustic features
in real-time on the device when the sampling rate is high.
We propose a solution to this problem which exploits the
sparseness in speech to extract frequency domain acoustic
features inside a smartphone in real-time, without requiring
any support from a remote server even when the sampling
rate is as high as 44.1 KHz. We perform an empirical study
to quantify the sparseness in speech recorded on a smart-
phone and use it to obtain a highly accurate and sparse
approximation of a widely used feature of speech called the
Mel-Frequency Cepstral Coefficients (MFCC) efficiently. We
name the new feature the sparse MFCC or sMFCC, in short.
We experimentally determine the trade-offs between the ap-
proximation error and the expected speedup of sMFCC. We
implement a simple spoken word recognition application us-
ing both MFCC and sMFCC features, show that sMFCC
is expected to be up to 5.84 times faster and its accuracy
is within 1.1%− 3.9% of that of MFCC, and determine the
conditions under which sMFCC runs in real-time.

Keywords
Smartphone, Speech, Sparse FFT, MFCC

1. INTRODUCTION
All major smartphone platforms these days support nu-

merous voice driven applications such as – voice commands
(e.g. to launch an application or call some contact), voice-
enabled search (e.g. Google’s voice search), voice recogniz-
ing personal assistant (e.g. iPhone’s SiRi), and voice-based
biometrics. There are also non-voice sound driven applica-
tions, such as the music matching service from Shazam [22].
All of these applications require fast acoustic feature extrac-
tion both in time-domain and frequency-domain in order to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM HotMobile’13, February 26–27, 2013, Jekyll Island, Georgia, USA.
Copyright 2013 ACM 978-1-4503-1421-3 ...$10.00.

offer fast, real-time services. While using only the time-
domain acoustic features is sufficient in a limited number of
applications, the frequency-domain features are a must for
a robust and accurate encoding of acoustic signals.

State-of-the-art smartphone applications and platforms
that extract acoustic features are primarily of two kinds.
The first kind records the audio and sends it to a remote
server over the Internet for further processing. This method
has several limitations such as the requirement for an un-
interrupted Internet connectivity and high bandwidth, and
the associated expense of sending a large chunk of audio
data over the cellular network. The second kind, on the
other hand, performs the entire signal processing task inside
the phone. But the limitation of this approach is that in
order for fast and real-time feature extractions, they must
limit the sampling rate to the minimum. For example –
SpeakerSense [14] and SoundSense [15] limit their maximum
sampling rate to 8 KHz. Hence, the quality of sampled
speech suffers from the aliasing problem and the extracted
features are often of low quality [2]. Although a sampling
rate of 8 KHz satisfies the Nyquist criteria for human speech
(300−3300 Hz), practically the higher the sampling rate the
better it is in producing high quality samples. Furthermore,
for non-speech acoustic analysis, a sampling rate of 44.1 KHz
is required to capture the range of frequencies in human
hearing (20 − 20000 Hz). But the problem is – there is no
efficient algorithm that extracts frequency domain acoustic
features inside the phone in real-time at such high sampling
rates.

In this paper, we propose a novel solution to this problem
which enables the extraction of frequency domain acoustic
features inside a smartphone in real-time, without requiring
any support from a remote server even when the sampling
rate is as high as 44.1 KHz. We are inspired by a recent
work [9, 8] coined sparse Fast Fourier Transform (sFFT) –
which is a probabilistic algorithm for obtaining the Fourier
Transformation of time-domain signals that are sparse in the
frequency domain. The algorithm is faster than the fastest
Fourier Transformation algorithm under certain conditions.
Our goal in this paper is to analyze the feasibility of applying
the sFFT to extract a highly accurate and sparse approxi-
mation of a widely used feature for speech, called the Mel-
Frequency Cepstral Coefficients (MFCC) on the phone. Be-
sides speech recognition, MFCC features are widely used in
many other problems such as speaker identification [19], au-
dio similarity measure [10], music information retrieval [13],

and music genre classification. However, we limit our scope
in this work to speech data only.

