Lecture 3: Lexical Analysis

COMP 524 Programming Language Concepts
Stephen Olivier
January 20, 2009

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, J. Prins and D. Stotts

The University of North Carolina at Chapel Hil ”

Goal of Lecture

Character Stream i\
Token Stream '

Scanner (lexical analysis)

Parse Tree \
- Crarmmantin analiicin 9 N\

This includes regular expressions.

Mod

Machine language '(
" Machine-specific
’ optimization (optional)
Modified target language

The University of North Carolina at Chapel Hill

Target code generation.

)

Scanning

* The main task of scanning is to identify tokens.

The University of North Carolina at Chapel Hill

)

Pseudo-Code Scanner (Fig 2.5)

-

We skip any initial white spaces

we read the next character

if it is a (we look at the next character
if that is a * we have a comment;

we skip forward through the terminating *)

otherwise we return a (and reuse the look-ahead

If it is one of the one-character tokens ([],;=t- etc.)
we return that token

The University of North Carolina at Chapel Hill

Pseudo-Code Scanner (Fig 2.5)

P
We skip any initial white spaces
we read ;bo navE ~harantawr
if it 1is : C
it tnai We could just turn this into real code and
we sk USe that as the scanner, and that would be
otherw] :
If it is fine for small programs... :

The University of North Carolina at Chapel Hill

Pseudo-Code Scanner (Fig 2.5)

-

We skip any initial white spaces
we read ‘P-hg naoasvt ~rhavrarntor
if it 1is

if tha{ -~ FlOWever, for larger programs that must
we sk pe correct a more formal approach is more
h i -

otherw appropriate.

If it is

The University of North Carolina at Chapel Hill

Regular expressions

4)
[digit = 0]1]2|3]4(5]6]7]8]9]
[non_zero_digit = 11213 |4(5]6]7|8]9]
[natural_number — non_zero_digit digit*)
[non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €)]
NG .

The University of North Carolina at Chapel Hill

Regular expressions

ct—»0|"2|3|4|5|6|7|8|9]

non_zero_digi‘ 213|4|5|6|7|8]|9)

Y)

natural_number = Yon_zero_digit digit*

Y

“—” denotes assignment

non

Regular expressions

et (0|1|"3|4|5|6|7|8|9]

non_zero_digi‘ 213|4|5|6|7|8]|9)

Y)

natural_number = Yon_zero_digit digit*

Y

“|” denotes or

non

Regular expressions

non

digit - 0|1|2|3|4|5|6|7|8]|9 '

(non_zero_digi‘ 213|4|5|6|7|8]|9)

natural_number = Yon_zero_digit digit*

Thus, digit equal “0” or “1” or “2” or

Regular expressions

(

—

“*” denotes zero or more of this type.

(non_zero_digit = 1 | Z\Q\g 67|89)

(natural_number — non_zero d. @dlglt*

(non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €))

The University of North Carolina at Chapel Hill

Regular expressions

(/ N

- Two REs next to each other denotes
concatenation.

\

(non_zero_digit—>‘n\\'|4|5|6|7|8|9)

(natural_number ﬂon_zero_digit digi?"

(non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €))

The University of North Carolina at Chapel Hill

Regular expressions

" So natural number equals at least
“one non-zero digit” followed by
“zero or more digits”.

N\

\

(non_zero_digit—>‘n\\'|4|5|6|7|8|9)

/ﬁ
na

tural_number — non_zero_digit digit* ’

The University of North Carolina at Chapel Hill

(non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €))

Regular expressions
4

s “€” means empty.
(non_zero_digit = 11213 |4(5]6]7|8]9)
\ %
(natural_number — non_zero_digit digit’ 9 J)
it) | €)

(non_neg_number — (0 | natural_number) ((. digit* non_zero_ 6 | ’

-

The University of North Carolina at Chapel Hill

Regular expressions

-

C So, what does this mean?

(non_zero_digit—>1|:|3|4|5|6|7|8|9)

(natural_number — non_zero_digit digit*)

non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €)

The University of North Carolina at Chapel Hill

Regular expressions

g

It means “0 or a natural number” followed
by “nothing” or by “. and zero or more
digits concluded by a non_zero number”

(

non_zero_digit—>1|:l3|4|5|6|7|8|9)

(

natural_number — non_zero_digit digit*)

non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €)

The University of North Carolina at Chapel Hill

Regular Expression Rules

e A RE consist of:
e A character (e.g., “07, “17, ..))
e The empty string (i.e., “€”)

e Two REs next to each other (e.g., “non_negative_digit digit”) to
denote concatenation.

e Two REs separated by “|” next to each other (e.qg.,
“non_negative_digit | digit”) to denote one RE or the other.

e An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

* Parentheses (in order to avoid ambiguity).

)

The University of North Carolina at Chapel Hill

Regular Expression Rules

e A RE consist of:

e A character (e.g., “07, “17, ..))

g
*The| A RE is NEVER defined in terms of itself

e Two Thus, REs cannot define recursive
denc statements.

e Two

“non_negative_digit | digit”) to denote one RE or the other.

e An RE followed by “*” (called the Kleene star) to denote zero

or more iterations of the RE.

