
SoundSifter: Mitigating Overhearing of Continuous
Listening Devices

Md Tamzeed Islam, Bashima Islam, and Shahriar Nirjon
Department of Computer Science

University of North Carolina at Chapel Hill
{tamzeed,bashima,nirjon}@cs.unc.edu

ABSTRACT
In this paper, we study the overhearing problem of continu-
ous acoustic sensing devices such as Amazon Echo, Google
Home, or such voice-enabled home hubs, and develop a sys-
tem called SoundSifter that mitigates personal or contextual
information leakage due to the presence of unwanted sound
sources in the acoustic environment. Instead of proposing
modifications to existing home hubs, we build an indepen-
dent embedded system that connects to a home hub via its
audio input. Considering the aesthetics of home hubs, we en-
vision SoundSifter as a smart sleeve or a cover for these de-
vices. SoundSifter has necessary hardware and software to
capture the audio, isolate signals from distinct sound sources,
filter out signals that are from unwanted sources, and process
the signals to enforce policies such as personalization before
the signals enter into an untrusted system like Amazon Echo
or Google Home. We conduct empirical and real-world ex-
periments to demonstrate that SoundSifter runs in real-time,
is noise resilient, and supports selective and personalized
voice commands that commercial voice-enable home hubs
do not.

1. INTRODUCTION
Having reached the milestone of human-level speech

understanding by machines, continuous listening devices
are now becoming ubiquitous. Today, it is possible for
an embedded device to continuously capture, process,
and interpret acoustic signals in real-time. Tech giants
like Apple, Microsoft, Google, and Amazon have their
own versions of continuous audio sensing and interpre-
tation systems. Apple’s Siri [9] and Microsoft’s Cor-
tana [15] understand what we say, and act on them to
fetch us a web page, schedule a meeting, find the best
sushi in town, or tell us a joke. Google and Amazon
have gone one step further. Android’s ‘OK Google’ fea-
ture [12], Amazon’s Echo [2], and Google Home [7]
devices do not even require user interactions such as
touches or button presses. Although these devices are
activated upon a hot-word, in the process, they are con-
tinuously listening to everything. It is not hard to imag-
ine that sooner or later someone will be hacking into

these cloud-connected systems and will be listening to
every conversation we are having at our home, which is
one of our most private places.

Furthermore, there is a recent trend in the IoT world
that many third-party, commercial IoT devices are now
becoming voice enabled by using the APIs offered by
the voice-controlled personal assistant devices like Echo
or Google Home1. For example, many home appliances
and web services such as Google Nest thermostats [8],
Philips Hue lights [14], Belkin WeMo switches [5], TP-
Link smart plugs [17], Uber, and Amazon ordering are
now ‘Alexa-Enabled’ – which means, we can send voice
commands to an Amazon Echo device to actuate elec-
trical devices and home appliances. Because it enables
actuation and control of real-world entities, a poten-
tial danger is that they can be activated by false com-
mands (e.g., sounds from a TV) and/or unauthorized
commands (e.g., an outsider commands someone’s home
hub to control his home appliances, places a large pur-
chase on his Amazon account, or calls a Uber driver).
A careful scrutiny of voice commands is therefore a ne-
cessity to ensure safety and security.

Unfortunately, none of the existing voice-enabled home
hub devices take any of these vulnerabilities into ac-
count while processing the audio. They merely ap-
ply standard noise-cancellation [20, 48, 50] to suppress
non-speech background sounds in order to improve the
signal-to-noise ratio. However, this process alone can-
not eliminate acoustic signals from unwanted acoustic
sources that happen to be present in the environment
and overlaps in time and/or frequency with a user’s
voice signals. There is also no support for personal-
ization of speech commands in these devices.

In this paper, we study the ‘overhearing’ problem of
acoustic sensing devices, and develop a system that mit-
igates personal or contextual information leakage due to
the presence of unwanted sound sources in the acoustic
environment. Instead of developing a special-purpose,
application-specific embedded system that works only
for voice commands, we address the problem in a generic

1Henceforth, we will refer to these devices interchangeably
as smart hubs, home hubs, or simply hubs.

1

setting where acoustic sources are either ‘primary’ (e.g.,
voice of a user is a primary source for home hubs) and
‘secondary’ (e.g., any unwanted sound source). Fur-
thermore, instead of proposing modifications to existing
home hubs, we build an independent embedded system
that connects to a home hub via its audio input. Con-
sidering the aesthetics of home hubs, we envision the
proposed system as a smart sleeve or a cover for these
home hubs. The proposed system has necessary hard-
ware and software to capture the audio, isolate signals
from distinct sound sources, filter out signals that are
from unwanted sources, and process the signals to en-
force policies such as personalization before the signals
enter into an untrusted system like Amazon Echo or
Google Home. The device is programmable, i.e., an
end user is able to configure it to use in different usage
scenarios.

Developing such an embedded system poses several
challenges. First, in order to isolate acoustic sources,
we are required to use an array of microphones. Con-
tinuously sampling multiple microphones at high rates,
at all times, and then processing them in real-time is ex-
tremely CPU, memory, and time demanding for resource-
constrained systems. Second, to train the system to
distinguish primary and secondary sources, we are re-
quired to collect audio samples from an end user in or-
der to create person or context specific acoustic models.
To the users, it would be an inconvenience if we require
them to record a large number of audio samples for each
type of sound in their home. Third, because no acoustic
source separation is perfect, there will always be residu-
als of secondary sources after the source separation has
been completed. These residuals contains enough in-
formation to infer personal or contextual information,
and hence, they must be eliminated to ensure protection
against information leakage.

In this paper, we address all these challenges and de-
velop a complete system called the SoundSifter. The
hardware of SoundSifter consists of a low-cost, open-
source, embedded platform that drives an array of mi-
crophones at variable rates. Five software modules per-
forms five major acoustic processing tasks, i.e. to or-
chestrate the sampling rates of the microphones, to align
the signals, to isolate sound sources, to identify primary
source, and to post process the stream to remove resid-
uals and to perform speaker identification. At the end
of the processing, audio data is streamed into the home
hub. We thoroughly evaluate the system components,
algorithms, and the full system using empirical data as
well as real deployment scenarios in multiple home en-
vironments.

The contributions of this paper are the following:

• We describe SoundSifter, the first system that ad-
dresses the overhearing problem of voice-enabled
personal assistant devices like Amazon Echo, and

provides an efficient, pragmatic solution to prob-
lems such as information leakage, and unautho-
rized or false commands due to the presence of
unwanted sound sources in the environment.

• We devise an algorithm that predicts a spectral
property of incoming audio to control the sampling
rates of the microphone array, in order to achieve
an efficient acoustic source separation.

• We devise an algorithm that estimates noise di-
rectly from the secondary sources and nullifies resid-
uals of secondary signals from the primary source.

• We conduct empirical and real-world experiments
to demonstrate that SoundSifter runs in real-time,
is noise resilient, and supports selective and per-
sonalized voice commands that commercial voice-
enable home hubs do not.

2. BACKGROUND
We provide backgrounds on source separation, a spe-

cific source separation algorithm, and terminologies that
are used later in the paper.

2.1 Source Separation
The term ‘blind source separation’ [24] refers to the

generic problem of retrieving N unobserved sources only
from the knowledge of P observed mixtures of these
sources. The problem was first formulated to model
neural processing of human brains [32], and has later
been extended and studied in many other contexts such
as biomedical applications [40, 58], communication [25,
27], finance [21, 23], security [46, 47], and acoustics [31,
59, 63]. To the acoustic processing community, this
problem is popularly known as the ‘cocktail party prob-
lem’, where sources represent human voices.