We perform an empirical study involving 10 participants
(5 male and 5 female participants) where we collect more
than 350 utterances of speech per person, recorded at differ-
ent sampling rates. In our study, we quantify the sparseness
of speech and show that human voice is suitable for apply-
ing sFFT to compute frequency domain acoustic features
efficiently. We analyze the sensitivity of sFFT in approxi-
mating MFCC, and based on this, we design an algorithm
to efficiently extract MFCC features using the sFFT instead
of the traditional FFT. We name this new feature the sparse
MFCC or sMFCC, in short. We experimentally determine
the trade-offs between the approximation error and the ex-
pected speedup of sMFCC.

As a proof of concept, we implement a simple spoken word
recognition application using both MFCC and sMFCC fea-
tures and compare their accuracy and expected running time
on our collected data. As the research is still in progress, we
only implement the MFCC feature extraction on the smart-
phone while the rest of the analysis done on a PC. In future,
we plan to complete the porting of the entire app to the
smartphone. We also plan to explore other types of appli-
cations that require general purpose acoustic feature extrac-
tion on smartphones. The main contributions of this paper
are:
• A study on 10 smartphone users to quantify the sparse-

ness of speech data recorded on smartphones and to an-
alyze the feasibility of using sFFT for frequency domain
feature extraction.

• We describe an efficient algorithm for computing a highly
accurate and sparse approximation of MFCC features
which exploits the sparseness in speech.

• We implement a simple spoken word recognition applica-
tion using both MFCC and sMFCC features, show that
sMFCC is expected to be upto 5.84 times faster and its
accuracy is within 1.1% − 3.9% of that of MFCC, and
determine the conditions under which sMFCC runs in
real-time.

2. BACKGROUND

2.1 Mel-Frequency Cepstral Coefficients
The Mel-Frequency Cestrum Coefficients (MFCC) is one

of the most popular short-term, frequency domain acous-
tic features of speech signals [4]. The MFCC have been
widely used in speech analysis because of their compact rep-
resentation (typically, each speech frame is represented by
a 39-element vector), close resemblance to how human ear
responds to different sound frequencies, and their less sus-
ceptibility to environmental noise.

The MFCC feature extraction starts with the estimation
of power spectrum which is obtained by taking the square of
the absolute values of the FFT coefficients. However, prior
to computing the power spectrum, typically each speech
frame passes through a pre-emphasis filter which is followed
by a windowing process. The log-power spectrum is used
instead of the power-spectrum as human hearing works in
decibel scales. The log-power spectrum then goes through
a filtering process. A filter-bank with around 20 triangu-
lar band-pass filters is applied to reduce the dimensionality.
These filters follow a Mel-scale which is linear up to 1 KHz

and logarithmic for the larger frequencies – resembling hu-
man hearing. Finally, a discrete cosine transform (DCT)
is performed to compress the information and to make the
vectors uncorrelated. Only the lower-order coefficients (typi-
cally 13) are used and the rest are discarded. The 13-MFCCs
plus the deltas and double deltas constitute a 39-element
feature vector for each speech frame.

2.2 Sparse Fast Fourier Transform
The discrete Fourier transform (DFT) is one of the most

significant algorithms in the digital signal processing do-
main. The fastest algorithm that computes DFT of an n-
dimensional signal is O(n logn)-time. However, a recent al-
gorithm [9, 8] coined sparse FFT (sFFT) has broken this
bound for a special case of DFT where the signals are sparse.
A signal is considered sparse if most of its Fourier coeffi-
cients are small or very close to zero. For a small number k
of non-zero Fourier coefficients, sFFT computes the Fourier
transformation in O(k logn)-time.

