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Goals

•In this lecture, we will discuss how to translate source 
code into machine executable code. 
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Compilation and Interpretation

•There are two primary methods for translating high-level 
code:

• Compilation

• Interpretation
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Compilation 
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The “target program” is called the object 
code.
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Compilation 
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You translate once and run many times.
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Interpretation 

Interpreter

Source Program Input

Output

You translate for each run.
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Compilers are usually faster than 
interpreters.

Interpreter
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Interpreters are usually more flexible and 
easier to debug than compilers. 
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Compilation and Interpretation
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The Virtual Machine acts as an 
interpreter. 
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Compilation and Interpretation
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The translator can be a compiler or an 
interpreter. It is considered to be a compiler if:
1. There is a thorough analysis of the program

2. The transformation is non-trivial.
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Compilation and Interpretation
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This is exactly the process 
that Java uses.
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Linking Source Program
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The Linker is used to connect subroutines that 
are not contained in the original code.
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This is used by Fortran
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Preprocessing 

Source Program

Preprocessor

Modified source program

For example, this may be used to remove 
comments or use replacement macros.
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Preprocessing 

Source Program

Preprocessor

Modified source program

On the note about macros, consider the macro
#define FALSE 0.

This code will replace all instances of the word 
“FALSE” with the value 0. 
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Tombstone Diagrams

•Useful for graphically representing programs and 
translators.

• Machine (x86):

• Program (in C): • Interpreter (for Perl, impl. in x86)

• Translator (C to x86, impl. in x86)
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Tombstone Diagrams

•Example: Compiling a C program to run on x86



•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.
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Bootstrapping



•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.

The University of North Carolina at Chapel Hill  

Bootstrapping

P-Code is a very simple 
language that can easily be 
translated into any machine 

language.



•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.

The University of North Carolina at Chapel Hill  

Bootstrapping



•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.

The University of North Carolina at Chapel Hill  

Bootstrapping

The interpreter is hand translated into a supported language.



•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.
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Bootstrapping

The interpreter is hand translated into a supported language.
And then compiled into machine code.
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Bootstrapping

•To get a simple (but slow) compiler, one could use the 
“Pascal to P-Code compiler, in P-Code” and the “P-Code to 
machine lang. interpreter” to compile Pascal code.
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Bootstrapping

•To get a simple (but slow) compiler, one could use the 
“Pascal to P-Code compiler, in P-Code” and the “P-Code to 
machine lang. interpreter” to compile Pascal code.

This interpreter is used to run the Pascal 
to P-Code compiler and the program.
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Bootstrapping (Faster)

•To create a faster compiler, we modify the “Pascal to P-
Code compiler, in Pascal” so that it is a “Pascal to 
machine language compiler, in Pascal.”
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Bootstrapping (Faster)

•To create a faster compiler, we modify the “Pascal to P-
Code compiler, in Pascal” so that it is a “Pascal to 
machine language compiler, in Pascal.”

This is MUCH HARDER than creating a P-Code to 
Machine language interpreter. 
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Bootstrapping (Faster)

Now construct the “Pascal to machine 
lang. compiler, in P-Code.” 
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Bootstrapping (Faster)

Then run the “Pascal to 
machine lang. compiler, in 
Pascal” through the “P-

Code” version to produce 
the “Machine lang.” 

version.
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Bootstrapping (Faster)
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Compiling

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis & 
intermediate code gen.

Machine-independent 
optimization (optional)

Target code generation.

Machine-specific 
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language
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Example Program GCD

program gcd(input, output);
var i, j: integer;
begin
read(i,j); // get i & j from read
while i<>j do
if i>j then i := i-j
else j := j-1;

writeln(i)
end.
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Lexical Analysis

•Recognize structures without regard to meaning and 
groups them into tokens.

•The purpose of the scanner is to simplify the parser by 
reducing the size of the input.

Scanner (lexical analysis)

program gcd(input, ouput);

program gcd ( input , output ) ;
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Syntax Analysis

•Parsing organizes the tokens into a context-free 
grammar (i.e., syntax). 

•

program gcd ( input , output ) ;

Parser (syntax analysis)

program

id(GCD) ( id(INPUT) more_ids ) ; block

, id(OUTPUT) more_ids

empty

Rest of code
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Syntax Analysis

•Parsing organizes the tokens into a context-free 
grammar (i.e., syntax). 

•

program gcd ( input , output ) ;

Parser (syntax analysis)

program

id(GCD) ( id(INPUT) more_ids ) ; block

, more_ids

empty

Rest of code

The Syntax analysis catches all 
malformed statements

id(OUTPUT)
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Syntax Analysis

•Parsing organizes the tokens into a context-free 
grammar (i.e., syntax). 

•

program gcd ( input , output ) ;

Parser (syntax analysis)

program

id(GCD) ( id(INPUT) more_ids ) ; block

, more_ids

empty

Rest of code

The parse tree is sometimes called a 
concrete syntax tree because it contains 

how all tokens are derived...

id(OUTPUT)
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Syntax Analysis

•Parsing organizes the tokens into a context-free 
grammar (i.e., syntax). 

•

program gcd ( input , output ) ;

Parser (syntax analysis)

program

id(GCD) ( id(INPUT) more_ids ) ; block

, more_ids

empty

Rest of code

...however, much of this information is 
extraneous for the “meaning” of the 

code(e.g., the only purpose of “;” is to end 
a statement).

id(OUTPUT)
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Semantic Analysis

•Semantic analysis discovers the meaning of a program. 
by creating an abstract syntax tree that removes 
“extraneous” tokens.  

•To do this, the analyzer builds & maintains a symbol table 
to map identifiers to information known about it. (i.e., 
scope, internal structure, etc...)

•By using the symbol table, the semantic analyzer can 
catch problems not caught by the parser. For example,

• Identifiers are declared before used

• subroutine calls provide correct number and type of arguments. 

Semantic analysis & 
intermediate code gen.
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Semantic Analysis

•Not all semantic rules can be checked at compile time.

• Those that can are called static semantics of the language.

• Those that cannot are called dynamic semantics of the 
language. For example,

• Arithmetic operations do not overflow.

• Array subscripts expressions lie within the bounds of the array.

Semantic analysis & 
intermediate code gen.
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Example Program GCD

program gcd(input, output);
var i, j: integer;
begin
read(i,j); // get i & j from read
while i<>j do
if i>j then i := i-j
else j := j-1;

writeln(i)
end.
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Semantic Analysis Semantic analysis & 
intermediate code gen.

program

id(GCD) ( id(INPUT) more_ids ) ; block

program

(5) read

(3) (6) read

(3) (7)

Rest of 
code

Index Symbol Type
1 INTEGER type

2 TEXTFILE type

3 INPUT 2

4 OUTPUT 2

5 GCD program

6 I 1

7 J 1
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Target code generation

•Code generation takes the abstract syntax tree and the 
symbol table to produce machine readable code.

•Simple code follows directly from the abstract syntax 
tree and symbol table.

Target code generation.
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Optimization

•The process so far will produce correct code, but it 
may not be fast.

•Optimization will adjust the code to improve 
performance.

• A possible machine-indp. optimization would be to keep the 
variables i and j in registers throughout the main loop. 

• A possible machine-spec. optimization would be to assign the 
variables i and j to specific registers. 

Machine-independent 
optimization (optional)

Machine-specific 
optimization (optional)