A
(P x N)

s(t)
(N x 1) B

(P x N)

x(t)
(P x 1)

y(t)
(N x 1)

mixture separator

Figure 1: Generic model for source separation.

In this paper, all sources are acoustic, and each mi-
crophone observes a weighted combination of N sound
sources. Assuming s(t) = (s1 (t), ..., sN (t))T ∈ RN de-
notes the sources, x(t) = (x1 (t), ..., xP (t))T ∈ RP de-
notes the observed mixtures, (.)T stands for matrix trans-
pose operation, and A denotes an unknown mapping
from RN to RP, we can write: ∀t ∈ Z x(t) = As(t).

The equation above is of a linear instantaneous model,
which is the most commonly used model for source sep-
aration. This does not explicitly model noise, as they
can be implicitly modeled as an additional source. In

2

Figure 1, A is a mixing matrix that mixes N acoustic
sources to produce P output streams. Retrieving the
sources is equivalent to finding B, the inverse or sep-
arator matrix. The separated outputs are expressed
as: ∀t ∈ Z y(t) = Bx(t). When N ≤ P, A is invert-
ible. But for N > P, additional assumptions (e.g., spar-
sity [19]) may be required.

2.2 Fast ICA
Solutions to source separation problem, under differ-

ent assumptions on sources and mixing systems, can
be found in [23, 30, 38]. Independent Component Anal-
ysis (ICA) is one of the most popular solutions. This
approach assumes that the acoustic sources are statisti-
cally independent from each other – which is in general
true for our application scenario. For example, voice
commands to an Amazon Echo device and unwanted
background sounds are unlikely to have any statistical
correlations among themselves.

Fast ICA [36] is a popular, efficient independent com-
ponent analysis-based source separation algorithm. It
isolates the sources by iteratively maximizing a mea-
sure of mutual independence among the sources. In
Fast ICA, non-Gaussianity [24] of the sources is taken
as the measure.

Using matrix notation, x(t) is expressed as X ∈ RP×T.
FastICA iteratively updates a weight vector W ∈ RP to
maximize non-Gaussianity of the projection WTX using
the following two steps in a loop:

W+ ← E{Xφ(WTX)} − E{φ′(WTX)}W
W←W+/ ||W+||

(1)

Here, φ(x) = tanh(x), φ′(x) is its derivative, and E{}
is average over columns of a matrix. W is initialized
to a random vector, and the loop stops when there is
no significant change in it. Note that, for simplicity,
we only show how to isolate one source in Equation 1;
for multiple sources, this needs to be repeated for each
source. We also omit the preprocessing steps that in-
volves prewhitening [24] matrix X.

2.3 Measure of Residual Signals
Because no source separation is perfect, there are al-

ways residues of secondary sources within the isolated
steam of audio that is supposed to carry signals from
the primary source only. We use a metric to quantify
this residual using the following equation:

ξi = ||xi(t)− yi(t)||2 (2)

Here, ξi denotes the amount of residuals in the ith source
after source separation, which is expressed as the l2-
norm of the difference between primary signals before
and after source separation. We use this metric in our
evaluations to quantify the quality of source separation.

3. OVERVIEW OF SOUNDSIFTER
SoundSifter is motivated by the need of a smart acous-

tic filter that inspects audio signals and takes proper ac-
tions such as filtering sounds from unwanted secondary
sources and checking the content of primary signals be-
fore letting them into a voice-enabled home hub or any
such continuous listening devices.

SoundSifter connects to a home hub or a mobile de-
vice’s audio jack, and can be thought of as an extension
to their on-board audio I/O subsystem. It captures and
processes all incoming audio streams, isolates audio sig-
nals from distinct sources, identifies and blocks out any
sound that has not been labeled ‘primary’ by a user dur-
ing its installation, and only lets processed audio enter
into a hub for further application-specific processing.

Sound
Sifter

(a)

Post
Processing

1 2

P
ro

g
ra

m
m

in
g

 I
n

te
rf

a
ce

configs

models

(b)

P

audio out
(to audio jack)

mic
spkr

mic
array

Model
Generator

Source
Separator

...

BT Audio I/O
Controller

Figure 2: (a) System interface, and (b) block diagram
of SoundSifter.

3.1 Basic Workflow
Figure 2(a) shows how SoundSifter sits between audio

sources and a home hub. Further details of its internal
processing blocks are shown in Figure 2(b). The system
has an Audio I/O Controller that controls an array of
microphones (required for source separation), a speaker,
and Bluetooth and audio jack to support external audio
I/O. The Source Separator executes the acoustic source
separation algorithm by controlling the microphones via
the audio I/O controller and using precomputed acous-
tic models. The Post Processing module further filters
and obfuscates the already separated primary stream to
eliminate traces of residuals from other sources and to
enforce policies (read from a configuration file) such as
personalized commands. Finally, the processed audio
output is let go into the home hub via the audio jack.

3.2 Initial Setup and Programming
SoundSifter needs to be programmed once for each

3

use case (described in the next section). Programming
the device essentially means creating acoustic models
for each type of primary sounds involved in a scenario.
Because these sounds are often user- or home- specific,
this process requires an active engagement of a user.
To make the process simple, a user is provided with a
mobile app that is as easy as using a media player. The
mobile app connects to SoundSifter over Bluetooth, and
interacts with it by sending programming commands
and receiving responses. No audio data are exchanged
between the devices.

In the app, the user is guided to send commands to
SoundSifter to record 10s − 30s audio for each type of
primary sound, label them, and specify in which sce-
nario they will be used. The system also needs some
examples of a few common types of secondary sounds for
the application scenario. However, it does not require a
user to record and label all possible secondary sounds.
We empirically determined that as long as SoundSifter
has 2-3 types of secondary sounds per use case, it is ca-
pable of detecting primary vs secondary sounds with a
high accuracy and a negligible false positive rate.

Once the recording and labeling phase is over, Sound-
Sifter uses an algorithm to create acoustic models, deletes
all raw audio data, and only the labeled models are
stored inside the device in a configuration file.

3.3 Usage Scenarios
We describe two motivating scenarios for SoundSifter

that are specific to voice-controlled home hubs.
Voice-only mode: Continuous listening devices of

today hear everything in their surrounding acoustic en-
vironment. The goal of voice-only mode is to ensure
that only speech signals enter into these devices while
all other sound sources in a home environment such as
sounds from TV, appliances, non-voice human sounds
such as laughter, crying, coughing, sounds of an activity
such as cooking, cleaning, etc. are completely filtered
out ofthe system. This is achieved in SoundSifter by
using a combination of source separation, recognition,
and suppression.

Personalization: Command personalization may be
of multiple types. Firstly, voice commands containing
an exact sequence of words or an utterance. Secondly,
voice commands that contain a certain keyword or a
set of keywords in it. Third, voice commands of a
certain person. These are achievable by first applying
the voice-only mode, and then performing additional
acoustic processing such as speech-to-text and speaker
identification. Although we only mention home hub re-
lated usage scenarios of SoundSifter in this section, the
generic notion of primary and secondary sound allows
us to configure the system for other applications where
it can filter in/out different primary/secondary sounds
as well. Furthermore, we did not implement a speech-

to-text converter in our system due to time constraints,
which we leave as a future work.