* Parentheses (in order to avoid ambiguity).

The University of North Carolina at Chapel Hill

git”) to

)

Regular Expression Rules

e A RE consist of:
e A character (e.g., “07, “17, ..))

p
e The

The set of tokens that can be recognized by

e Two . .
regular expressions is called a regular set.

deng

e Two o,
“non_negative_digit | digit”) to denote one RE or the other.

e An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

e Parentheses (in order to avoid ambiguity).

The University of North Carolina at Chapel Hill

git”) to

Deterministic finite automaton (DFA)

e Every regular set can be defined by using deterministic
finite automaton (DFA).

e DFAs are turing machines that have a finite number of states
and deterministically move between states.

o <’@/\Q/\v =

0

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

e Every regular set can be defined by using deterministic

finite automato
‘ Start State I
e DFAs are turning e a finite number of states

and deterministically r gve between states.

-

N
o<@ - 9?

0 0

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

e Every regular set can be defined by using deterministic

finite aut .
Intermediate State
e DFAs are e a finite number of states

and deterministically m \e between states.

. N
e~ /\\O)/\@‘ﬁ

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

e Every regular set can be defined by using deterministic
finite automaton

End State (double circle)
e DFAs are turning m of states

and deterministically move between states.

0<@/\@ @

The University of North Carolina at Chapel Hill

Deterministic finite automaton (DFA)

eEvery re/qular set can be defined by using deterministic

finite a This stands for:
e DFAs 0*10™1 (O|1)* umber of states
and d

The University of North Carolina at Chapel Hill ||||

Constructing DFAS

e A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from
the RE.

2. Construct a DFA from the NFA.
3. Minimize the DFA

)

The University of North Carolina at Chapel Hill

What is an NFA?

* An NFA is similar to a DFA, except that state transitions
are nondeterministic.

* This nondeterminism is encapsulated via the epsilon
transition (written as €).

O

O, O

The University of North Carolina at Chapel Hill

What is an NFA?

e An NFA iIs similar/” N— ~hat state transitions

are nondetermini This stands for:

¢ This nondetermir oh d via the epsilon
transition (writte

-

The University of North Carolina at Chapel Hill

What is-an-MEAD

are na no)

The € transitions imply that either
o An N fransition can bel taketn with any (or
input.

¢ This nondeterminism !
transition (written ¢

‘encapsulated via the epsilon

The University of North Carolina at Chapel Hill

The four RE rules and NFA

p
[Rule 1--Base case: “a” j

The University of North Carolina at Chapel Hill

The four RE rules and NFA

4
[Rule 2--Concatenation: “AB”]

SR

oge oge

B

v

The University of North Carolina at Chapel Hill

The fol‘ Stands for Some NFA called “A” '
[Rule 2--Concate j «AB’,

TDE oo
oo

AB

The University of North Carolina at Chapel Hill ||||

The four RE rules and NFA

4
[Rule 3--Alternation: “A|B”]

&0

A

\4
‘e‘ s
AlB

oge

Q

The four RE rules and NFA

-

The four RE rules and NFA

4
[Rule 4--Kleene Closure: “A*” j

pty or repeated j

(o

A*

'4

/ E \

The four RE rules and NFA

Some examples:

01"
* AB*
o F|(GH?)
°Z*|g|Y*X

Constructing DFAS

e A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from
the RE.

2. Construct a DFA from the NFA.
3. Minimize the DFA

)

The University of North Carolina at Chapel Hill

Constructing DFAS

e A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from
the RE.

FOR_KEYWORD — for

IDENTIFIER — Alph (Alph | Dig)*

S S

REAL — Dig Dig* . Dig*

Y Y anYan

INT = Dig Dig*)

The University of North Carolina at Chapel Hill

!

Constructing DFAS

e A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from
the RE.

2. Construct a DFA from the NFA.
3. Minimize the DFA

)

The University of North Carolina at Chapel Hill

Constructing a DFA from an NFA.

e Construct the DFA by “collapsing” the states of an NFA.

® Three steps

1.ldentify set of states that can be reached from the start state

via epsilon-transitions and make this one state.

2.For a given DFA state (which is a set of NFA states) consider
each possible input and combine the resulting NFA states
into one DFA state.

3.Repeat Step 2 until all states have been added.

