
The University of North Carolina at Chapel Hill

Lecture 3: Lexical Analysis

COMP 524 Programming Language Concepts
Stephen Olivier
January 20, 2009

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, J. Prins and D. Stotts

The University of North Carolina at Chapel Hill

Goal of Lecture

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis &
intermediate code gen.

Machine-independent
optimization (optional)

Target code generation.

Machine-specific
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language

This includes regular expressions.

The University of North Carolina at Chapel Hill

Scanning

•The main task of scanning is to identify tokens.

The University of North Carolina at Chapel Hill

Pseudo-Code Scanner (Fig 2.5)

We skip any initial white spaces
we read the next character
if it is a (we look at the next character
if that is a * we have a comment;
we skip forward through the terminating *)

otherwise we return a (and reuse the look-ahead
If it is one of the one-character tokens ([],;=+- etc.)
we return that token

...

The University of North Carolina at Chapel Hill

Pseudo-Code Scanner (Fig 2.5)

We skip any initial white spaces
we read the next character
if it is a (we look at the next character
if that is a * we have a comment;
we skip forward through the terminating *)

otherwise we return a) and reuse the look-ahead
If it is one of the one-character tokens ([],;=+- etc.)
we return that token

...

We could just turn this into real code and
use that as the scanner, and that would be

fine for small programs...

The University of North Carolina at Chapel Hill

Pseudo-Code Scanner (Fig 2.5)

We skip any initial white spaces
we read the next character
if it is a (we look at the next character
if that is a * we have a comment;
we skip forward through the terminating *)

otherwise we return a) and reuse the look-ahead
If it is one of the one-character tokens ([],;=+- etc.)
we return that token

...

... However, for larger programs that must
be correct a more formal approach is more

appropriate.

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)
“→” denotes assignment

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)
“|” denotes or

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)
Thus, digit equal “0” or “1” or “2” or

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

“*” denotes zero or more of this type.

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

Two REs next to each other denotes
concatenation.

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

So natural number equals at least
“one non-zero digit” followed by

“zero or more digits”.

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

“ε” means empty.

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

So, what does this mean?

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)

The University of North Carolina at Chapel Hill

Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

It means “0 or a natural number” followed
by “nothing” or by “. and zero or more

digits concluded by a non_zero number”

non_neg_number → (0 | natural_number) ((. digit* non_zero_digit) | ε)

The University of North Carolina at Chapel Hill

Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to
denote concatenation.

• Two REs separated by “|” next to each other (e.g.,
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

• Parentheses (in order to avoid ambiguity).

The University of North Carolina at Chapel Hill

Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to
denote concatenation.

• Two REs separated by “|” next to each other (e.g.,
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

• Parentheses (in order to avoid ambiguity).

A RE is NEVER defined in terms of itself!
Thus, REs cannot define recursive

statements.

The University of North Carolina at Chapel Hill

Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to
denote concatenation.

• Two REs separated by “|” next to each other (e.g.,
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

• Parentheses (in order to avoid ambiguity).

The set of tokens that can be recognized by
regular expressions is called a regular set.

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic
finite automaton (DFA).

• DFAs are turing machines that have a finite number of states
and deterministically move between states.

S

1 1

1

0

00

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic
finite automaton (DFA).

• DFAs are turning machines that have a finite number of states
and deterministically move between states.

S

1 1

1

0

Start State

00

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic
finite automaton (DFA).

• DFAs are turning machines that have a finite number of states
and deterministically move between states.

S

1 1

1

0

Intermediate State

00

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic
finite automaton (DFA).

• DFAs are turning machines that have a finite number of states
and deterministically move between states.

S

1 1

1

00

0

End State (double circle)

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic
finite automaton (DFA).

• DFAs are turning machines that have a finite number of states
and deterministically move between states.

S

1 1

1

00

0

This stands for:
0*10*1(0|1)*

The University of North Carolina at Chapel Hill

Constructing DFAs

•A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from
the RE.

2. Construct a DFA from the NFA.

3. Minimize the DFA

The University of North Carolina at Chapel Hill

What is an NFA?

•An NFA is similar to a DFA, except that state transitions
are nondeterministic.

•This nondeterminism is encapsulated via the epsilon
transition (written as ε).

S

0ε

ε 1

The University of North Carolina at Chapel Hill

What is an NFA?

•An NFA is similar to a DFA, except that state transitions
are nondeterministic.

•This nondeterminism is encapsulated via the epsilon
transition (written as ε).

S

0ε

ε 1

This stands for:
0|1

The University of North Carolina at Chapel Hill

What is an NFA?

•An NFA is similar to a DFA, except that state transitions
are nondeterministic.

•This nondeterminism is encapsulated via the epsilon
transition (written as ε).

S

0ε

ε 1

The ε transitions imply that either
transition can be taken with any (or

no) input.

The University of North Carolina at Chapel Hill

The four RE rules and NFA

S

Rule 1--Base case: “a”

a

The University of North Carolina at Chapel Hill

The four RE rules and NFA

Rule 2--Concatenation: “AB”

S

A

S

B

S

AB

plus

The University of North Carolina at Chapel Hill

The four RE rules and NFA

Rule 2--Concatenation: “AB”

S

A

S

B

S

AB

plus

Stands for Some NFA called “A”

The University of North Carolina at Chapel Hill

The four RE rules and NFA

Rule 3--Alternation: “A|B”

S

A

S

B

B

S

or

A

A|B

ε

ε

ε

ε

The University of North Carolina at Chapel Hill

The four RE rules and NFA

Rule 3--Alternation: “A|B”

S

A

S

B

B

S

or

A

A|B

ε

ε

ε

ε

Notice the epsilon transitions.