4. STUDYING THE PROBLEM
Prior to the development of SoundSifter, we perform

rigorous studies and experiments to understand the na-
ture of the challenge.

4.1 Need for Source Separation
As an alternative to source separation, we looked into

simpler solutions such as filtering and noise cancellation.
However, those attempts failed since the sounds that
may be present in the environment overlap with one
another in the frequency domain.

0 1 2 3 4 5

Frequency (KHz)

0

1

2

3

M
ag

ni
tu

de
 (

10
-3

) Doorbell
Infant
Music
Snoring
Voice
Wheeze

Figure 3: Frequency plots of variety of sounds.

In Figure 3 we plot frequency characteristics of a se-
lected set of sounds. For example, speech (< 4 KHz)
covers the full range of snoring (< 1.5 KHz) and asth-
matic wheeze (< 1.3 KHz). Crying infants and door-
bell sounds range from 500 Hz to 1.6 KHz and 4.2
KHz, respectively. Music overlaps with all sounds. Be-
sides these, we also analyzed home appliances such as
blender, washing machine, door slams, toilet flushes,
speech signals of different sexes and age groups, and
asthmatic crackling, and came to the conclusion that
spatial information is the most effective in identifying
and isolating primary information containing signals from
other types of unwanted sounds in a general purpose
setting.

4.2 Number of Microphones
For an effective source separation, we are required to

use an array of microphones. In theory, the number of
microphones should equal to the number of simultane-
ously active sources. However, for sparse sources like
audio, source separation can be performed with less.

To determine an adequate number of microphones for
source separation, we perform an experiment where we
use an array of five microphones which captures audio
signals from 2–5 simultaneously active sources: voice
(primary sound), ringing phone, piano, songs, and tele-
vision. Figure 4 shows the quality of source separation
in terms of residuals (the less the better) as we vary
the number of microphones as well as the number of

4

0
0.1
0.2
0.3
0.4

1 2 3 4 5 6No
ise

	R
es
id
ua
l	(
ξ)

Number	 of	Microphones

Figure 4: Source separation error for different number
of microphones.

active sources. We observe that amount of residuals re-
duces with more sources. However, the reduction is not
great for more than four microphones. Hence, we de-
cide to use four microphones in our system and use an
additional noise removal step to nullify the remaining
residuals.

4.3 Benefit of Rate Adaptation
According to the Nyquist theorem [53], the sampling

rate of each microphone must be at least twice of the
maximum frequency of any source. However, sampling
an array of microphones at a very high rate costs sig-
nificant CPU, memory, and power consumption.

10

20

30

40

50

0 10 20 30 40 50C
P

U
 U

sa
ge

 (
%

)

Sampling Rate (KHz)

Figure 5: CPU usage increases with sampling rate.

To validate this, we conduct an experiment using an
ARM Cortex A8-based microcontroller. In Figure 5,
we observe that as the sampling rate is increased, CPU
usage increases sharply. Memory consumption also in-
creases from 22 KB to 704 KB as we vary the sampling
rate. Based on this observation, we decide not to sample
the microphones at the highest rate at all times; instead,
we adopt a predictive scheme where we probabilistically
choose a sufficient sampling rate for the microphone ar-
ray based on previous knowledge on sound sources and
signals that the system have just seen.

4.4 Modeling Sounds
After isolating the sources, in order for SoundSifter

to determine which sounds to let in and which ones
to block, it has to identify the source that represents
the primary sound. Because primary sounds in differ-
ent usage scenarios are highly subjective, SoundSifter

is required to obtain sufficiently large number of audio
samples directly from the end user in order to create a
robust and accurate sound classifier. Now, at one hand,
we need a large amount of training audio from the user
for a robust classification, and on the other hand, re-
quiring a user to collect these data is likely to be error
prone and also an inconvenience to them. Hence, it
is customary to investigate techniques to create robust
acoustic classifiers that generates accurate and robust
models based on a limited amount of training data.

4.5 Need for Residue Removal
A crucial observation during our study has been that

even after source separation, when we look into the
stream of primary signals, we find traces of secondary
sources. We realize that even though the residues are
too weak to be heard, using machine learning, they can
be identified and recognized.

2 2.5 3

Feature 1

-0.5

0

0.5

1

F
ea

tu
re

 2

Music
Residue

Ringtone
Residue

Figure 6: Effect of residue on primary source.

To illustrate the vulnerability of signal residue, we
conduct a small scale study. We perform source sep-
aration for two cases – speech with: 1) music, and 2)
a ringing phone in the background. In both cases, the
same set of 20 utterances is synthetically mixed (to keep
the primary sound identical) with the two background
sounds. After source separation, we take the separated
speech streams, compute MFCC features, and plot the
utterances (total 40) in a 2D feature space as shown in
Figure 6. It is interesting to observe that even though
the residues of music and ring tone are not audible, their
presence in the speech stream is statistically significant
– which is enough to distinguish the two cases.

4.6 Analog Data Acquisition
A practical engineering challenge that we face while

multi-channel audio data acquisition has been the in-
ability of commodity embedded hardware platforms to
sample analog signals at a very high rate. For exam-
ple, considering the worst case where we are required to
drive four analog microphones at 44.1 KHz, we need an
aggregate sampling rate of 176.4 KHz. Achieving such a
high rate analog reading using off-the-shelf Linux-based
embedded platforms such as Arduinos, Raspberry Pis,
or Beaglebones is non-trivial. We address this imple-

5

mentation specific challenge in this paper which we be-
lieve will be helpful to anyone who wants to read e.g.,
MHz rate analog input.

5. ALGORITHM DESIGN
The audio processing pipeline inside SoundSifter has

five major stages. Figure 7 shows the stages and their
interconnections. The first two stages prepares the au-
dio streams from the microphone array for the source
separation stage. These two stages together implements
the proposed sampling rate adaptation scheme in order
to lower the CPU and memory consumption of Sound-
Sifter. We use FastICA [36] to perform the actual source
separation. The last two stages perform further pro-
cessing to identify the primary source and to nullify the
residuals of other sources in it.

(FastICA)

audio
in

Source
Separation

(pre-processing) (post-processing)

Signal
Filling

Freq.
Adaptation

Residue
Removal

Source
Identify

audio
out

Figure 7: Components and interconnections inside
SoundSifter’s audio processing pipeline.

In this section, we describe the first and the last
two stages of SoundSifter’s audio processing pipeline,
i.e. the pre-processing and post-processing stages to
demonstrate how these stages work in concert to im-
prove the efficiency and effectiveness in mitigating in-
formation leakage from unwanted acoustic sources with
SoundSifter.

5.1 Frequency Adaptation
SoundSifter adopts a predictive scheme to determine

an adequate sampling rate for the microphone array.
Sampling rate adaptation in SoundSifter happens peri-
odically, and the predicted rate is estimated based on
the knowledge of the portion of the audio that the sys-
tem has already seen. SoundSifter keeps an evolving
Markov [51] model, whose transition probabilities help
determine — ‘the expected maximum frequency of in-
coming audio, given the measured maximum frequencies
of the audio samples received during the last few ms.’

Predicting the absolute value of the maximum fre-
quency of incoming audio signals is practically impossi-
ble in a generic setting. However, if we divide the full
range of audible frequencies into discrete levels, chances
are that the transitions from one level to another could
be predicted with a higher confidence. For this, Sound-
Sifter uses six ranges of frequencies by dividing the max-
imum sampling rate into six disjoint sets 44.1/2h KHz,

where 0 ≤ h ≤ 5. We denote these by the set {fi},
where 0 ≤ i ≤ 5.

