
The University of North Carolina at Chapel Hill

Lecture 4: Syntactic Analysis

COMP 524 Programming Language Concepts
Stephen Olivier
January 27, 2009

Based on notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goal of Lecture

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis &
intermediate code gen.

Machine-independent
optimization (optional)

Target code generation.

Machine-specific
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language

This includes context-free grammar.

2

The University of North Carolina at Chapel Hill

Parsing

•The main task of parsing is to identify the syntax.

3

The University of North Carolina at Chapel Hill

Review: Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to
denote concatenation.

• Two REs separated by “|” next to each other (e.g.,
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

• Parentheses (in order to avoid ambiguity).

4

The University of North Carolina at Chapel Hill

Review: Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to
denote concatenation.

• Two REs separated by “|” next to each other (e.g.,
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

• Parentheses (in order to avoid ambiguity).

A RE is NEVER defined in terms of itself!
Thus, REs cannot define recursive

statements.

5

The University of North Carolina at Chapel Hill

Review: Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to
denote concatenation.

• Two REs separated by “|” next to each other (e.g.,
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

• Parentheses (in order to avoid ambiguity).

For example, REs cannot define arithmetic
expressions with parentheses.

6

The University of North Carolina at Chapel Hill

Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs
except that they can handle recursion.

expr → id | number | - expr | (expr) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

7

The University of North Carolina at Chapel Hill

Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs
except that they can handle recursion.

expr → id | number | - expr | (expr) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

Each rule is called a production.

8

The University of North Carolina at Chapel Hill

Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs
except that they can handle recursion.

expr → id | number | - expr | (expr) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

One of the nonterminals, usually the first
one, is called the start symbol, and it
defines the construct defined by the

grammar.

9

The University of North Carolina at Chapel Hill

Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs
except that they can handle recursion.

expr → id | number | - expr | (expr) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

Non-terminals are symbols that are defined by
the CFG and can appear on both the left and

right side of “→”.

10

The University of North Carolina at Chapel Hill

Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs
except that they can handle recursion.

expr → id | number | - expr | (expr) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

In the book, non-terminals are written in italics,
but in other literature they are written in

<brackets>.

11

The University of North Carolina at Chapel Hill

Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs
except that they can handle recursion.

expr → id | number | - expr | (expr) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

Terminals are the strings that define the
grammar and can only appear on the right side

of “→”.

12

The University of North Carolina at Chapel Hill

Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs
except that they can handle recursion.

expr → id | number | - expr | (expr) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

In the book non-terminals are written in
typewriter font, others write it in “normal”

font.

13

The University of North Carolina at Chapel Hill

BNF

•Technically, the Kleene star (*) and parentheses are not
allowed under the CFG rules, called Backus-Naur Form
(BNF).

•However, for convenience, we will use Extended BNF
that includes the Kleene star, parentheses, and the
Kleene Plus (), which stands for “one or more
iterations.”

+

14

The University of North Carolina at Chapel Hill

EBNF Example.

•The Kleene star and parentheses can be we written as
follows

id_list → id (, id)*

id_list → id

id_list → id_list, id

15

The University of North Carolina at Chapel Hill

Derivation

•A derivation is “a series of replacement operations that
derive a string of terminals from the start symbol.”

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

(slope) * (x) + (intercept)

slope * x + intercept

16

The University of North Carolina at Chapel Hill

Derivation

•A derivation is “a series of replacement operations that
derive a string of terminals from the start symbol.”

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

(slope) * (x) + (intercept)

slope * x + intercept

⇒ denotes “derived from”

17

The University of North Carolina at Chapel Hill

Derivation

•A derivation is “a series of replacement operations that
derive a string of terminals from the start symbol.”

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

(slope) * (x) + (intercept)

slope * x + intercept

This derivation replaces the rightmost
non-terminal. Derivations with this
behavior are called (surprisingly)

rightmost or canonical derivation.