The basic idea of sFFT is to hash the Fourier coefficients
into a small number of bins. The signal being sparse in the
frequency domain, it is less likely that each bin will have
more than one large coefficient. The binning process is done
in O(B logn) where B is the number of bins – by at first
permuting the time-domain signals and then filtering them.
Each bin at this point ideally has only one large Fourier co-
efficient, and only such ‘lonely’ coefficients are taken into the
solution. The process is repeated Θ(log k) times, each time
varying the bin size B = k/2r where the integer r ∈ [0, log k],
so that all k coefficients are obtained. The overall running
time of the algorithm is dominated by the first iteration, and
hence the time complexity is O(k logn). The algorithm is
probabilistic, but for exact k-sparse signals (i.e. at most k
of the coefficients are significant), the algorithm is optimal,

as long as k = nΩ(1).

3. MOTIVATION
Smartphones allow a fixed number of sampling rates to

capture raw audio signals from the microphone. Ideally the
choice of an appropriate sampling rate should be driven by
the application’s QoS requirements. But often the develop-
ers are forced to choose a lower sampling rate than the de-
sired one due to the limited processing power of the device.
For example, in general-purpose acoustic processing, a 44.1
KHz Nyquist sampling rate is required to capture the range
of frequencies in human hearing (20 − 20000 Hz). Even in
speech processing problems, oversampling at 16 KHz helps
avoid aliasing, improves resolution and reduces noise [23].
But at higher sampling rates, the real-time performance of
the smartphone gets worse and the developers are forced to
select the minimum rate compromising the quality of sam-
pled speech.

Figure 1 compares the time to compute MFCC feature
vectors from audio records of different durations at 3 differ-
ent sampling rates. The experiment is done on a Nexus S
smartphone running Android 2.3 that supports 8 KHz, 22.05
KHz, and 44.1 KHz sampling rates. We see that, the time to
compute MFCC features is always longer than the duration
of the recorded audio when the sampling rate is higher than
8 KHz. For example, the computation of MFCC vectors of
a 4-second recording takes on average 7.02 s at 22.05 KHz,
and 11.85 s at 44.1 KHz. Therefore, at these higher rates,
the application is not capable of real-time performance.

1 2 4 8
0

10

20

30

40

Audio Clip Length (sec)

M
F

C
C

 C
om

pu
ta

tio
n

T
im

e
(s

ec
)

8 KHz

22.05 KHz

44.1 KHz

Figure 1: The MFCC computation time is 2−4 times
longer than the audio clip length when the sampling
rate is high.

Our goal is therefore to investigate the problem: whether
or not it is possible to compute MFCC feature vectors in
real-time on a smartphone when the data rate is high? In
an attempt to answer this question, we study the nature of
human speech recorded on a smartphone. We hypothesize
that the sparseness in speech can be exploited to compute
a close approximation of MFCC feature vectors on a smart-
phone in real-time. While the focus of this work is on speech,
an analysis of the general-purpose acoustic signals based on
similar principles is under investigation and we leave it as
our future work.

4. THE SPARSE MFCC ALGORITHM
The idea of sparse MFCC algorithm is to compute a sparse

approximation of MFCC features from a given frame of dis-
crete time-domain signals xn of length n. The algorithm
uses a modified version of sFFT as a subroutine. We de-
note the new feature by sMFCC to signify its relation to
sFFT. Like the sFFT to FFT, sMFCC is an approximation
to MFCC, where the approximation error is defined by,

error(k) = 1− ˆMFCC · ˆsMFCC(k) (1)

where, ˆMFCC and ˆsMFCC(k) are unit vectors, and
their scalar product is subtracted from unity to obtain the
approximation error. sMFCC is expressed as a function of
the sparseness parameter k, which is one of the key param-
eters to the sFFT algorithm. The following two sections
describe the sMFCC extraction algorithm in detail.