Furthermore, since we are aiming at applying the past
predicts the future principle, a question that immedi-
ately comes up is — ‘how much data to look back for
an accurate prediction of the desired level for sampling
rate?’. To determine this, we conduct an experiment to
quantify the look-back duration. We experiment with
two different Markov models:

• 1-Step Look-back: Uses a 6-state Markov model,
where each state corresponds to a frequency in
{fi}, resulting in a 6 × 6 transition matrix hav-
ing transitions of the form fi → fj .

• 2-Step Look-back: Uses a 36-state Markov model,
where each state corresponds to a pair of frequen-
cies (fi, fj), resulting in a 36×36 transition matrix
having transitions of the form (fi, fj)→ (fj , fk).

0
25
50
75

100

25 100 175 250 325 400

Fr
eq
ue
nc
y	
Pr
ed
ict
io
n	

Ac
cu
ra
cy
	(%

)

Time	(s)
1	Step	Look-back 2	Step	Look-back

Figure 8: 2-Step Look-back performs better than 1-Step
Look-back for loud music

Figure 8 shows a comparison of these two frequency
prediction approaches for an 8-minute long loud music.
Sampling frequency is adapted every 500 ms, compared
with the ground truth, and the prediction accuracy is
reported every 25 seconds. We observe that the 2-step
look-back, i.e. the 36 state Markov model is a signifi-
cant improvement over the 1-step look-back and has an
average prediction accuracy of 88.23% for this very chal-
lenging case. Higher than 2-step look-back might show
a slightly better accuracy, but such a model would re-
sult in an explosion of states. Hence, we decide to use
the 2-step look-back model in SoundSifter.

The proposed Markov model evolves over time. Ini-
tially, all transition probabilities in the model are set so
that the microphones are sampled at the highest rate.
As the model starts to make predictions, the probabili-
ties are updated following a simple reward and punish-
ment process where every correct/incorrect predict is
rewarded/punished by increasing/decreasing the prob-
ability. Both the processes of making a prediction and
updating the probability is an O(1) operation.

Although, ideally one would expect SoundSifter to
adapt all its microphones to the minimum required fre-

6

quency of the moment, there is a small caveat. Because
frequency prediction is not 100% accurate, there is a
chance that occasionally we will have mispredictions.
Cases when the predicted frequency is lower than the
desired one, we will not be able to correct it in the next
step unless we have an oracle. To address this, we de-
cide to keep the sampling frequency of one microphone
fixed at 44.1 KHz, while the sampling rates of all other
microphones are adapted as described above. In case
of mispredictions, this microphone serves as the oracle
and helps determine the correct frequency.

5.2 Signal Prediction and Filling
Adapting sampling rates at runtime has its bene-

fits, but it also introduces an alignment problem during
source separation. By default, standard source separa-
tion algorithms such as the FastICA assume that all
microphones are sampled at a known fixed rate. In
SoundSifter, this assumption does not hold anymore,
i.e. different microphones may be sampled at different
rates. Therefore, we are required to re-align samples
from all the microphones and fill the gaps (missing sam-
ples) in each of the low rate microphones. Because we
work with a small amount of signals at a time, although
we expand the low rate samples, the process does not
increase the total memory consumption significantly.

We illustrate this using two microphones: xi(t) and
xj(t). Suppose, they are sampled at 44.1 KHz and
11.025 KHz, respectively. Within a certain period of
time (e.g., between two consecutive frequency adapta-
tion events), the first microphone will have four times
more samples than the second microphone. If we align
them in time, there will be three missing values in the
second stream for each sample. If we assume a matrix
of samples where each row corresponds to one micro-
phone, the resultant matrix after alignment would look
like the following:[

xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9 . . .

xj1 ? ? ? xj5 ? ? ? xj9 . . .

]

To fill the missing values in the matrix, we formulate
it as an interpolation problem and try to predict the
missing values in two ways:

• Linear Interpolation: Uses line segments to join
consecutive points and any intermediate missing
value is predicted as a point on the line segment.

• Cubic Spline Interpolation: Uses piece-wise
third order polynomials [18] to construct a smooth
curve that is used to interpolate missing samples.

The benefit of linear interpolation is that it is faster
(e.g., 58 times when compared to cubic spline for one
second audio) than its higher order counterpart, but
performs very poorly in predicting audio samples if the

gaps between given points are large. Cubic spline pro-
duces smoother curves, performs comparatively better
for large gaps in missing values, but its running time is
slower. Considering all these, we decide to pick linear
interpolation and a suitable length for interpolation, so
that it runs fast and also fairly accurate.

0 1000 2000 3000
Time (ms)

-0.1

0

0.1

Sa
m

pl
es

0 1000 2000 3000
Time (ms)

-0.1

0

0.1

Sa
m

pl
es

0 1000 2000 3000
Time (ms)

-0.1

0

0.1

Sa
m

pl
es

(a) (b) (c)

Figure 9: Predicting missing values of signal(a) using
linear(b) and spline(c) interpolation.

Figure 9 compares both linear and spline methods
for signal interpolation to raise up-sample a signal from
1.378 KHz to 44.1 KHz. We observe that, for 10 ms long
sample windows, linear interpolation produces faster
and better results than cubic splines.

5.3 Modeling and Recognizing Sounds
After source separation, SoundSifter classifies each

isolated source as primary or secondary. Now, if we
had sufficient training examples for each type of sound
from an end user, the problem would have been as sim-
ple as creating a standard machine learning classifier.
However, to reduce the burden of data collection on a
user and to improve the robustness of the created clas-
sifier in a principled way, we perform an additional data
augmentation step prior to creating the classifier model.
Recall that, this is a one time step that happens during
the installation and programming of SoundSifter for a
particular usage scenario.

5.3.1 Data Augmentation
The basic principle behind data augmentation [26,42]

is to generate new training examples from existing ones
by perturbing one or more acoustic characteristics. In
SoundSifter, we use two specific types of augmentation
techniques to increase the use contributed data size by
about 13 times. These techniques are listed in Table 1.

Action Description

f-warping Remapping the frequency axis:

fi → αfi, where α ∈ [0.8, 1.2].

Inject Noise Superimposing simulated noise.

Noise models are created offline.

Table 1: Data augmentation techniques applied to in-
crease user-contributed samples.

To apply frequency warping [39], each sample goes
through a mapping phase for 10 times, each time using

7

a different α that is chosen uniformly at random. Simu-
lated random noise [54] is applied to about one-third of
these examples to further augment the data set. Over-
all, we obtain a 13.33-fold boost in the number of train-
ing examples that contains original samples as well as
their perturbed versions that are resilient to noise and
changes in frequency due to environmental effect.

5.3.2 Feature Extraction and Classification
For each audio frame, a 13 element MFCC [55] feature

vector is computed. Following the common practice, a
number of consecutive feature vectors are used to calcu-
late 13 deltas and 13 double deltas to obtain 39 element
feature vectors each frame. Finally, the mean, standard
deviation, and range of these vectors are taken to obtain
a single 39 element feature vector. A random forest [34]
classifier is used to create the final classifier.

