
The University of North Carolina at Chapel Hill

Lecture 1: Introduction

COMP 514 Programming Language Concepts
Stephen Olivier
January 13, 2008

Based on slides and notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Class Objectives.

•What are we going to do in this class?

•What does this entail?

Compare and contrast different programming languages.

Examine the way in which languages are designed
 and implemented.

The University of North Carolina at Chapel Hill

Class Objectives.

•What are we going to do in this class?

•What does this entail?

Compare and contrast different programming languages.

Examine the way in which languages are designed
 and implemented.

The University of North Carolina at Chapel Hill

Why do this?

1. For the fun of it!

2. Understanding the basic principles makes it easier to
learn new languages.

3. Sometimes you need different features of different
languages, and if you don’t know about other
languages how can you use them?

4. More effectively utilize the languages you already
know.

The University of North Carolina at Chapel Hill

Why do this?

1. For the fun of it!

2. Understanding the basic principles makes it easier to
learn new languages.

3. Sometimes you need different features of different
languages, and if you don’t know about other
languages how can you use them?

4. More effectively utilize the languages you already
know.

For example, if you need “fine-grained”
control over system memory, then you C++
would be better choice than Java. However, if
you memory leaks are a big concern, then
Java is a better choice than C++.

The University of North Carolina at Chapel Hill

A very very very brief history of languages.

•In the beginning, ENIAC (Electronic Numerical Integrator
and Computer) programers used patch cords.

•This gave them the raw power to compute trig tables.

The University of North Carolina at Chapel Hill

Machine and Assembly Languages.

•The next major revolution was machine language,
which is just binary (or hexadecimal).

•Very quickly people realized that humans cannot write
error free programs using just zeroes and ones without
going insane.

•Hence, came assembly language, which uses human
readable abbreviations to stand for machine code.

The University of North Carolina at Chapel Hill

Assembly language (example)

Start: lea A, a0
 lea B, a1
 lea C, a2
 clr.w d0
 clr.w d1
 clr.w d2
 add.w #5, d1
 add.w #6, d2
 move.w d1, (a0)
 move.w d2, (a1)
 add.w (a0), d0
 add.w (a1), d0
 move.w d0, (a2)
 jsr decout
 jsr newline
 jsr stop

 data
A: dc.w 1
B: dc.w 1
C: dc.w 1

The University of North Carolina at Chapel Hill

Higher level languages

•Eventually, people realized that more complex programs
are very difficult to write at the level of assembly
language.

•So, eventually came higher level languages.

class Test {
 public static void main(String args[]) {
 int A, B, C;
 A=5;
 B=6;
 C=A+B;
 System.out.print(C);
 }
}

The University of North Carolina at Chapel Hill

Declarative and Imperative programming

•There are two types of programming languages:
declarative and imperative.

• Declarative languages focus on what the computer should do.

• Imperative languages focus on how the computer should do
something.

The University of North Carolina at Chapel Hill

Quicksort

•Quicksort sorts an array by recursively sorting “sub-
arrays” as less than or greater than pivot values.

1 3 4 2 5 8 6 7

6 7 81 2 4 3

3 4

X Pivot

Y Less then

Z Greater then

The University of North Carolina at Chapel Hill

Quicksort in Haskell

qsort [] = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
 where
 lt_x = [y | y <- xs, y < x]
 ge_x = [y | y <- xs, y >= x]

The University of North Carolina at Chapel Hill

Quicksort in Haskell

qsort [] = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
 where
 lt_x = [y | y <- xs, y < x]
 ge_x = [y | y <- xs, y >= x]

If input is empty return empty.

The University of North Carolina at Chapel Hill

Quicksort in Haskell

qsort [] = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
 where
 lt_x = [y | y <- xs, y < x]
 ge_x = [y | y <- xs, y >= x]

Otherwise, return a list with all the values less than x
both “qsort”ed and before x and all values greater

than x both “qsort”ed and after x.

The University of North Carolina at Chapel Hill

Quicksort in Haskell

qsort [] = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
 where
 lt_x = [y | y <- xs, y < x]
 ge_x = [y | y <- xs, y >= x]

This junk defines lt_x as all values less than x, and
ge_x as all values greater than or equal to x.

The University of North Carolina at Chapel Hill

Quicksort in C

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;

if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

The University of North Carolina at Chapel Hill

Quicksort in C

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;

if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

Find the first element larger than the pivot value
and the last element smaller than the pivot value.

The University of North Carolina at Chapel Hill

Quicksort in C

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;

if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

If these values are on the “wrong side” of
the pivot, swap them.

The University of North Carolina at Chapel Hill

Quicksort in C

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;

if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

Repeat until no values are on the “wrong side.”

The University of North Carolina at Chapel Hill

Quicksort in C

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;

if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

Swap the smallest value greater than or equal to
the pivot with the pivot, which is at the end of the list

The University of North Carolina at Chapel Hill

Quicksort in C

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;

if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

Finally, recurse on the two sides.

The University of North Carolina at Chapel Hill

Quicksort in C

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;

if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

Notice how much more complex this
program is in C (an imperative language) than

Haskell (a declarative language).

The University of North Carolina at Chapel Hill

Quicksort in C

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;

if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

However, without a very good compiler, the
quicksort in C will likely run faster than in

Haskell!

The University of North Carolina at Chapel Hill

Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Scripting
e.g, Perl

The University of North Carolina at Chapel Hill

Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Functional languages are based on
functions and recursion.

Scripting
e.g, Perl

The University of North Carolina at Chapel Hill

Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Dataflow languages focus on the flow
of information between nodes.

Scripting
e.g, Perl

The University of North Carolina at Chapel Hill

Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Logic languages model programs as a series
of logical statements.

Scripting
e.g, Perl

The University of North Carolina at Chapel Hill

Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Von Neumann languages allow for
computation by focusing on manipulating

data elements.

Scripting
e.g, Perl

The University of North Carolina at Chapel Hill

Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Object-oriented languages allow for
computation by modeling principles as a series

of semi-independent “objects” .

Scripting
e.g, Perl

The University of North Carolina at Chapel Hill

Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Scripting languages are a subset of von
Neumann languages and are serve as “glue”
between more robust languages in order to

facilitate rapid development.

Scripting
e.g, Perl

The University of North Carolina at Chapel Hill

Course Topics

• Tentative List:
• Compilation & Interpretation
• Syntax Specification & Analysis
• Names, Binding, & Scope
• Control Flow
• Data Types
• Subroutines & Control Abstraction
• Concurrency
• Code Improvement
• Data Abstraction & Object Orientation
• Scripting Languages: Perl, Python, Ruby, etc..
• Functional Languages: ML, Lisp/Scheme, Haskell, etc…
• Logic Languages: Prolog
• and more…