4.1 Estimation of Sparseness
Since the value of k is a key input to the sFFT algorithm

and sFFT is used in our computation, the first step of sM-
FCC algorithm is to find the optimum value of k, denoted
by k∗, for which the MFCC approximation error is within a
small, non-negative threshold δ, i.e.,

k∗ = min
error(k)<δ

k (2)

In order to obtain k∗, we first compute the MFCC using
the standard FFT algorithm which runs in O(n logn). We
then perform an iterative O(n) search for k ∈ [1, n] until we
find the optimum k∗. The computation of sMFCC(k), for
k ∈ [1, n], is optimized by precomputation. We precompute
the FFT, keep the FFT coefficients sorted in non-increasing
order, and take only the largest k coefficients while making
other coefficients zero – while computing sMFCC(k). Note

that, this step of our algorithm does not use sFFT and runs
in O(n logn). The shape of the function error(k) (Figure 4
in Section 6.2) however suggests that, instead of a linear
search over all values of k, we could expedite the process
with a binary search. However, k is estimated once per
utterance, i.e. using the first 5−10 frames once voice activity
is detected, and hence the amortized cost of this step is not
significant.

4.2 Computing sMFCC
Once we obtain the sparsity parameter k, we compute the

sMFCC for each frame in 3 steps which we describe next.

Pre-emphasis

Filtering

Pre-processing

Frame

Blocking

Hamming

Windowing

MFCC

Mel-Bandpass

Filtering

DCT

Log

Energy

Post-processing

Delta

Cepstrum

Double

Delta Cepst.

sFFT (k)

Figure 2: The computational tasks involved in the
sMFCC feature extraction process is shown.

Pre-processing: The time-domain signals are first passed
through a high-pass pre-emphasis filter (Eq. 3) to amplify
the high-frequency formants that are suppressed in speech.
We then segment the signals into frames of 64 ms with an
overlap of 1/3 of the frame size. A hamming window (Eq.
4) is applied to each frame to ensure the continuity between
the first and last points which is required for FFT.

x[i] = x[i]− 0.95× x[i− 1] (3)

hamm(i) = 0.54− 0.46 cos(
2πi

n− 1
) (4)

MFCC: We modify the sFFT algorithm to fit into our
algorithm. Recall that, sFFT tries to extract k Fourier co-
efficients in log k iterations to guarantee the retrieval of all
k coefficients. However, in our experience, sFFT returns
most (at least 75%) of the k coefficients in a single itera-
tion. We, therefore, modify the sFFT by running it for only
a single iteration with a slightly larger sparseness parame-
ter of k = min(n, d4k∗/3e) to speed up the process. Once
the Fourier coefficients are obtained, we follow the standard
procedure of MFCC [5]. We apply 20 triangular band-pass
filters (called Mel-banking) to obtain 20 log energy terms,
perform a DCT to compress them, and take the first 13 co-
efficients to constitute a 13-element sMFCC vector M .

Post-processing: The 13-element sMFCC vector is aug-
mented to include the delta and double delta cepstrums to
add dynamic information into the feature vector, and thus
we obtain a 39-element feature vector.The deltas ∆ and dou-
ble deltas ∆2 are computed using the following two equa-
tions,

∆i = Mi+2 −Mi−2 (5)

∆2
i = Mi+3 −Mi−1 −Mi+1 +Mi−3 (6)

5. EXPERIMENTAL SETUP
We perform an empirical study involving 10 volunteers, in

which, we record their speech using a smartphone in home
environments. Each participant was given a list of 86 En-
glish words and a paragraph from a book. The wordlist
includes 10 digits, 26 characters of the English alphabet, 25
mono-syllable and 25 poly-syllable words. Participants were
asked to utter each word 4-times – clearly and at regular
pace. There were about a 2-second gap between two spo-
ken words so that we could extract and model each word
separately. The group of participants is comprised of under-
graduate and graduate students, researchers, professionals,
and their family members. Their ages are in the range of
20− 60, and they have diversities in speaking style and eth-
nicity. The smartphone we used during the data collection is
a Nexus S phone running Android 2.3.6 OS. It has a 1 GHz
Cortex A8 processor, 512 MB RAM, 1 GB internal storage,
and 13.31 GB USB storage. The execution time of MFCC
is measured on the smartphone using Android’s API, and
speedup of sMFCC is the ratio of running times of MFCC
and sMFCC.