18

The University of North Carolina at Chapel Hill

Parse Tree

•A parse tree is the graphical representation of the
derivation.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

19

The University of North Carolina at Chapel Hill

Parse Tree

•A parse tree is the graphical representation of the
derivation.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

This parse tree constructs the formula
(slope*x) + intercept

20

The University of North Carolina at Chapel Hill

Parse Tree

•A parse tree is the graphical representation of the
derivation.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

This is a rightmost
derivation.

21

The University of North Carolina at Chapel Hill

Parse Tree

•A parse tree is the graphical representation of the
derivation.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

Lets try deriving “2*a*b+c”

22

The University of North Carolina at Chapel Hill

Parse Tree (Ambiguous)

•This grammar is ambiguous and can construct the
following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

23

The University of North Carolina at Chapel Hill

Parse Tree (Ambiguous)

•This grammar is ambiguous and can construct the
following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

This is a leftmost
derivation.

24

The University of North Carolina at Chapel Hill

Parse Tree (Ambiguous)

•This grammar, is ambiguous and can construct the
following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

This parse tree constructs the formula
slope*(x+intercept) which is not equal to

slope*x + intercept

25

The University of North Carolina at Chapel Hill

Parse Tree (Ambiguous)

•This grammar, is ambiguous and can construct the
following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

Lets try deriving “2*a*b+c”

26

The University of North Carolina at Chapel Hill

Disambiguating grammar

• The problem with our original grammar was that we did not fully
express the grammatical structure (i.e., associativity and
precedence).

• To create an unambiguous grammar, we need to fully specify the
grammar.

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /
27

The University of North Carolina at Chapel Hill

Disambiguating grammar

• The problem with our original grammar was that we did not fully
express the grammatical structure (i.e., associativity and
precedence).

• To create an unambiguous grammar, we need to fully specify the
grammar.

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /
28

Gives precedence to multiply

The University of North Carolina at Chapel Hill

Parse Tree

expr

expr add_op expr

+

number (3)

* number(5)

term

factor

term

number (4)

factor

mul_op factor

3+4*5

29

The University of North Carolina at Chapel Hill

Disambiguating grammar

• The problem with our original grammar was that we did not fully
express the grammatical structure (i.e., associativity and
precedence).

• To create an unambiguous grammar, we need to fully specify the
grammar.

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /

Lets try deriving “3*4+5*6+7”

30

The University of North Carolina at Chapel Hill

Parse Tree

expr

+

7

term

term

6

add_op

factor

3*4+5*6+7

expr

termadd_opexpr

+ term mul_op factor

*

5

factor

4

term mul_op factor

*

3

factor

31

The University of North Carolina at Chapel Hill

Disambiguating grammar

• The problem with our original grammar was that we did not fully
express the grammatical structure (i.e., associativity and
precedence).

• To create an unambiguous grammar, we need to fully specify the
grammar.

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /

Lets try deriving “3*4” & “3+4”

32

The University of North Carolina at Chapel Hill

expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

term

How can you derive these trees by examining
one character at a time?

33

The University of North Carolina at Chapel Hill

expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

term

In order to derive these trees, the first character
that we need to examine is the math symbol.

34

The University of North Carolina at Chapel Hill

expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

termThus, to parse these “sentences,” we first need to
search through them to find the math symbols . . .
then we need to sort out the multiplication from the

addition. . . ugh. . .

35

The University of North Carolina at Chapel Hill

Java Spec

•Available on-line

• http://java.sun.com/docs/books/jls/second_edition/html/
j.title.doc.html

•Examples

• Comments: http://java.sun.com/docs/books/jls/
second_edition/html/lexical.doc.html#48125

• Multiplicative Operators: http://java.sun.com/docs/books/jls/
second_edition/html/expressions.doc.html#239829

• Unary Operators: http://java.sun.com/docs/books/jls/
second_edition/html/expressions.doc.html#4990

36

http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48125
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48125
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48125
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48125
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#239829
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#239829
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#239829
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#239829
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#

The University of North Carolina at Chapel Hill

LL and LR Derivation

•CFGs can be parsed in O(n^3) time, where n is length of
the program.

•This is too long for most code; however, there are two
types of grammars that can be parsed in linear time,
i.e., O(n).