For speaker identification, we extend the feature vec-
tor of previous step to include pitch as an extra feature.
Following [49], we estimate pitch using the zero cross-
ing rate (ZCR) of the audio in time domain:

ZCR = 0.5×
n∑

i=2

|sign(si)− sign(si−1)| (3)

Here, si represents audio samples, n is the length of
a frame and sign(x) is either +1 or −1 depending on
whether (x > 0) or (x < 0).

5.4 Eliminating Secondary Residues
After source separation and source identification, we

obtain a primary and a number of secondary sources.
As seen previously in Figure 4, the residuals were not
zero even in the best case, and in Figure 6 we observed
that such residuals are significant enough to recognize
secondary sources embedded within the isolated pri-
mary stream.

In order to nullify these residual we employ a cus-
tomized adaptive noise cancellation technique [60]. Stan-
dard noise cancellation algorithms either assume simple
Gaussian noises or use sophisticated hardware to cap-
ture noise sources in order to be able to ‘subtract’ noise
spectra from the main audio stream. In SoundSifter,
we are lucky to have the separated secondary source
streams readily available as a by product of source sep-
aration. These secondary streams are used as negative
feedback to remove their respective residues from the
primary stream.

Figure 10 shows the noise cancellation process where
secondary sources are iteratively used to estimate resid-
ual noise signals contributed by each of them and then it
is subtracted from the primary source to obtain residue
free signals. As an illustration, we consider p and ni

as the primary and secondary sources after the source
separation step, respectively. An input to the noise can-
celler is (p + nr

i), where nr
i denotes the residuals. The

Output

Secondary
Source

Primary
+ residual

Adaptive
Filter

noise
estimate

+

-

Figure 10: Leveraging isolated secondary sources to nul-
lify their residue through a customized adaptive noise
cancellation process.

secondary source ni is another input to the canceller
that is passed through an adaptive filter to produce an
output n̂r

i that is as close a replica of nr
i . The output of

the adaptive filter is subtracted from the primary input
to produce the system output z = p + nri − n̂ri , which
indicates the error signal for the adaptive process.

We adjust the filter using least mean squares (LMS) [61]
algorithm that minimizes the output power. We use
stochastic gradient descent method where the filter weights
are adapted based on its error at the current time step.
The weight update function for the least mean squares
algorithm is:

Wn+1 = Wn − µ∇ε[n] (4)

Here, ε represents the mean-square error, and µ is a
constant that controls the speed of convergence.

6. IMPLEMENTATION NOTES
Due to space limitations we only describe some key

implementation issues.

6.1 Amazon Alexa Voice Service
To demonstrate SoundSifter, we are required to con-

nect it to a home hub such as Amazon Echo or Google
Home. However, at present, none of these devices come
with an audio input where we can pipe in the processed
audio from SoundSifter. Hence, we use Amazon Voice
Service (AVS) to turn a Raspberry Pi into an Alexa-
enabled device which provides us with multiple options
for audio inputs, i.e. audio jacks as well as Bluetooth.
We followed the step-by-step procedure [1] that Amazon
recommends to enable their voice service API in Rasp-
berry Pi platform. Figure 11 shows our custom home
hub in a 3D printed case, which is functionally identical
to an Amazon Echo device.

6.2 SoundSifter in a BeagleBone Black
We have developed SoundSifter based on an open-

source hardware platform called the Beaglebone Black [3].
An advantage of BeagleBone Black over other open plat-
forms is that, besides the main ARM Cortex-A8 CPU,
it has two additional cores known as the programmable

8

Figure 11: Alexa-enabled Raspberry Pi in a case.

real-time units (PRU) [4]. Each PRU provides fast (200
MHz, 32-bit), real-time access to a number of I/O pins.
This lets us sample multiple analog audio inputs at a
very high rate.

Figure 12: (Left) SoundSifter in its open case. (Right)
the case sits on top of Alexa as a cover.

We use PRU enabled BeagleBone Black as Sound-
Sifter’s processor. For the microphone array, we use four
Electret microphones [16]. For aesthetics, we 3D-print
a case that contains the complete SoundSifter system.
In Figure 12 we show the SoundSifter inside a green
open case (left). The lower half of this case is hollow,
which allows us to put this on top of the Alexa device
of Figure 11 as a cover (right).

6.3 Libraries
For Fast ICA we have used Modular toolkit for Data

Processing (MDP) [11], which is a Python-based data
processing framework. We use Pandas [13] library for
interpolation. We use libpruio [10] for using PRU, which
is designed for easy configuration and data handling at
high speed. To use this library, we load kernel driver
uio pruss and enable PRU subsystems by loading the
universal device tree overlay [6].

7. EVALUATION
We perform three types of experiments. First, we

evaluate the execution time, CPU, and memory us-
age of SoundSifter. Second, we evaluate the four key
algorithms of SoundSifter using an empirical dataset.
Third, we perform an end-to-end evaluation of different
use cases of SoundSifter and compare its performance
with an Amazon Echo device.

7.1 Microbenchmarks

Figure 13 shows execution times of five major com-
ponents inside SoundSifter’s audio processing pipeline
for processing one second audio. Frequency adaptation
is a constant time operation that takes only 1 ms. It
is essentially a matrix look-up operation in the transi-
tion matrix. Signal alignment and filling using linear
interpolation takes 35 ms on average. As expected, the
most time consuming operation in SoundSifter is the
source separation step that takes about 179 ms. For
source identification, SoundSifter takes 121 ms to cal-
culate the features and 3 ms for classification. The last
component of SoundSifter residue removal takes 54.68
ms. Overall, SoundSifter’s execution time is 394 ms
for processing 1 second audio, which means, the system
runs in real-time.

1
35

178.9
124

54.68

0 50 100 150 200

Frequency	Adaptation
Signal	Filling

Source	Separation
Source	Identify

Residue	Removal

Time	(ms)

Figure 13: Run-time Analysis.

Table 2 lists the CPU and memory usages for the
components of audio processing pipeline. The most
expensive operation is source separation. It requires
57.4% of the CPU and 5.2% memory. Other tasks such
as source identification, signal filling, residue removal
uses 50.8%, 33.6% and 11.5% CPU, respectively.

CPU (%) Memory (%)

Signal Filling 33.6 2.8

Source Separation 57.4 5.2

Source Identify 50.8 6.3

Residue Removal 11.5 2.5

Table 2: CPU and memory usage.

7.2 Algorithm Evaluation
To evaluate various components of SoundSifter, we

use an empirical dataset which is segmented into three
categories of sounds as described in Table 3. We collect
this data in a 15 square feet room.

Dataset Count Examples Length

Speech 150 conversations (1-10 persons) 200 min

Home 54 TV, phone, mouse, keyboard 75 min

Song 10 rock, country 55 min

Table 3: Description of the empirical dataset.

9

7.2.1 Frequency Adaptation
We compare SoundSifter’s 2-step look-based frequency

adaptation algorithm’s accuracy with that of a 1-step
look back Markov model in four test scenarios. These
scenarios represent: 1) a person talking, 2) two person
conversation and a TV in the background, 3) two per-
son conversation in a loud background music, and 4)
two person conversation and both TV and loud music
are playing.

0
25
50
75

100

1 2 3 4

Fr
eq
ue
nc
y	

Pr
ed
ict
io
n	

Ac
cu
ra
cy
	(%

)

Scenario
1	Step	Look-back 2	Step	Look-back

Figure 14: SoundSifter has higher accuracy than 1 Step
Look-back for all scenarios.