6. EXPERIMENTAL RESULTS
We conduct four sets of experiments. First, we quantify

the sparseness of speech in our empirical dataset. Second,
we show the approximation error in sMFCC. Third, we es-
tablish the condition for speedup in sMFCC. Finally, we
describe a simple spoken word recognizer to quantify the
cost and benefits of sMFCC over MFCC.

6.1 Sparseness in Speech
The sparseness of signal is defined by the number of neg-

ligible Fourier coefficients in its spectrum. A coefficient is
considered negligible if it contains a very small amount of
signal power. Sparseness in audio signals depends on the
audio type. In this paper, we study clean speech signals
only.

0 25 50 75 100
0.96

0.98

1

X: 3
Y: 0.9807

Power (Percentage)

C
D

F

Figure 3: 98.07% of the Fourier coefficients in our
dataset contains only 3% or less power.

Figure 3 shows the cumulative distribution function (CDF)
of power in the Fourier spectrum of the utterances in our
dataset. To obtain this plot, we compute the FFT of all
the utterances in our dataset, take the squared magnitude
of FFT to obtain the signal power, construct a 100-bin his-
togram where each bin corresponds to a range of powers,
compute the fraction of Fourier coefficients that are in each
bin, and compute the CDF. Each point on the plot tells us,
what fraction of the signals have power less than or equal to
the range corresponding to the X-coordinate. For example,
the marked point on the plot denotes that 98.07% of the

Fourier coefficients in each utterance of our dataset contains
only 3% or less power. The rest 1.93% coefficients that are
significant are permuted (see [9, 8] for the details) in the
frequency domain so that the spectrum becomes extremely
sparse and ideal for the application of sFFT.

6.2 Sparse Approximation Error in sMFCC
The quality of sMFCC features depends on the choice of

an appropriate k. The larger the value of k, the closer it
is in approximating MFCC. In this experiment, we analyze
the sensitivity of k to the MFCC approximation error.

0 0.02 0.04 0.06 0.08 0.1

0.25

0.5

0.75

1

k/n

A
pp

ro
xi

m
at

io
n

E
rr

or

Figure 4: The higher the value of k, the better ap-
proximation of MFCC we get.

Figure 4 shows the approximation error for the range of
sparseness k ∈ [0.00625, 0.125]. We consider this range since
it contains most of the significant Fourier coefficients and is
also important for the discussion of speedup in Section 6.3.
Each point on the plot corresponds to the mean approxima-
tion error of sMFCC for a given k, where the mean is taken
over all 64 ms frames in all the utterances in our dataset.
The frame size is n = 4096 samples, which is the next power
of 2 that holds a 64 ms frame at 44.1 KHz. This figure guides
us in choosing the parameter k in our sMFCC computation
algorithm if we want to keep the MFCC approximation er-
ror below a desired threshold. A very close approximation
(< 1% error) is possible by choosing k/n = 0.2 or higher.
However, such close approximation may not be required in
an actual application which we will see in Section 6.4.1. The
reason is that human speech being sparse, even at a smaller
k/n ratio, the absolute value of approximation error is not
high.

6.3 Speedup in sMFCC
Sparseness in speech is the source of expected speedup

in sFFT and hence in sMFCC as well. Figure 5 shows
the speedup in sMFCC for the range of sparseness k ∈
[0.00625, 0.125]. We observe the maximum speedup of 5.84
when the sparsity parameter is at its minimum. As we con-
sider more and more FFT coefficients while computing sM-
FCC, the speedup decreases and after k/n = 6.769% the
regular MFCC becomes faster than its sparse counterpart.
This limitation comes from the fundamental bound of sFFT,
which says, sFFT is faster than FFT when k/n < 3% [8].
However, our modified version of sFFT is faster for the rea-
son we discussed earlier in Section 4.2, and hence we have a
larger bound of 6.796%.