• LL: “Left-to-right, Left-most derivation”

• LR “Left-to-right, Right-most derivation”

37

The University of North Carolina at Chapel Hill

Top-down

•LL parsers are top-down, i.e., they identify the non-
terminals first and terminals second.

• LL grammars are grammars that can be parsed by an LL
parser.

38

The University of North Carolina at Chapel Hill

Top-Down

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A, B, C;

id (A) id_list_tail

id_list

id_list

id (A) id_list_tail

id_list

, id (B) id_list_tail

1.

2.

3.

39

The University of North Carolina at Chapel Hill

Top-Down

id_list → id id_list_tail id_list_tail → ;

A, B, C;

id (A) id_list_tail

id_list

id_list

id (A) id_list_tail

id_list

, id (B) id_list_tail

1.

2.

3.

LL parsers are some
time called

predictive because
they “predict” the

next state.

id_list_tail→,id id_list_tail

40

The University of North Carolina at Chapel Hill

Top-Down

id_list → id id_list_tail id_list_tail → ;

A, B, C;

id (A) id_list_tail

id_list

id_list

id (A) id_list_tail

id_list

, id (B) id_list_tail

1.

2.

3.

 For example, after
id(A) is “discovered”,

the next state is
“predicted as

id_list_tail.

id_list_tail→,id id_list_tail

41

The University of North Carolina at Chapel Hill

Top-Down

id_list → id id_list_tail id_list_tail → ;

A, B, C;

id (A) id_list_tail

id_list

id_list

id (A) id_list_tail

id_list

, id (B) id_list_tail

1.

2.

3.

Notice that tokens
are placed in the
tree from the left-

most to right-
most.

id_list_tail→,id id_list_tail

42

The University of North Carolina at Chapel Hill

Bottom-up

•LR parsers are bottom-up, i.e., they discover the
terminals first and non-terminals second.

• LR grammars are grammars that can be parsed by an LR
parser.

• All LL grammars are LR grammars but not vice versa.

43

The University of North Carolina at Chapel Hill

Bottom-up

id_list → id id_list_tail id_list_tail → ;

A, B, C;

id (A)1.

2. id (A) ,

6. id (A) , id (B) , id (C) ;

7. id (A) , id (B) , id (C)

;

id_list_tail

id_list_tail→,id id_list_tail

44

The University of North Carolina at Chapel Hill

Bottom-up

id_list → id id_list_tail id_list_tail → ;

A, B, C;

8. id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

id_list_tail→,id id_list_tail

45

The University of North Carolina at Chapel Hill

Bottom-up

id_list → id id_list_tail id_list_tail → ;

A, B, C;

id (A)1.

2. id (A) ,

6. id (A) , id (B) , id (C) ;

7. id (A) , id (B) , id (C)

;

id_list_tail

id_list_tail→,id id_list_tail

LR parsers are sometimes
called shift because they

“shift” the states

46

The University of North Carolina at Chapel Hill

Bottom-up

id_list → id id_list_tail id_list_tail → ;

A, B, C;

8. id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

Notice that tokens are added
to the tree from the right-
most to the left-most.

id_list_tail→,id id_list_tail

47

The University of North Carolina at Chapel Hill

Bottom-up

id_list → id id_list_tail id_list_tail → ;

A, B, C;

8. id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

Sometimes you see LL and LR
parsers written as LL(n) and LR(n)
to denote the parser needs to look

ahead n tokens .

id_list_tail→,id id_list_tail

48

The University of North Carolina at Chapel Hill

Bottom-up

id_list → id id_list_tail id_list_tail → ;

A, B, C;

8. id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

The problem with this grammar is
that it can require an arbitrarily
large number of terminals to be
“shifted” before placing them into

the tree

id_list_tail→,id id_list_tail

49

The University of North Carolina at Chapel Hill

A better bottom-up grammar

id_list → id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

This grammar limits the number of
“suspended” non-terminals.