In Figure 14, we observe that although the perfor-
mance of both approaches drop as the scenarios be-
come harder, the 2-step look-back model always per-
forms better than the 1-step look-back method. The
2-step look-back model maintains an accuracy in the
range of 88.24%-95.26%, whereas the 1-step look-back
model’s accuracy drops from 94.63% to 25.18%.

A reason behind SoundSifter’s frequency adaptation
was to reduce resource consumption of the embedded
system. To evaluate this, we compare SoundSifter’s
CPU usage with that of a BeagleBone Black that is
sampling four sensors at 44.1 KHz. We consider three
scenarios demonstrating three different types of acous-
tic environments: 1) a noisy environment where a high-
volume song is playing, 2) a living room where two per-
sons are talking and a television is running, and 3) two
persons are talking in relatively quiet environment. The
ranges of frequencies in these three scenarios are 11.03–
5.51 KHz, 5.51–2.76 KHz, and ≤2.76 KHz, respectively.

Figure 15 shows that as the range of frequencies of
the sound sources vary, because of the adaptive nature
of SoundSifter, its CPU usage decreases from 48.3%-
38.1%. The CPU usage of the BeagleBone remains fixed
at 55.8% at all times.

7.2.2 Signal Prediction and Filling
We measure the performance of signal prediction and

filling of SoundSifter by comparing it’s performance with
a cubic spline-based interpolation scheme. We take a
44.1 KHz audio and down-sample it to produce five sig-
nal streams having the rates of 1.378 KHz, 2.756 KHz,
5.512 KHz, 11.025 KHz, 22.05 KHz, respectively. These

30

40

50

60

[11.03, 5.51) [5.51, 2.76) [2.76, 0)

CP
U	
Us
ag
e	
(%
)

Frequency	Range	(KHz)
W/O	Frequency	Adaptation With	Frequency	Adaptation

Figure 15: Frequency adaptation reduces CPU usage
especially for lower frequency ranges.

are then up-sampled again to get back to 44.1 KHz,
by using two interpolation methods: linear (as done in
SoundSifter) and cubic spline. The quality of interpo-
lation is measured in terms of their correlation with the
original 44.1 KHz signals. We run this experiment on
150 speech clips of 200 minutes, 10 song clips of 50 min-
utes and four sound clips of 50 minutes.

0.5
0.6
0.7
0.8
0.9
1

1.38 2.76 5.51 11.03 22.05

Co
rre

la
tio
n

Starting	Frequency	(KHz)
Linear	Interpolation Spline	Interpolation

Figure 16: Linear Interpolation is more effective than
Spline Interpolation for Signal Prediction and Filling.

Figure 16 shows that for 22.05 KHz, the predicted
signals in SoundSifter show 98% correlation whereas
spline interpolation shows 93%. For lower frequencies,
spline’s performance drops significantly. SoundSifter’s
predicted signal shows more than 90% correlation even
for 2.756 KHz. At 1.378 KHz, SoundSifter’ correlation
drops to 79%, which is still significantly higher than
that of spline interpolation.

7.2.3 Sound Modeling and Recognition
We illustrate the performance of SoundSifter’s sound

modeling and recognition with the help of two scenarios:
1) voice-only mode, and 2) personalized mode.

For the voice only mode, we test the accuracy of pri-
mary and secondary source recognition after source sep-
aration, where speech is kept as the primary source.

In Figure 17, we observe that SoundSifter’s data aug-
mentation technique outperforms a classifier that is trained
without data augmentation. For 2-3 sources, Sound-

10

40

60

80

100

2 3 4 5

Ac
cu
ra
cy
	(%

)

Number	 of	Sources
With	Data	Augmentation W/O	Data	Augmentation

Figure 17: SoundSifter’s data augmentation technique
improves modeling accuracy

Sifter shows 89%-90.14% accuracy, whereas without data
augmentation, a classifier achieves only 66%-70% ac-
curacy. As the number of secondary sources increase,
we see that without data augmentation the accuracy
drops below 50% for 4-5 sources. On the hand, Sound-
Sifter’s classification accuracy remains stable even when
the number of sources is high. For 4-5 sources, Sound-
Sifter achieves 89.13%-92.78% accuracy, and its false
positive rate has always been 0%.

For the personalized mode, we want to recognize the
particular user’s commands and ignore anything else.
For this, we collect 64 voice commands from three per-
sons as primary sources and 53 voice commands from
seven persons as secondary sources. For primary speaker
recognition, SoundSifter achieves 94.87% accuracy. From
Figure 18, we see that SoundSifter is able to detect all
the secondary user’s commands, resulting in a 0% false
positive rates. For primary speaker detection, Sound-
Sifter was able to detect 58 out of 64 primary com-
mands. Hence, this shows that SoundSifter is able to
accept or reject commands based on personalization.

Predicted

Primary Secondary 

A
ct

u
al Primary 58 6

Secondary 0 53

Figure 18: Confusion matrix for primary speaker recog-
nition among up to 10 persons.

7.2.4 Residue Removal
We quantify the effectiveness of residue removal by

showing that the residue in the separated signals is re-
duced after applying the process. For this experiment,
we consider audio clips from varying number of sound
sources and apply Fast ICA with and without residual
removal and compare the noise residual (ξ) we get from
these two approaches.

From Figure 19, we see that for 2, 3, 4 and 5 sources
Fast ICA without residual removal has 0.164, 0.169,

0.05

0.1

0.15

0.2

2 3 4 5No
ise

	R
es
id
ua
l	(
ξ)

Number	of	Sources
With	Residue	Removal W/O	Residue	Removal

Figure 19: Residue Removal reduces noise residual from
the primary signal.

0.159 and 0.181 noise residual, whereas Fast ICA with
residual removal has 0.102, 0.101, 0.073 and 0.084 noise
residual, respectively. From this result, we deduce that
Fast ICA with residual removal has better performance
for removing residue from signal than only Fast ICA.

7.3 Full System Evaluation

7.3.1 Scenarios
In order to demonstrate the effectiveness of Sound-

Sifter, we compare its performance with an Amazon
Echo device in three different scenarios. Table 4 lists
the scenarios.

Scenario Participants Noise Level

Voice Mode (normal) 15 13 dB

Voice Mode (noisy) 10 51 dB

Personalized Mode 10 13 dB

Table 4: Description of the scenarios.

These scenarios are designed to illustrate SoundSifter’s
performance under different conditions and demands.
In the first scenario, we consider a normal environ-
ment where only one person commands SoundSifter and
Echo at the same time. In this experiment, we want
to demonstrate that the source separation and residue
removal steps do not damage the quality of the audio
signals in SoundSifter. 50 commands from 15 different
participants are used in this experiment.

For the second scenario, we consider a noisy environ-
ment. We ask our participants to issue commands while
a loud music is playing in the background. We want
to show that due to source separation and residue re-
moval, SoundSifter is more resilient to noise than Ama-
zon Echo. We have collected 50 commands from 10
different participants for this scenario.

In the third scenario, we want to demonstrate that
SoundSifter is personalized for a particular user and
an intruder is not able to issue arbitrary commands to
SoundSifter. Amazon Echo does not have this feature.
For this experiment, we consider one of the ten partic-
ipants as the primary user and other nine users as in-

11

truders. 50 voice commands for both the primary user
and the intruders are used in this experiment.