6.4 A Simple Spoken Word Recognizer
The goal of this experiment is to analyze the tradeoff be-

tween the accuracy and expected speedup of sMFCC fea-
tures in an application scenario. To do so, we implement a

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

X: 0.06769
Y: 1.013

k/n

S
pe

ed
up

Figure 5: sMFCC has a better running time than
MFCC as long as the sparseness k/n < 6.769%.

simple spoken word recognizer that is essentially a speech-
to-text program for a single word from a fixed vocabulary.
The recognizer consists of two parts: a smartphone app and
a word recognizer running on a PC. The word recognizer
running on a PC is for proof of concept, our envisioned use-
case is however to run it on the phone.

At first, the user turns on the application on the phone and
presses the ‘speak now’ button. The smartphone then starts
sampling the microphone at 44.1 KHz and keeps producing
speech frames until the user presses the ‘stop’ button. Each
frame goes through the MFCC feature extraction process
which happens in real-time. Each spoken word produces a
number of frames, and a 39-element MFCC feature vector is
obtained for each frame. We take the mean and the standard
deviation of each of the 39 MFCC coefficients over all frames
to obtain a single 78-element feature vector which is used in
the classification step. The feature vectors are then sent to a
PC for classification and further analysis. The ground truth
is obtained by taking notes manually. We train a Support
Vector Machine (SVM) classifier in order to recognize the
words. A 3-fold cross validation is used to determine the
accuracy of the classifier where 75% of each user’s data is
taken for training and the rest is used for validation.

6.4.1 Accuracy
We compare the accuracy of the sMFCC-based SVM clas-

sifier with that of the MFCC-based one. The baseline MFCC-
based classifier is essentially a special case of sMFCC-based
one with a sparseness k/n = 1, and has a recognition accu-
racy of 85.85%. Figure 6 compares the recognition accuracy
of sMFCC-based classifier to the baseline for the same range
of k/n we have been using throughout the paper. We ob-
serve that, the accuracy of sMFCC-based classifier is initially
3.9% lower than the baseline, and the two accuracies be-
comes practically identical once k/n reaches 0.12. However,
from the discussion in Section 6.3 we know that, sMFCC
runs faster than MFCC only when the k/n ratio is within
the 6.679% bound. For this boundary case, sMFCC shows
an accuracy of 84.75%, which is only 1.1% lower than the
baseline. In summary, with sMFCC-based classifier for our
simple word recognition problem, we can achieve a faster
running time than the baseline with a very small (1.1%-
3.9%) sacrifice in recognition accuracy.

6.4.2 Computation Time
The MFCC feature extraction process runs once per spo-

ken word. Hence, the execution time depends on the dura-
tion of the spoken word which varies from person-to-person
and from word-to-word. In our dataset, the duration of

0 0.02 0.04 0.06 0.08 0.1
80

85

90

k/n

R
ec

og
ni

tio
n

A
cc

ur
ac

y
(%

)

MFCC sMFCC

speedup
bound

Figure 6: The recognition accuracy of sMFCC-based
classifier is within 1.1% − 3.9% of the MFCC-based
one inside the speedup zone.

speech ranges from the minimum of 400 ms to the maxi-
mum of 2.88 s. We, therefore, compute the expected feature
extraction time E[φfeat(di)] using the following equation,

E[φfeat(di)] =
∑

fi × φfeat(di) (7)

where, di is the duration of speech, fi is the frequency
of utterances with duration di, and φfeat(di) is the feature
extraction time (either MFCC or sMFCC).

0 0.02 0.04 0.06 0.08 0.1
0

3

6

9

k/n

T
im

e
(S

ec
)

Speech
Duration

MFCC

sMFCC

Figure 7: The sMFCC feature extraction algorithm
runs in real-time as long as k/n < 4.835%.