The University of North Carolina at Chapel Hill

The four RE rules and NFA

Rule 4--Kleene Closure: “A*”

S

A

S

empty or repeated

A

A*

ε ε

ε

ε

The University of North Carolina at Chapel Hill

The four RE rules and NFA

Rule 4--Kleene Closure: “A*”

S

A

S

empty or repeated

A

A*

ε ε

ε

ε

Notice the epsilon transitions.

The University of North Carolina at Chapel Hill

Some examples:

•0|1*

•AB*

•F|(GH*)

•Z*|ε|Y*X

S

S

B

S

Aε

ε

ε

ε

S A
ε ε

ε

ε

a

BA

The University of North Carolina at Chapel Hill

Constructing DFAs

•A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from
the RE.

2. Construct a DFA from the NFA.

3. Minimize the DFA

The University of North Carolina at Chapel Hill

Constructing DFAs

•A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from
the RE.

FOR_KEYWORD → for

IDENTIFIER → Alph (Alph | Dig)*

REAL → Dig Dig* . Dig*

INT → Dig Dig*

The University of North Carolina at Chapel Hill

Constructing DFAs

•A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from
the RE.

2. Construct a DFA from the NFA.

3. Minimize the DFA

The University of North Carolina at Chapel Hill

Constructing a DFA from an NFA.

•Construct the DFA by “collapsing” the states of an NFA.

•Three steps

1.Identify set of states that can be reached from the start state
via epsilon-transitions and make this one state.

2.For a given DFA state (which is a set of NFA states) consider
each possible input and combine the resulting NFA states
into one DFA state.

3.Repeat Step 2 until all states have been added.

The University of North Carolina at Chapel Hill

An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

1

1

Start

NFA DFA

C,G,E,F

B,D,F

G,E,F

0
0

0

0|1*00*

ε

The University of North Carolina at Chapel Hill

An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

1

Start

NFA DFA

All the states that we can reach via ε are in this state

C,G,E,F

B,D,F

G,E,F

0

0

0|1*00*

ε

1

0

The University of North Carolina at Chapel Hill

An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

1

Start

NFA DFA

C,G,E,F

B,D,F

G,E,F

0

0

0|1*00*

All the states that we
can reach via 0 or ε

from SABF

ε

1

0

The University of North Carolina at Chapel Hill

An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

NFA DFA

G,E,F

0

0

0|1*00*

All the states that we
can reach via 1 or ε

from SABF

ε

1

0

The University of North Carolina at Chapel Hill

An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

NFA DFA

G,E,F

0

0

0|1*00*

All the states that we can
reach via 0 or ε from B,D,F or

C,G,F

ε

1

0

The University of North Carolina at Chapel Hill

An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

NFA DFA

G,E,F

0

0

0|1*00* Self Loop.

ε

1

0

The University of North Carolina at Chapel Hill

An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

NFA DFA

G,E,F

0

0

0|1*00*

ε

1

0

The University of North Carolina at Chapel Hill

Minimize via partitioning

•First, partition states into final and non-final

•Second, determine the effect of the state transition
based on what partition the transition goes to.

•Third, Create new partition for those states that have
different transitions.

•Fourth, repeat.

The University of North Carolina at Chapel Hill

An example

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

DFA

G,E,F

0

0

1

0

State 0 1

SABF X-2 X-1

BDF X-2 X-1

CGEF X-2 N/A

GEF X-2 N/A

X-1 X-2

The University of North Carolina at Chapel Hill

An example

0

X-1

X-2

1

Start

State 0 1

SABF X-2 X-1

BDF X-2 X-1

CGEF X-2 N/A

GEF X-2 N/A

X-1 X-2

0

The University of North Carolina at Chapel Hill

Scanner Code

•Can create Scanner from the DFA one of two ways:

• Nested case statements (Handwritten)

• Tables (easy to generate from code, hard to write by hand)

The University of North Carolina at Chapel Hill

The University of North Carolina at Chapel Hill

Two complications--Nested Case

•Keywords

• It is possible to maintain a DFA for keywords, but the number
of states would be even larger! So, they are handled as
exceptions to the rule.

•“Dot-Dot”

• Pascal uses “..” to denote a range of numbers; however, to
determine the meaning of the “..” we need to “look ahead”
after reading the first “.” to determine if “.” denotes the end of a
token or a beginning of a new token.

• “3.14” one token

• “2 .. 5” three tokens

The University of North Carolina at Chapel Hill

This code specifies a two-
dimensional transition table,

which tells “whether to move,
return token, or announce error”

The University of North Carolina at Chapel Hill

A second table tells when we
might have hit the end of a token

(for backing up)

The University of North Carolina at Chapel Hill

Pragmas

•Pragmas are “comments” that provide direction for the
compiler.

• For example, “Variable x is used a lot, keep it in memory if
possible.”

•These are often handled by the parser since this makes
the grammar much simpler.