50

The University of North Carolina at Chapel Hill

A better bottom-up grammar

id_list → id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

Lets try parsing “A, B, C;”

51

The University of North Carolina at Chapel Hill

A better bottom-up grammar

id_list → id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

However, it cannot be parsed by LL (top-down)
parser. Since when the parser discovers an “id” it
does not “know” the number of “id_list_prefixs”

52

The University of North Carolina at Chapel Hill

A better bottom-up grammar

id_list → id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

id (A)

id_list

id_list_prefix

id_list_prefix

id_list_prefix id (A)

id_list
Both of these are valid break
downs, but we don’t know

which one. Therefore, is
NOT a valid LL grammar,

but it is a valid LR
grammar.

53

id_list_prefix

The University of North Carolina at Chapel Hill

This grammar (for the
calculator) unlike the
previous calculator
grammar is an LL
grammar, because

when an “id” is
encountered we know

exactly where it
belongs.

program → stmt_list $$

stmt_list → stmt stmt_list | ε

stmt → id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor → (expr) | id | literal

add_op → +| -

mult_op → *| /

54

The University of North Carolina at Chapel Hill

Let’s try “c := 2*A+B”

program → stmt_list $$

stmt_list → stmt stmt_list | ε

stmt → id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor → (expr) | id | literal

add_op → +| -

mult_op → *| /

55

The University of North Carolina at Chapel Hill

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /

Let’s try “2*A+B”

56

The University of North Carolina at Chapel Hill

expr → id | number | - expr | (expr) | expr op expr

op → + | - | * | /

Let’s try “c := 2*A+B”

57

The University of North Carolina at Chapel Hill

Recursive Descent & LL Parse Table

•There are two ways to code a parser for LL grammars:

• Recursive Descent, which is a recursive program with case
statements that correspond to each one-to-one to
nonterminals.

• LL Parse Table, which consist of an iterative driver program
and a table that contains all of the nonterminals.

58

The University of North Carolina at Chapel Hill

program → stmt_list $$

stmt_list → stmt stmt_list | ε

stmt → id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor → (expr) | id | literal

add_op → +| -

mult_op → *| /

59

The University of North Carolina at Chapel Hill

Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error

60

The University of North Carolina at Chapel Hill

Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error

•in_tok is a global variable that
is the current token
•consume changes in_tok to
the next token.

61

The University of North Carolina at Chapel Hill

Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error

62

The University of North Carolina at Chapel Hill

Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error

The question is how do we label
the case statements?

63

The University of North Carolina at Chapel Hill

First, Follow, and Predict

•Three functions allow us to label the branches

• FIRST(a): The terminals (and ε) that can be the first tokens of
the non-terminal symbol a.

• FOLLOW(A): The terminals that can follow the terminal or non-
terminal symbol A

• PREDICT(A → a): The terminals that can be the first tokens as
a result of the production A → a

64

The University of North Carolina at Chapel Hill

First

• FIRST(program) = {id,
read, write, $$}

• FOLLOW(program) = {ε}

• PREDICT(program →
stmt_list $$) = {id,
read, write, $$}

• FOLLOW(id) = {+,-,
*,/,),:=,id,read,
write,$$}

program → stmt_list $$

stmt_list → stmt stmt_list | ε

stmt → id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor → (expr) | id | literal

add_op → +| -

mult_op → *| /

65

The University of North Carolina at Chapel Hill

First

• FIRST(factor_tail)
={ *, /, ε}

• FOLLOW(factor_tail) =
{+,-,),id,read,
write,$$}

• PREDICT(factor_tail →
m_op factor factor_tail)
= {*,/}

• PREDICT(factor_tail → ε)
= {+,-,),id,read,
write, $$}

program → stmt_list $$

stmt_list → stmt stmt_list | ε

stmt → id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor → (expr) | id | literal

add_op → +| -

mult_op → *| /

66

The University of North Carolina at Chapel Hill

First

• FIRST(factor_tail)
={ *, /, ε}

• FOLLOW(factor_tail) =
{+,-,),id,read,
write,$$}

• PREDICT(factor_tail →
m_op factor factor_tail)
= {*,/}

• PREDICT(factor_tail → ε)
= {+,-,),id,read,
write, $$}

program → stmt_list $$

stmt_list → stmt stmt_list | ε

stmt → id:= expr | read id | read expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor → (expr) | id | literal

add_op → +| -

mult_op → *| /

Since factor_tail can be “transformed” into an
empty statement PREDICT(factor_tail → ε)

equals FOLLOW(factor_tail)

67

The University of North Carolina at Chapel Hill

Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error

These are all of the PREDICT()
values from every production.

