
The University of North Carolina at Chapel Hill

Lecture 2: Compilation and Interpretation

COMP 524 Programming Language Concepts
Stephen Olivier
January 15, 2009

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goals

•In this lecture, we will discuss how to translate source
code into machine executable code.

The University of North Carolina at Chapel Hill

Compilation and Interpretation

•There are two primary methods for translating high-level
code:

• Compilation

• Interpretation

The University of North Carolina at Chapel Hill

Compilation

Source Program

Compiler

Target ProgramInput Output

The University of North Carolina at Chapel Hill

Compilation

Source Program

Compiler

Target ProgramInput Output

The “target program” is called the object
code.

The University of North Carolina at Chapel Hill

Compilation

Source Program

Compiler

Target ProgramInput Output

You translate once and run many times.

The University of North Carolina at Chapel Hill

Interpretation

Interpreter

Source Program Input

Output

The University of North Carolina at Chapel Hill

Interpretation

Interpreter

Source Program Input

Output

You translate for each run.

The University of North Carolina at Chapel Hill

Comparison

Source

Compiler

Target In Out

Source In

Out

Interpreter

The University of North Carolina at Chapel Hill

Comparison

Source

Compiler

Target In Out

Source In

Out

Compilers are usually faster than
interpreters.

Interpreter

The University of North Carolina at Chapel Hill

Comparison

Source

Compiler

Target In Out

Interpreter

Source In

Out

Interpreters are usually more flexible and
easier to debug than compilers.

The University of North Carolina at Chapel Hill

Compilation and Interpretation

Source Program

Translator

Intermediate
Program

Input

Output
Virtual

Machine

The University of North Carolina at Chapel Hill

Compilation and Interpretation

Source Program

Translator

Intermediate
Program

Input

Output
Virtual

Machine

The Virtual Machine acts as an
interpreter.

The University of North Carolina at Chapel Hill

Compilation and Interpretation

Source Program

Translator

Intermediate
Program

Input

Output
Virtual

Machine

The translator can be a compiler or an
interpreter. It is considered to be a compiler if:
1. There is a thorough analysis of the program

2. The transformation is non-trivial.

The University of North Carolina at Chapel Hill

Compilation and Interpretation

Source Program

Translator

Intermediate
Program

Input

Output
Virtual

Machine

This is exactly the process
that Java uses.

The University of North Carolina at Chapel Hill

Linking Source Program

Compiler

Library
Routines

Incomplete machine language

Linker

Machine
language
program

The University of North Carolina at Chapel Hill

Linking Source Program

Compiler

Library
Routines

Incomplete machine language

Linker

Machine
language
program

The Linker is used to connect subroutines that
are not contained in the original code.

The University of North Carolina at Chapel Hill

Linking Source Program

Compiler

Library
Routines

Incomplete machine language

Linker

Machine
language
program

This is used by Fortran

The University of North Carolina at Chapel Hill

Preprocessing

Source Program

Preprocessor

Modified source program

The University of North Carolina at Chapel Hill

Preprocessing

Source Program

Preprocessor

Modified source program

For example, this may be used to remove
comments or use replacement macros.

The University of North Carolina at Chapel Hill

Preprocessing

Source Program

Preprocessor

Modified source program

On the note about macros, consider the macro
#define FALSE 0.

This code will replace all instances of the word
“FALSE” with the value 0.

The University of North Carolina at Chapel Hill

Tombstone Diagrams

•Useful for graphically representing programs and
translators.

• Machine (x86):

• Program (in C): • Interpreter (for Perl, impl. in x86)

• Translator (C to x86, impl. in x86)

The University of North Carolina at Chapel Hill

Tombstone Diagrams

•Example: Compiling a C program to run on x86

•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.

The University of North Carolina at Chapel Hill

Bootstrapping

•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.

The University of North Carolina at Chapel Hill

Bootstrapping

P-Code is a very simple
language that can easily be
translated into any machine

language.

•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.

The University of North Carolina at Chapel Hill

Bootstrapping

•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.

The University of North Carolina at Chapel Hill

Bootstrapping

The interpreter is hand translated into a supported language.

•Pascal came shipped with three things:

• A Pascal to P-Code Compiler, written in Pascal.

• A P-code interpreter, in Pascal.

• A Pascal to P-Code Compiler, written in P-Code.

The University of North Carolina at Chapel Hill

Bootstrapping

The interpreter is hand translated into a supported language.
And then compiled into machine code.

The University of North Carolina at Chapel Hill

Bootstrapping

•To get a simple (but slow) compiler, one could use the
“Pascal to P-Code compiler, in P-Code” and the “P-Code to
machine lang. interpreter” to compile Pascal code.

The University of North Carolina at Chapel Hill

Bootstrapping

•To get a simple (but slow) compiler, one could use the
“Pascal to P-Code compiler, in P-Code” and the “P-Code to
machine lang. interpreter” to compile Pascal code.

This interpreter is used to run the Pascal
to P-Code compiler and the program.

The University of North Carolina at Chapel Hill

Bootstrapping (Faster)

•To create a faster compiler, we modify the “Pascal to P-
Code compiler, in Pascal” so that it is a “Pascal to
machine language compiler, in Pascal.”