7.3.2 Comparison with Amazon Echo
From Figure 20, we see that in the first scenario, both

SoundSifter and Echo are able to respond to all the 50
commands. Hence, the source separation and residue
removal steps of SoundSifter did not affect the quality
of audio. In the second scenario, SoundSifter responds
to 46 out of 50 commands, whereas Echo was only able
to respond to 26 of them. This shows that SoundSifter
is more resilient than Echo in noisy environment.

50

26

50 46

0

25

50

Voice	Mode	
(Normal)

Voice	Mode	(Noisy)Re
sp
on
se
	C
ou
nt

Amazon	Echo SoundSifter

Figure 20: For noisy voice mode, SoundSifter was able
to respond to 46 commands whereas, Echo responded
to only 26 commands.

In the third scenario, because Echo does not have any
personalization support, it was unable to detect any in-
truders. On the other hand, from Figure 21, we find
that SoundSifter is able to detect all 50 of the intruder’s
commands. This shows the strength and a special fea-
ture of SoundSifter that is not currently supported by
any commercial home hub devices.

50

0

50 50

0

25

50

Detected	 Primary	
Person

Detected	 Intruder

Co
un
t

Amazon	Echo SoundSifter

Figure 21: For personalized mode, SoundSifter was able
to detect all 50 intruder’s commands, Amazon Echo fails
to detect any of them.

8. RELATED WORK
Solutions to source separation problem under differ-

ent assumptions on sources and mixing systems can be

found in [23, 30, 38]. At a high level, three main cat-
egories of solutions exist. The first category is based
on Independent Component Analysis (ICA) [38], where
statistical independence of sources is exploited to esti-
mate the sources. Although efficient implementations
exist [36, 37], these algorithms have certain fundamen-
tal limitations, e.g., they support at most one Gaus-
sian source, and do not exploit signal properties such
as non-negativity or sparsity. The second category ap-
plies Non-negative Matrix Factorization (NMF) [23] to
exploit non-negativity of real-world signals. However,
their lack of statistical assumptions on data does not
guarantee a correct decomposition of sources. The third
type is based on Sparse Component Analysis (SCA) [30],
which exploits sparsity in signals, e.g., acoustic signals.
In this paper, we could have used any of the three meth-
ods, but we decided to implement FastICA [36,37] which
is a proven and well-used algorithm.

In many digital systems, dynamic voltage and fre-
quency scaling [22,29,33,45,57] is applied to scale up/-
down the clock frequency of the entire system to lower
the power consumption. Our problem is significantly
different and harder than that since we are required to
dynamically adapt sampling frequencies of an array of
microphones (each one is assigned a different rate) and
make sure that independent component analysis frame-
work for source separation still works.

Standard practices toward dealing with limited train-
ing data fall broadly into two categories – data aug-
mentation and classifier fusion, which are often used
together. Data augmentation techniques [26, 42] gener-
ate new training examples by perturbing acoustic char-
acteristics of existing examples, e.g., frequency warp-
ing [39], modifying tempo [41], and adding simulated
reverberation [28], and noise [54]. In classifier fusion [52,
56], outputs of multiple classifiers are combined to im-
prove the overall accuracy. These techniques vary from
simple voting and averaging [43], to ranking [35, 62],
to learning decision templates [35, 44]. In this paper,
we decide to only use data augmentation and avoided
classifier fusion since that would require sharing and ex-
changing classifier models of different users – which may
violate their privacy.

9. CONCLUSION
This paper describes a system that mitigates infor-

mation leakage due to the presence of unwanted sound
sources in an acoustic environment when using voice-
enabled personal assistant devices like Amazon Echo.
New algorithms have been developed to make acous-
tic source separation CPU and memory efficient, and
to remove residuals of unwanted signals from the main
audio stream. The performance of the system has been
compared with that of commercial continuous listening
devices to show that it accurately filters out unwanted

12

sounds and thus protects against personal and contex-
tual information leakage where existing devices fail.

10. REFERENCES

[1] Alexa AVS. https://github.com/alexa/
alexa-avs-sample-app/wiki/Raspberry-Pi.

[2] Amazon Echo: Always Ready, Connected, and
Fast. www.amazon.com/echo.

[3] BeagleBone Black.
http://beagleboard.org/black.

[4] Beaglebone black pru.
http://beagleboard.org/pru.

[5] Belkin WeMo Switch. http://www.belkin.com/
us/Products/home-automation.

[6] Device tree overlay. https:
//github.com/beagleboard/bb.org-overlays.

[7] Google Home.
https://madeby.google.com/home/.

[8] Google Nest. https://nest.com/.
[9] iOS SiRi from Apple.

http://www.apple.com/ios/siri/.
[10] libpruio. http://users.freebasic-portal.de/

tjf/Projekte/libpruio/doc/html/index.html.
[11] Modular toolkit for data processing (mdp).

http://mdp-toolkit.sourceforge.net/.
[12] OK Google Voice Search and Actions.

https://support.google.com/websearch/

answer/2940021?hl=en.
[13] Pandas library. http:

//pandas.pydata.org/pandas-docs/stable/

generated/pandas.Series.interpolate.html.
[14] Phillips Hue. http://www2.meethue.com/en-us/.
[15] Say hello to Cortana. http://www.microsoft.

com/en-us/mobile/experiences/cortana/.
[16] SparkFun Electret Microphone Breakout.

http://www.ti.com/product/OPA344.
[17] TP Link Smart Plug. http://www.tp-link.com/

en/products/list-5258.html.
[18] B. A. Barsky, R. H. Bartels, and J. C. Beatty. An

Introduction to Splines for Use in Computer
Graphics and Geometric Modeling. Los Altos,
Calif.: M. Kaufmann Publishers, 1987.

[19] P. Bofill and M. Zibulevsky. Underdetermined
blind source separation using sparse
representations. Signal processing,
81(11):2353–2362, 2001.

[20] S. Boll. Suppression of acoustic noise in speech
using spectral subtraction. IEEE Transactions on
acoustics, speech, and signal processing,
27(2):113–120, 1979.

[21] S.-M. Cha and L.-W. Chan. Applying
independent component analysis to factor model
in finance. In International Conference on
Intelligent Data Engineering and Automated
Learning, pages 538–544. Springer, 2000.

[22] K. Choi, R. Soma, and M. Pedram. Fine-grained
dynamic voltage and frequency scaling for precise
energy and performance tradeoff based on the

13

ratio of off-chip access to on-chip computation
times. IEEE transactions on computer-aided
design of integrated circuits and systems,
24(1):18–28, 2005.

[23] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i.
Amari. Nonnegative matrix and tensor
factorizations: applications to exploratory
multi-way data analysis and blind source
separation. John Wiley & Sons, 2009.

[24] P. Comon and C. Jutten. Handbook of Blind
Source Separation: Independent component
analysis and applications. Academic press, 2010.

[25] S. Cruces-Alvarez, A. Cichocki, and
L. Castedo-Ribas. An iterative inversion approach
to blind source separation. IEEE Transactions on
Neural Networks, 11(6):1423–1437, 2000.

[26] X. Cui, V. Goel, and B. Kingsbury. Data
augmentation for deep neural network acoustic
modeling. IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP),
23(9):1469–1477, 2015.

[27] K. I. Diamantaras and T. Papadimitriou. Mimo
blind deconvolution using subspace-based filter
deflation. In Acoustics, Speech, and Signal
Processing, 2004. Proceedings.(ICASSP’04). IEEE
International Conference on, volume 4, pages
iv–433. IEEE, 2004.