The University of North Carolina at Chapel Hill

)

An example

p
[oh*oo*j

 (D—()

\ ¥/

RE®

NFA

N\ (¢

C_SABF D
b
<<C,G,E,F> :
0 !
O C_BDF D
NV
>
DFA

N £

<

0 '

O C_BDF D
Voo Y

N
o>

0
DFA

‘ All the states that we can reach via € are in this state '
A

\\'\:C Et

~

& All the states that we
can reach via O or &

from SABF

& All the states that we
canreachvia 1 or €
from SABF

DFA

& All the states that we can

reach via O or € from B,D,F or

An example

<

NFA

~

f[oh *C{ Self Loop. ' \\g CS,A,B,F)

Start
S/
CC,G,E,F>> :
NN
C_BDF D

An example

p
[oh*oo*j

 (D—()

\ ¥/

RE®

NFA

N\ (¢

C_SABF D
b
<<C,G,E,F> :
0 !
O C_BDF D
NV
>
DFA

Minimize via partitioning

e First, partition states into final and non-final

e Second, determine the effect of the state transition
based on what partition the transition goes to.

e Third, Create new partition for those states that have
different transitions.

e Fourth, repeat.

The University of North Carolina at Chapel Hill

)

X-1 X-2
p An example
" e
S,A,B,F
9/ State 0 1
CCCGEF D | SABF | X-2 | X-1
0) BDF X-2 X-1
Oi §B5F> CGEF | X-2 N/A
((GEF) GEF | X2 | N/A

N

X1 | [x-2
/An example
" G
X-1
% State 0 1
1
0
v SABF | X2 | X-1
C x2 > BDF | X2 | X-
0&
CGEF | X2 | N/A
GEF | X2 | N/A

Scanner Code

e Can create Scanner from the DFA one of two ways:
e Nested case statements (Handwritten)

e Tables (easy to generate from code, hard to write by hand)

The University of North Carolina at Chapel Hill

)

state ;= start
loop
case state of
start

arase text of currant token
casa inputochar of
N N, e D noop
‘[': state := gotdlbrac
‘1" state := gotarbrac

' 1 state ;= got_comma

‘(' : state := saw_lparen
"' ¢ state ;= sawdot
<" state ;= sawlthan

‘atl'e AL E
state ;= inddent
'0°..'9" ; state 1= indnt

alse arror

sawlparan: case inputahar of

‘¥ state ;= in_comment

alse return lparan
incomment: case inputchar of
‘¥ state ;= leaving-comment
alse nowop
leaving_comment: case input_char of
‘) : state 1= start
alse state := incomment

sawdot ; case inputLchar of
"' state (= potdotdot
alse raturn dot

sawdthan : case inputchar of

=': state ;= got_le
alse return It

inddent : case inputchar of
Aty A0, '] s nowop
alsa
look up accumulated token
in keyword tabla
if found, return keyword
alsa return identifiar

indnt : case inputchar of
'0..'9" : no_op
peek at character bayond inputachar;
if '0"..'0", state ;= sawrealdat
alza
unread peeked-at charactar
return intconst
Attt AT D arror
alse return intconst

saw_real daot ...

gotdbrac ; return lbrac
got_rbrac : return rbrac
gotcomma : return comma
got_dotdat - return dotdot
gotde : return le

append inputchar to text of current token
read new inputchar

The University of North Carolina at Chapel Hill

Two complications--Nested Case

e Keywords

e |t is possible to maintain a DFA for keywords, but the number
of states would be even larger! So, they are handled as
exceptions to the rule.

¢ “Dot-Dot”

e Pascal uses “..” to denote a range of numbers; however, to

determine the meaning of the “..” we need to “look ahead”

after reading the first “.” to determine if “.” denotes the end of a
token or a beginning of a new token.

e “3.14” one token

e “2 .. 5” three tokens

)

The University of North Carolina at Chapel Hill

state = 1. number of sfafes
actionrec = record
action : (move, recognize, eror)
newstate ; state

This code specifies a two-
dimensional transition table,
which tells “whether to move,
return token, or announce error”

image = nu
repeat
leop
read curochar
case scantablcur_char, cur_state].action
move:
cur-state ;= scan-tab[curachar, curstate]. newstate
FECOENiZE:
tok .= scantab|cur_char, cur_state].token found
exit inner loop
error:
—— print error message and recover; probably start over
append cur_char to image
—— end inner loop
until tok not in [whitespace, comment]
lock image up in keyword_tab and replace tok with appropriate keyword if found
retum (tok, image)

The University of North Carolina at Chapel Hill ||||

state = 1. number of sfafes
actionrec = record
action : (move, recognize, eror)
newstate ; state

A second table tells when we
might have hit the end of a token
(for backing up)

image = nu
repeat
leop
read curochar
case scantablcur_char, cur_state].action
move:
cur-state ;= scan-tab[curachar, curstate]. newstate
FECOENiZE:
tok .= scantab|cur_char, cur_state].token found
exit inner loop
error:
—— print error message and recover; probably start over
append cur_char to image
—— end inner loop
until tok not in [whitespace, comment]
lock image up in keyword_tab and replace tok with appropriate keyword if found
retum (tok, image)

F_ N

The University of North Carolina at Chapel Hill ||||

Pragmas

e Pragmas are “comments” that provide direction for the

compiler.

e For example, “Variable x is used a lot, keep it in memory if
possible.”

* These are often handled by the parser since this makes

the grammar much simpler.

The University of North Carolina at Chapel Hill

)

