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Class Objectives.

•What are we going to do in this class?

•What does this entail?

Compare and contrast different programming languages.

Examine the way in which languages are designed
 and implemented.



The University of North Carolina at Chapel Hill  

Class Objectives.

•What are we going to do in this class?

•What does this entail?

Compare and contrast different programming languages.

Examine the way in which languages are designed
 and implemented.



The University of North Carolina at Chapel Hill  

Why do this?

1. For the fun of it!

2. Understanding the basic principles makes it easier to 
learn new languages.

3. Sometimes you need different features of different 
languages, and if you don’t know about other 
languages how can you use them?

4. More effectively utilize the languages you already 
know.
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Why do this?

1. For the fun of it!

2. Understanding the basic principles makes it easier to 
learn new languages.

3. Sometimes you need different features of different 
languages, and if you don’t know about other 
languages how can you use them?

4. More effectively utilize the languages you already 
know.

For example, if you need “fine-grained” 
control over system memory, then you C++ 
would be better choice than Java. However, if 
you memory leaks are a big concern, then 
Java is a better choice than C++.
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A very very very brief history of languages. 

•In the beginning, ENIAC (Electronic Numerical Integrator 
and Computer) programers used patch cords. 

•This gave them the raw power to compute trig tables. 
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Machine and Assembly Languages.

•The next major revolution was machine language, 
which is just binary (or hexadecimal).

•Very quickly people realized that humans cannot write 
error free programs using just zeroes and ones without 
going insane.

•Hence, came assembly language, which uses human 
readable abbreviations to stand for machine code.
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Assembly language (example)

Start: lea       A, a0
  lea       B, a1
  lea      C, a2
  clr.w  d0
  clr.w  d1
  clr.w  d2
  add.w  #5, d1
  add.w  #6, d2
  move.w  d1, (a0)
  move.w  d2, (a1)
  add.w  (a0), d0
  add.w  (a1), d0
  move.w  d0, (a2)
  jsr      decout
  jsr      newline
  jsr      stop
  
  data
A:  dc.w      1
B:  dc.w      1
C:  dc.w      1
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Higher level languages

•Eventually, people realized that more complex programs 
are very difficult to write at the level of assembly 
language. 

•So, eventually came higher level languages.

class Test {
 public static void main(String args[]) {
  int A, B, C;
  A=5;
  B=6;
  C=A+B;
  System.out.print(C);
 }
}
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Declarative and Imperative programming

•There are two types of programming languages: 
declarative and imperative. 

• Declarative languages focus on what the computer should do.

• Imperative languages focus on how the computer should do 
something.
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Quicksort

•Quicksort sorts an array by recursively sorting “sub-
arrays” as less than or greater than pivot values.

1 3 4 2 5 8 6 7

6 7 81 2 4 3

3 4

X Pivot

Y Less then

Z Greater then
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Quicksort in Haskell

qsort []     = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
  where
   lt_x = [y | y <- xs, y < x]
   ge_x = [y | y <- xs, y >= x]
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Quicksort in Haskell

qsort []     = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
  where
   lt_x = [y | y <- xs, y < x]
   ge_x = [y | y <- xs, y >= x]

If input is empty return empty.
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Quicksort in Haskell

qsort []     = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
  where
   lt_x = [y | y <- xs, y < x]
   ge_x = [y | y <- xs, y >= x]

Otherwise, return a list with all the values less than x
both “qsort”ed and before x and all values greater 

than x both “qsort”ed and after x.
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Quicksort in Haskell

qsort []     = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
  where
   lt_x = [y | y <- xs, y < x]
   ge_x = [y | y <- xs, y >= x]

This junk defines lt_x as all values less than x, and 
ge_x as all values greater than or equal to x.
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Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo;{
  int h, w, p, t;
  if (lo < hi) {
    w = lo;
    h = hi;
    p = a[hi];
    do {
      while ((w < h) && (a[w] <= p)) 
          w = w+1;
      while ((h > w) && (a[h] >= p))
          h = h-1;
      

if (w < h) {
      t = a[w];
          a[w] = a[h];
          a[h] = t;
      }
    } while (w < h);

    t = a[w];
    a[w] = a[hi];
    a[hi] = t;

    qsort( a, lo, w-1 );
    qsort( a, w+1, hi );
  }
}
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Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo;{
  int h, w, p, t;
  if (lo < hi) {
    w = lo;
    h = hi;
    p = a[hi];
    do {
      while ((w < h) && (a[w] <= p)) 
          w = w+1;
      while ((h > w) && (a[h] >= p))
          h = h-1;
      

if (w < h) {
      t = a[w];
          a[w] = a[h];
          a[h] = t;
      }
    } while (w < h);

    t = a[w];
    a[w] = a[hi];
    a[hi] = t;

    qsort( a, lo, w-1 );
    qsort( a, w+1, hi );
  }
}

Find the first element larger than the pivot value 
and the last element smaller than the pivot value.
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Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo;{
  int h, w, p, t;
  if (lo < hi) {
    w = lo;
    h = hi;
    p = a[hi];
    do {
      while ((w < h) && (a[w] <= p)) 
          w = w+1;
      while ((h > w) && (a[h] >= p))
          h = h-1;
      

