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Goal of Lecture

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis & 
intermediate code gen.

Machine-independent 
optimization (optional)

Target code generation.

Machine-specific 
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language

This includes regular expressions. 
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Scanning 

•The main task of scanning is to identify tokens.
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Pseudo-Code Scanner (Fig 2.5)

We skip any initial white spaces
we read the next character
if it is a ( we look at the next character
if that is a * we have a comment;
we skip forward through the terminating *)

otherwise we return a ( and reuse the look-ahead
If it is one of the one-character tokens ([],;=+- etc.)
we return that token

...
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Pseudo-Code Scanner (Fig 2.5)

We skip any initial white spaces
we read the next character
if it is a ( we look at the next character
if that is a * we have a comment;
we skip forward through the terminating *)

otherwise we return a ) and reuse the look-ahead
If it is one of the one-character tokens ([],;=+- etc.)
we return that token

...

We could just turn this into real code and 
use that as the scanner, and that would be 

fine for small programs...
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Pseudo-Code Scanner (Fig 2.5)

We skip any initial white spaces
we read the next character
if it is a ( we look at the next character
if that is a * we have a comment;
we skip forward through the terminating *)

otherwise we return a ) and reuse the look-ahead
If it is one of the one-character tokens ([],;=+- etc.)
we return that token

...

... However, for larger programs that must 
be correct a more formal approach is more 

appropriate. 
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
“→” denotes assignment
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
“|” denotes or
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
Thus, digit equal “0” or “1” or “2” or ....
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

“*” denotes zero or more of this type.

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

Two REs next to each other denotes 
concatenation. 

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

So natural number equals at least
“one non-zero digit” followed by 

“zero or more digits”.

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

“ε” means empty.

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

So, what does this mean?

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
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Regular expressions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

It means “0 or a natural number” followed 
by “nothing” or by “. and zero or more 

digits concluded by a non_zero number”

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 
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Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to 
denote concatenation.

• Two REs separated by “|” next to each other (e.g., 
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero 
or more iterations of the RE. 

• Parentheses (in order to avoid ambiguity).



The University of North Carolina at Chapel Hill  

Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to 
denote concatenation.

• Two REs separated by “|” next to each other (e.g., 
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero 
or more iterations of the RE. 

• Parentheses (in order to avoid ambiguity).

A RE is NEVER defined in terms of itself!
Thus, REs cannot define recursive 

statements.
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Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to 
denote concatenation.

• Two REs separated by “|” next to each other (e.g., 
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero 
or more iterations of the RE. 

• Parentheses (in order to avoid ambiguity).

The set of tokens that can be recognized by 
regular expressions is called a regular set.
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Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic 
finite automaton (DFA).

• DFAs are turing machines that have a finite number of states 
and deterministically move between states.

S

1 1

1

0

00
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Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic 
finite automaton (DFA).

• DFAs are turning machines that have a finite number of states 
and deterministically move between states.

S

1 1

1

0

Start State

00
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Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic 
finite automaton (DFA).

• DFAs are turning machines that have a finite number of states 
and deterministically move between states.

S

1 1

1
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Intermediate State

00
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Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic 
finite automaton (DFA).

• DFAs are turning machines that have a finite number of states 
and deterministically move between states.

S

1 1

1

00

0

End State (double circle)
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Deterministic finite automaton (DFA)

•Every regular set can be defined by using deterministic 
finite automaton (DFA).

• DFAs are turning machines that have a finite number of states 
and deterministically move between states.

S

1 1

1

00

0

This stands for:
0*10*1(0|1)*
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Constructing DFAs

•A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from 
the RE.

2. Construct a DFA from the NFA.

3. Minimize the DFA
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What is an NFA?

•An NFA is similar to a DFA, except that state transitions 
are nondeterministic. 

•This nondeterminism is encapsulated via the epsilon 
transition (written as ε).

S

0ε

ε 1



The University of North Carolina at Chapel Hill  

What is an NFA?

•An NFA is similar to a DFA, except that state transitions 
are nondeterministic. 

•This nondeterminism is encapsulated via the epsilon 
transition (written as ε).

S

0ε

ε 1

This stands for:
0|1
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What is an NFA?

•An NFA is similar to a DFA, except that state transitions 
are nondeterministic. 

•This nondeterminism is encapsulated via the epsilon 
transition (written as ε).