68

The University of North Carolina at Chapel Hill

Constructing FIRST, FOLLOW, and PREDICT

•To construct the FIRST, FOLLOW, and PREDICT tables
we iterate through the grammar building on knowledge.

• First, we define all of the “obvious” FIRST and FOLLOW values

• For example, $$ ∈ FOLLOW (stmt_list) and {id,read,write}∈
FIRST(stmt)

• Next, we build on this,

• For example, {id,read,write}∈ FIRST(stmt_list) since stmt_list
can begin with stmt and {id,read,write}∈ FIRST(stmt)

• We then continue on until we get no more knowledge.

69

The University of North Carolina at Chapel Hill

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /

Let’s try making tables
for this grammar

70

The University of North Carolina at Chapel Hill

Table-Driven

p_stack: stack of symbols;
p_stack.push(st_symbol);
loop

exp_sym := p_stack.pop
if exp_sym = terminal

match(exp_sym);
if exp_sym=$$ return

else
if table[exp_sym,in_tok].action = error

return error
else

prediction := table[exp_sym,in_tok].prod;
foreach sym in prod_table[prediction]

p_stack.push(sym)

71

The University of North Carolina at Chapel Hill

Parse Stack Input Stream

program read A read B

stmt_list $$ read A read B

stmt stmt_list $$ read A read B

read id stmt_list $$ read A read B

id stmt_list $$ A read B

72

The University of North Carolina at Chapel Hill

Writing an LL(1) Grammar--Left Recursion

•Left recursion is where the leftmost symbol is a
recursive non-terminal symbol.

•This can cause a grammar not to be LL(1).

•It is desirable for LR grammars.

id_list → id_list_prefx;

id_list_prefix → id_list_prefx, id

id_list_prefix → id

73

The University of North Carolina at Chapel Hill

Writing an LL(1) Grammar-- Eliminating Left
Recursion

•To eliminate left recursion replace it with right
recursion.

id_list → id_list_prefx;

id_list_prefix → id_list_prefx, id

id_list_prefix → id

id_list → id id_list_tail

id_list_tail → , id id_list_tail

id_list_tail → ;

74

The University of North Carolina at Chapel Hill

Writing an LL(1) Grammar--Common Prefix

•Common prefixes occur when there is more than one
prefix for a given nonterminal.

•Again, this causes a grammar not to be LL(1).

stmt → id := expr

stmt → id (arguments)

75

The University of North Carolina at Chapel Hill

Writing an LL(1) Grammar--Left factoring

•Common prefixes To get rid of common prefixes we
use a technique called left factoring.

stmt → id := expr

stmt → id (arguments)

stmt → id stmt_list_tail

stmt_list_tail → := expr | (arguments)

76

The University of North Carolina at Chapel Hill

Dangling else

•Even if left recursion and common prefixes don’t exist a
language may not be LL(1).

•In Pascal, there is the problem that an else statement in
if-then-else statements is optional. Because we don’t
know which if to match else to.

if AAA then
if BBB then
CCC

else
DDD

77

The University of North Carolina at Chapel Hill

Dangling else

•In Pascal there is NO LL(1) parser that can handle this
problem.

•Even though a proper LR(1) parser can handle this, it
may not handle it in a method the programmer
desires.

if AAA then
if BBB then
CCC

else
DDD

78

The University of North Carolina at Chapel Hill

Dangling else

•Thus, to write this code correctly (based on indention)
“begin” and “end” statements must be added.

if AAA then
if BBB then
CCC

else
DDD

if AAA then
 begin

if BBB then
CCC

 end
else
DDD

79