Figure 7 shows the mean speech duration and the expected
computation times of MFCC and sMFCC feature extrac-
tion process. We see that, the expected MFCC computation
time is 4.21 s, which is about 2 times higher than the du-
ration of speech (2.11 s). On the other hand, the expected
computation time for sMFCC varies with k/n: it increases
as k/n increases, is lower than the duration of speech as
long as k/n < 4.835%, and crosses the MFCC computation
time when k/n reaches the speedup limit of 6.679%. Hence,
applications that require fast and real-time feature extrac-
tion should set the k parameter such that k/n is below the
real-time limit of 4.835%. At this limit, the accuracy of
the sMFCC-based word recognizer is 83.97%, which is only
1.88% lower than the accuracy of the baseline MFCC-based
classifier.

Discussion: We show the tradeoff between accuracy and
speedup for single word recognition problem from a limited
vocabulary. The developer of the app should decide what
k/n value to pick for his application. For different apps, the
most suitable value of k/n will be different, and need to be
chosen from a similar tradeoff curve.

7. RELATED WORK
Sparseness in data is exploited in many application do-

mains such as learning decision trees [12], compressed sens-

ing [6], analysis of Boolean functions [21], large scale time
series data analysis [18], similarity search [1], and homoge-
neous multi-scale problems [3]. In our work, we perform an
empirical study on the sparseness in speech data collected
on smartphones with the goal of exploiting the sparseness
to expedite the MFCC feature computation.

MFCC is a widely used feature for analyzing acoustic sig-
nals [5, 17, 19, 13, 10]. MFCC is used for spoken word recog-
nition [5], voice recognition [17], speaker identification [19],
music modeling [13], and music similarity measure [10]. [7]
presents a nice comparison of different MFCC implementa-
tions. However, in our work, we introduce a sparse MFCC
(sMFCC) which is a sparse approximation of MFCC and is
efficient to extract.

Comparison of several speech recognition techniques on
mobile devices are described in [11]. [14] performs speaker
identification, [15] classifies sound into voice, music or am-
bient sound, and [16] classifies conversion. But all of these
applications limit their sampling rate to its minimum. [20]
uses a high sampling rate to extract heart beats from acous-
tic signal, but the system is not fully real-time. In this work,
we analyze the feasibility of using sMFCC features that is
expected to run in real-time and at higher data rates.

8. CONCLUSION AND FUTURE WORK
In this work, we propose an algorithm that exploits sparse-

ness in speech to extract a highly accurate and sparse ap-
proximation of MFCC features (sMFCC) efficiently inside a
smartphone in real-time when the sampling rate is as high as
44.1 KHz. We implement a simple spoken word recognition
application using both MFCC and sMFCC features, show
that sMFCC is upto 5.84 times faster than MFCC and its
accuracy is within 1.1%−3.9% of that of MFCC, and deter-
mine the conditions under which sMFCC runs in real-time.

Our future work includes three main directions. First, we
plan to improve our empirical study by adding more partici-
pants, investigating the continuous speech recognition prob-
lem rather than just single word recognition, incorporating
more complex classifiers, and considering background noise.
Second, we plan to complete porting the entire application
to the smartphone which includes on-line training and clas-
sification modules. Third, we plan to explore other types of
sounds such as music and environmental sounds, and other
acoustic features.

Acknowledgments
This work was supported, in part, by NSF Grant EECS-
0901686.

9. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient

similarity search in sequence databases. In International
Conference on Foundations of Data Organization and
Algorithms, pages 69–84, 1993.

[2] K. Brandenburg. Perceptual Coding of High Quality Digital
Audio, volume 437. Springer US, 2002.

[3] I. Daubechies, O. Runborg, and J. Zou. A sparse spectral
method for homogenization multiscale problems.
Multi-scale Modeling Simulation, 6(3):711–740, 2007.

[4] S. Davis and P. Mermelstein. Comparison of parametric
representations for monosyllabic word recognition in
continuously spoken sentences. Acoustics, Speech and
Signal Processing, IEEE Transactions on, 28(4):357 – 366,
aug 1980.