[28] R. F. Dickerson, E. Hoque, P. Asare, S. Nirjon,
and J. A. Stankovic. Resonate: reverberation
environment simulation for improved classification
of speech models. In Proceedings of the 13th
international symposium on Information
processing in sensor networks, pages 107–118.
IEEE Press, 2014.

[29] W. R. Dieter, S. Datta, and W. K. Kai. Power
reduction by varying sampling rate. In
Proceedings of the 2005 international symposium
on Low power electronics and design, pages
227–232. ACM, 2005.

[30] R. Gribonval and S. Lesage. A survey of sparse
component analysis for blind source separation:
principles, perspectives, and new challenges. In
ESANN’06 proceedings-14th European Symposium
on Artificial Neural Networks, pages 323–330.
d-side publi., 2006.

[31] S. Haykin and Z. Chen. The cocktail party
problem. Neural computation, 17(9):1875–1902,
2005.

[32] J. Herault and C. Jutten. Space or time adaptive
signal processing by neural network models. In
Neural networks for computing, volume 151, pages
206–211. AIP Publishing, 1986.

[33] S. Herbert and D. Marculescu. Analysis of
dynamic voltage/frequency scaling in
chip-multiprocessors. In Low Power Electronics
and Design (ISLPED), 2007 ACM/IEEE

International Symposium on, pages 38–43. IEEE,
2007.

[34] T. K. Ho. Random decision forests. In Document
Analysis and Recognition, 1995., Proceedings of
the Third International Conference on, volume 1,
pages 278–282. IEEE, 1995.

[35] T. K. Ho, J. J. Hull, and S. N. Srihari. Decision
combination in multiple classifier systems. IEEE
transactions on pattern analysis and machine
intelligence, 16(1):66–75, 1994.

[36] A. Hyvarinen. Fast and robust fixed-point
algorithms for independent component analysis.
IEEE transactions on Neural Networks,
10(3):626–634, 1999.

[37] A. Hyvärinen and E. Oja. A fast fixed-point
algorithm for independent component analysis.
Neural computation, 9(7):1483–1492, 1997.

[38] A. Hyvärinen and E. Oja. Independent
component analysis: algorithms and applications.
Neural networks, 13(4):411–430, 2000.

[39] N. Jaitly and G. E. Hinton. Vocal tract length
perturbation (vtlp) improves speech recognition.
In Proc. ICML Workshop on Deep Learning for
Audio, Speech and Language, 2013.

[40] T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee,
M. J. Mckeown, V. Iragui, and T. J. Sejnowski.
Removing electroencephalographic artifacts by
blind source separation. Psychophysiology,
37(02):163–178, 2000.

[41] N. Kanda, R. Takeda, and Y. Obuchi. Elastic
spectral distortion for low resource speech
recognition with deep neural networks. In
Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on, pages
309–314. IEEE, 2013.

[42] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur.
Audio augmentation for speech recognition. In
Proceedings of INTERSPEECH, 2015.

[43] L. I. Kuncheva. A theoretical study on six
classifier fusion strategies. IEEE Transactions on
pattern analysis and machine intelligence,
24(2):281–286, 2002.

[44] L. I. Kuncheva, J. C. Bezdek, and R. P. Duin.
Decision templates for multiple classifier fusion:
an experimental comparison. Pattern recognition,
34(2):299–314, 2001.

[45] E. Le Sueur and G. Heiser. Dynamic voltage and
frequency scaling: The laws of diminishing
returns. In Proceedings of the 2010 international
conference on Power aware computing and
systems, pages 1–8, 2010.

[46] S. Li, C. Li, K.-T. Lo, and G. Chen.
Cryptanalyzing an encryption scheme based on
blind source separation. IEEE Transactions on
Circuits and Systems I: Regular Papers,

14

55(4):1055–1063, 2008.
[47] Q.-H. Lin, F.-L. Yin, T.-M. Mei, and H. Liang. A

blind source separation based method for speech
encryption. IEEE Transactions on Circuits and
Systems I: Regular Papers, 53(6):1320–1328, 2006.

[48] P. C. Loizou. Speech enhancement: theory and
practice. CRC press, 2013.

[49] H. Lu, A. B. Brush, B. Priyantha, A. K. Karlson,
and J. Liu. Speakersense: energy efficient
unobtrusive speaker identification on mobile
phones. In International Conference on Pervasive
Computing, pages 188–205. Springer, 2011.

[50] R. Martin. Spectral subtraction based on
minimum statistics. power, 6:8, 1994.

[51] S. P. Meyn and R. L. Tweedie. Markov chains
and stochastic stability. Springer Science &
Business Media, 2012.

[52] E. Miluzzo, C. T. Cornelius, A. Ramaswamy,
T. Choudhury, Z. Liu, and A. T. Campbell.
Darwin phones: the evolution of sensing and
inference on mobile phones. In Proceedings of the
8th international conference on Mobile systems,
applications, and services, pages 5–20. ACM,
2010.

[53] S. K. Mitra and J. F. Kaiser. Handbook for digital
signal processing. John Wiley & Sons, Inc., 1993.

[54] N. Morales, L. Gu, and Y. Gao. Adding noise to
improve noise robustness in speech recognition. In
INTERSPEECH, pages 930–933, 2007.

[55] S. Nirjon, R. F. Dickerson, P. Asare, Q. Li,
D. Hong, J. A. Stankovic, P. Hu, G. Shen, and
X. Jiang. Auditeur: A mobile-cloud service
platform for acoustic event detection on
smartphones. In Proceeding of the 11th annual
international conference on Mobile systems,
applications, and services, pages 403–416. ACM,
2013.

[56] D. Ruta and B. Gabrys. An overview of classifier
fusion methods. Computing and Information
systems, 7(1):1–10, 2000.

[57] G. Semeraro, G. Magklis, R. Balasubramonian,
D. H. Albonesi, S. Dwarkadas, and M. L. Scott.
Energy-efficient processor design using multiple
clock domains with dynamic voltage and
frequency scaling. In High-Performance Computer
Architecture, 2002. Proceedings. Eighth
International Symposium on, pages 29–40. IEEE,
2002.

[58] G. Srivastava, S. Crottaz-Herbette, K. Lau,
G. Glover, and V. Menon. Ica-based procedures
for removing ballistocardiogram artifacts from eeg
data acquired in the mri scanner. Neuroimage,
24(1):50–60, 2005.

[59] E. Vincent, R. Gribonval, and C. Févotte.
Performance measurement in blind audio source
separation. IEEE transactions on audio, speech,
and language processing, 14(4):1462–1469, 2006.

[60] B. Widrow, J. R. Glover, J. M. McCool,
J. Kaunitz, C. S. Williams, R. H. Hearn, J. R.
Zeidler, J. E. Dong, and R. C. Goodlin. Adaptive
noise cancelling: Principles and applications.
Proceedings of the IEEE, 63(12):1692–1716, 1975.

[61] B. Widrow and S. D. Stearns. Adaptive signal
processing. Englewood Cliffs, NJ, Prentice-Hall,
Inc., 1985, 491 p., 1, 1985.

[62] K. Woods, W. P. Kegelmeyer, and K. W. Bowyer.
Combination of multiple classifiers using local
accuracy estimates. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
19(4):405–410, 1997.

[63] M. Zibulevsky and B. A. Pearlmutter. Blind
source separation by sparse decomposition in a
signal dictionary. Neural computation,
13(4):863–882, 2001.

15