The University of North Carolina at Chapel Hill

Bootstrapping (Faster)

•To create a faster compiler, we modify the “Pascal to P-
Code compiler, in Pascal” so that it is a “Pascal to
machine language compiler, in Pascal.”

This is MUCH HARDER than creating a P-Code to
Machine language interpreter.

The University of North Carolina at Chapel Hill

Bootstrapping (Faster)

Now construct the “Pascal to machine
lang. compiler, in P-Code.”

The University of North Carolina at Chapel Hill

Bootstrapping (Faster)

Then run the “Pascal to
machine lang. compiler, in
Pascal” through the “P-

Code” version to produce
the “Machine lang.”

version.

The University of North Carolina at Chapel Hill

Bootstrapping (Faster)

The University of North Carolina at Chapel Hill

Compiling

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis &
intermediate code gen.

Machine-independent
optimization (optional)

Target code generation.

Machine-specific
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language

The University of North Carolina at Chapel Hill

Example Program GCD

program gcd(input, output);
var i, j: integer;
begin
read(i,j); // get i & j from read
while i<>j do
if i>j then i := i-j
else j := j-1;

writeln(i)
end.

The University of North Carolina at Chapel Hill

Lexical Analysis

•Recognize structures without regard to meaning and
groups them into tokens.

•The purpose of the scanner is to simplify the parser by
reducing the size of the input.

Scanner (lexical analysis)

program gcd(input, ouput);

program gcd (input , output) ;

The University of North Carolina at Chapel Hill

Syntax Analysis

•Parsing organizes the tokens into a context-free
grammar (i.e., syntax).

•

program gcd (input , output) ;

Parser (syntax analysis)

program

id(GCD) (id(INPUT) more_ids) ; block

, id(OUTPUT) more_ids

empty

Rest of code

The University of North Carolina at Chapel Hill

Syntax Analysis

•Parsing organizes the tokens into a context-free
grammar (i.e., syntax).

•

program gcd (input , output) ;

Parser (syntax analysis)

program

id(GCD) (id(INPUT) more_ids) ; block

, more_ids

empty

Rest of code

The Syntax analysis catches all
malformed statements

id(OUTPUT)

The University of North Carolina at Chapel Hill

Syntax Analysis

•Parsing organizes the tokens into a context-free
grammar (i.e., syntax).

•

program gcd (input , output) ;

Parser (syntax analysis)

program

id(GCD) (id(INPUT) more_ids) ; block

, more_ids

empty

Rest of code

The parse tree is sometimes called a
concrete syntax tree because it contains

how all tokens are derived...

id(OUTPUT)

The University of North Carolina at Chapel Hill

Syntax Analysis

•Parsing organizes the tokens into a context-free
grammar (i.e., syntax).

•

program gcd (input , output) ;

Parser (syntax analysis)

program

id(GCD) (id(INPUT) more_ids) ; block

, more_ids

empty

Rest of code

...however, much of this information is
extraneous for the “meaning” of the

code(e.g., the only purpose of “;” is to end
a statement).

id(OUTPUT)

The University of North Carolina at Chapel Hill

Semantic Analysis

•Semantic analysis discovers the meaning of a program.
by creating an abstract syntax tree that removes
“extraneous” tokens.

•To do this, the analyzer builds & maintains a symbol table
to map identifiers to information known about it. (i.e.,
scope, internal structure, etc...)

•By using the symbol table, the semantic analyzer can
catch problems not caught by the parser. For example,

• Identifiers are declared before used

• subroutine calls provide correct number and type of arguments.

Semantic analysis &
intermediate code gen.

The University of North Carolina at Chapel Hill

Semantic Analysis

•Not all semantic rules can be checked at compile time.

• Those that can are called static semantics of the language.

• Those that cannot are called dynamic semantics of the
language. For example,

• Arithmetic operations do not overflow.

• Array subscripts expressions lie within the bounds of the array.

Semantic analysis &
intermediate code gen.

The University of North Carolina at Chapel Hill

Example Program GCD

program gcd(input, output);
var i, j: integer;
begin
read(i,j); // get i & j from read
while i<>j do
if i>j then i := i-j
else j := j-1;

writeln(i)
end.

The University of North Carolina at Chapel Hill

Semantic Analysis Semantic analysis &
intermediate code gen.

program

id(GCD) (id(INPUT) more_ids) ; block

program

(5) read

(3) (6) read

(3) (7)

Rest of
code

Index Symbol Type
1 INTEGER type

2 TEXTFILE type

3 INPUT 2

4 OUTPUT 2

5 GCD program

6 I 1

7 J 1

The University of North Carolina at Chapel Hill

Target code generation

•Code generation takes the abstract syntax tree and the
symbol table to produce machine readable code.

•Simple code follows directly from the abstract syntax
tree and symbol table.

Target code generation.

The University of North Carolina at Chapel Hill

Optimization

•The process so far will produce correct code, but it
may not be fast.

•Optimization will adjust the code to improve
performance.

• A possible machine-indp. optimization would be to keep the
variables i and j in registers throughout the main loop.

• A possible machine-spec. optimization would be to assign the
variables i and j to specific registers.

Machine-independent
optimization (optional)

Machine-specific
optimization (optional)