[5] S. Davis and P. Mermelstein. Comparison of parametric
representations for monosyllabic word recognition in

continuously spoken sentences. Acoustics, Speech and
Signal Processing, IEEE Transactions on, 28(4):357 – 366,
aug 1980.

[6] D. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[7] Z. Fang, Z. Guoliang, and S. Zhanjiang. Comparison of
different implementations of mfcc. Journal of Computer
Science and Technology, 16(6):582–589, nov 2001.

[8] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly
optimal sparse fourier transform. In 44th ACM Symposium
on Theory of Computing 2012 (STOC ’12), NewYork, NY.

[9] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple
and practical algorithm for sparse fourier transform. In
ACM-SIAM Symposium on Discrete Algorithms 2012
(SODA ’12), Kyoto, Japan.

[10] J. Jensen, M. Christensen, M. Murthi, and S. Jensen.
Evaluation of mfcc estimation techniques for music
similarity. In European Signal Processing Conference 2006
(EUSIPCO ’06).

[11] A. Kumar, A. Tewari, S. Horrigan, M. Kam, F. Metze, and
J. Canny. Rethinking speech recognition on mobile devices.
In 2nd International Workshop on International User
Interfaces for Developing Regions (IUI4DR), Palo Alto,
CA, 2011.

[12] E. Kushilevitz and Y. Mansour. Learning decision trees
using the fourier spectrum. In ACM Symposium on Theory
of Computing 1991 (STOC ’91).

[13] B. Logan. Mel frequency cepstral coefficients for music
modeling. In International Symposium on Music
Information Retrieval 2000 (ISMIR ’10).

[14] H. Lu, A. J. B. Brush, B. Priyantha, A. K. Karlson, and
J. Liu. Speakersense: energy efficient unobtrusive speaker
identification on mobile phones. In 9th International
Conference on Pervasive Computing 2011 (Pervasive ’11),
pages 188–205, San Francisco, CA.

[15] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T.
Campbell. Soundsense: scalable sound sensing for
people-centric applications on mobile phones. In 7th
International Conference on Mobile Systems, Applications,
and Services 2009 (MobiSys ’09), pages 165–178, Poland.

[16] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S. B. Eisenman, X. Zheng, and A. T.
Campbell. Sensing meets mobile social networks: the
design, implementation and evaluation of the cenceme
application. In 6th ACM conference on Embedded network
sensor systems 2008 (SenSys ’08), pages 337–350, Raleigh,
NC, USA.

[17] L. Muda, M. Begam, and I. Elamvazuthi. Voice recognition
algorithms using mel frequency cepstral coefficient (mfcc)
and dynamic time warping (dtw) techniques. Journal of
Computing, 2(3):138–143, 2010.

[18] A. Mueen, S. Nath, and J. Liu. Fast approximate
correlation for massive time series data. In ACM SIGMOD
International Conference on Management of Data 2012
(SIGMOD ’10), pages 171–182, Indiana, USA.

[19] K. Murty and B. Yegnanarayana. Combining evidence from
residual phase and mfcc features for speaker recognition.
Signal Processing Letters, IEEE, 13(1):52 – 55, jan. 2006.

[20] S. Nirjon, R. Dickerson, Q. Li, P. Asare, J. Stankovic,
D. Hong, B. Zhang, G. Shen, X. Jiang, and F. Zhao.
Musicalheart: A hearty way of listening to music. In 10th
ACM Conference on Embedded Networked Sensor Systems
2012 (SenSys ’12), Toronto, Canada.

[21] R. O’Donnell. Some topics in analysis of boolean functions
(tutorial). In ACM Symposium on Theory of Computing
2008 (STOC ’08).

[22] A. Wang. An industrial-strength audio search algorithm. In
International Symposium on Music Information Retrieval
2003 (ISMIR ’03).

[23] J. Watkinson. The Art of Digital Audio. Newton, MA,
USA, 1993.