S

0ε

ε 1

The ε transitions imply that either 
transition can be taken with any (or 

no) input.
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The four RE rules and NFA

S

Rule 1--Base case: “a”

a



The University of North Carolina at Chapel Hill  

The four RE rules and NFA

Rule 2--Concatenation: “AB”

S

A

S

B

S

AB

plus
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The four RE rules and NFA

Rule 2--Concatenation: “AB”

S

A

S

B

S

AB

plus

Stands for Some NFA called “A”
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The four RE rules and NFA

Rule 3--Alternation: “A|B”

S

A

S

B

B

S

or

A

A|B

ε

ε

ε

ε
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The four RE rules and NFA

Rule 3--Alternation: “A|B”

S

A

S

B

B

S

or

A

A|B

ε

ε

ε

ε

Notice the epsilon transitions. 
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The four RE rules and NFA

Rule 4--Kleene Closure: “A*”

S

A

S

empty or repeated

A

A*

ε ε

ε

ε
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The four RE rules and NFA

Rule 4--Kleene Closure: “A*”

S

A

S

empty or repeated

A

A*

ε ε

ε

ε

Notice the epsilon transitions. 
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Some examples:

•0|1*

•AB*

•F|(GH*)

•Z*|ε|Y*X

S

S

B

S

Aε

ε

ε

ε

S A
ε ε

ε

ε

a

BA
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Constructing DFAs

•A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from 
the RE.

2. Construct a DFA from the NFA.

3. Minimize the DFA
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Constructing DFAs

•A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from 
the RE.

FOR_KEYWORD → for

IDENTIFIER → Alph ( Alph | Dig )*  

REAL → Dig Dig* . Dig*

INT → Dig Dig*
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Constructing DFAs

•A DFA can be constructed from a RE via two steps.

1. Construct a nondeterministic finite automaton (NFA) from 
the RE.

2. Construct a DFA from the NFA.

3. Minimize the DFA
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Constructing a DFA from an NFA.

•Construct the DFA by “collapsing” the states of an NFA.

•Three steps

1.Identify set of states that can be reached from the start state 
via epsilon-transitions and make this one state.

2.For a given DFA state (which is a set of NFA states) consider 
each possible input and combine the resulting NFA states 
into one DFA state.

3.Repeat Step 2 until all states have been added.
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An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

1

1

Start

NFA DFA

C,G,E,F

B,D,F

G,E,F

0
0

0

0|1*00*

ε
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An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

1

Start

NFA DFA

All the states that we can reach via ε are in this state

C,G,E,F

B,D,F

G,E,F

0

0

0|1*00*

ε

1

0
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An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

1

Start

NFA DFA

C,G,E,F

B,D,F

G,E,F

0

0

0|1*00*

All the states that we 
can reach via 0 or ε 

from SABF

ε

1

0
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An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

NFA DFA

G,E,F

0

0

0|1*00*

All the states that we 
can reach via 1 or ε 

from SABF

ε

1

0
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An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

NFA DFA

G,E,F

0

0

0|1*00*

All the states that we can 
reach via 0 or ε from B,D,F or 

C,G,F

ε

1

0
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An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

NFA DFA

G,E,F

0

0

0|1*00* Self Loop.

ε

1

0
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An example

E
S

A

B D

ε C

ε
1

0

ε

ε

F

ε

G
0
ε

ε

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

NFA DFA

G,E,F

0

0

0|1*00*

ε

1

0
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Minimize via partitioning

•First, partition states into final and non-final

•Second, determine the effect of the state transition 
based on what partition the transition goes to.

•Third, Create new partition for those states that have 
different transitions.

•Fourth, repeat.
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An example

0

S,A,B,F

C,G,E,F

B,D,F

1

Start

DFA

G,E,F

0

0

1

0

State 0 1

SABF X-2 X-1

BDF X-2 X-1

CGEF X-2 N/A

GEF X-2 N/A

X-1 X-2
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An example

0

X-1

X-2

1

Start

State 0 1

SABF X-2 X-1

BDF X-2 X-1

CGEF X-2 N/A

GEF X-2 N/A

X-1 X-2

0
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Scanner Code

•Can create Scanner from the DFA one of two ways:

• Nested case statements (Handwritten)

• Tables (easy to generate from code, hard to write by hand)
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Two complications--Nested Case

•Keywords

• It is possible to maintain a DFA for keywords, but the number 
of states would be even larger! So, they are handled as 
exceptions to the rule.

•“Dot-Dot”

• Pascal uses “..” to denote a range of numbers; however, to 
determine the meaning of the “..” we need to “look ahead” 
after reading the first “.” to determine if “.” denotes the end of a 
token or a beginning of a new token.

• “3.14” one token

• “2 .. 5” three tokens
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This code specifies a two-
dimensional transition table, 

which tells “whether to move, 
return token, or announce error”
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A second table tells when we 
might have hit the end of a token 

(for backing up)
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Pragmas

•Pragmas are “comments” that provide direction for the 
compiler. 

• For example, “Variable x is used a lot, keep it in memory if 
possible.”

•These are often handled by the parser since this makes 
the grammar much simpler. 