if (w < h) {
      t = a[w];
          a[w] = a[h];
          a[h] = t;
      }
    } while (w < h);

    t = a[w];
    a[w] = a[hi];
    a[hi] = t;

    qsort( a, lo, w-1 );
    qsort( a, w+1, hi );
  }
}

If these values are on the “wrong side” of 
the pivot, swap them.
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Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo;{
  int h, w, p, t;
  if (lo < hi) {
    w = lo;
    h = hi;
    p = a[hi];
    do {
      while ((w < h) && (a[w] <= p)) 
          w = w+1;
      while ((h > w) && (a[h] >= p))
          h = h-1;
      

if (w < h) {
      t = a[w];
          a[w] = a[h];
          a[h] = t;
      }
    } while (w < h);

    t = a[w];
    a[w] = a[hi];
    a[hi] = t;

    qsort( a, lo, w-1 );
    qsort( a, w+1, hi );
  }
}

Repeat until no values are on the “wrong side.”
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Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo;{
  int h, w, p, t;
  if (lo < hi) {
    w = lo;
    h = hi;
    p = a[hi];
    do {
      while ((w < h) && (a[w] <= p)) 
          w = w+1;
      while ((h > w) && (a[h] >= p))
          h = h-1;
      

if (w < h) {
      t = a[w];
          a[w] = a[h];
          a[h] = t;
      }
    } while (w < h);

    t = a[w];
    a[w] = a[hi];
    a[hi] = t;

    qsort( a, lo, w-1 );
    qsort( a, w+1, hi );
  }
}

Swap the smallest value greater than or equal to 
the pivot with the pivot, which is at the end of the list
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Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo;{
  int h, w, p, t;
  if (lo < hi) {
    w = lo;
    h = hi;
    p = a[hi];
    do {
      while ((w < h) && (a[w] <= p)) 
          w = w+1;
      while ((h > w) && (a[h] >= p))
          h = h-1;
      

if (w < h) {
      t = a[w];
          a[w] = a[h];
          a[h] = t;
      }
    } while (w < h);

    t = a[w];
    a[w] = a[hi];
    a[hi] = t;

    qsort( a, lo, w-1 );
    qsort( a, w+1, hi );
  }
}

Finally, recurse on the two sides. 
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Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo;{
  int h, w, p, t;
  if (lo < hi) {
    w = lo;
    h = hi;
    p = a[hi];
    do {
      while ((w < h) && (a[w] <= p)) 
          w = w+1;
      while ((h > w) && (a[h] >= p))
          h = h-1;
      

if (w < h) {
      t = a[w];
          a[w] = a[h];
          a[h] = t;
      }
    } while (w < h);

    t = a[w];
    a[w] = a[hi];
    a[hi] = t;

    qsort( a, lo, w-1 );
    qsort( a, w+1, hi );
  }
}

Notice how much more complex this 
program is in C (an imperative language) than 

Haskell (a declarative language). 
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Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo;{
  int h, w, p, t;
  if (lo < hi) {
    w = lo;
    h = hi;
    p = a[hi];
    do {
      while ((w < h) && (a[w] <= p)) 
          w = w+1;
      while ((h > w) && (a[h] >= p))
          h = h-1;
      

if (w < h) {
      t = a[w];
          a[w] = a[h];
          a[h] = t;
      }
    } while (w < h);

    t = a[w];
    a[w] = a[hi];
    a[hi] = t;

    qsort( a, lo, w-1 );
    qsort( a, w+1, hi );
  }
}

However, without a very good compiler, the 
quicksort in C will likely run faster than in 

Haskell!
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Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Scripting
e.g, Perl
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Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Functional languages are based on 
functions and recursion.

Scripting
e.g, Perl
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Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Dataflow languages focus on the flow
of information between nodes.

Scripting
e.g, Perl
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Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Logic languages model programs as a series 
of logical statements. 

Scripting
e.g, Perl
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Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Von Neumann languages allow for 
computation by focusing on manipulating 

data elements. 

Scripting
e.g, Perl
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Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Object-oriented languages allow for 
computation by modeling principles as a series 

of semi-independent “objects” . 

Scripting
e.g, Perl
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Types of Languages

Declarative

Functional
e.g, Haskell & Lisp

Dataflow
e.g, Id & Val

Logic
e.g, Prolog

Von Neumann
e.g, Fortran, Basic, & C

Object-Oriented
e.g, C++ & Java

Imperative

Scripting languages are a subset of von 
Neumann languages and are serve as “glue” 
between more robust languages in order to 

facilitate rapid development. 

Scripting
e.g, Perl
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Course Topics

• Tentative List:
• Compilation & Interpretation
• Syntax Specification & Analysis
• Names, Binding, & Scope
• Control Flow
• Data Types
• Subroutines & Control Abstraction
• Concurrency
• Code Improvement
• Data Abstraction & Object Orientation
• Scripting Languages: Perl, Python, Ruby, etc..
• Functional Languages: ML, Lisp/Scheme, Haskell, etc…
• Logic Languages: Prolog
• and more…


