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Goal of Lecture

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis & 
intermediate code gen.

Machine-independent 
optimization (optional)

Target code generation.

Machine-specific 
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language

This includes context-free grammar. 
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Parsing 

•The main task of parsing is to identify the syntax.
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Review: Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to 
denote concatenation.

• Two REs separated by “|” next to each other (e.g., 
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero 
or more iterations of the RE. 

• Parentheses (in order to avoid ambiguity).
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Review: Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to 
denote concatenation.

• Two REs separated by “|” next to each other (e.g., 
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero 
or more iterations of the RE. 

• Parentheses (in order to avoid ambiguity).

A RE is NEVER defined in terms of itself!
Thus, REs cannot define recursive 

statements.
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Review: Regular Expression Rules

• A RE consist of:

• A character (e.g., “0”, “1”, ...)

• The empty string (i.e., “ε”)

• Two REs next to each other (e.g., “non_negative_digit digit”) to 
denote concatenation.

• Two REs separated by “|” next to each other (e.g., 
“non_negative_digit | digit”) to denote one RE or the other.

• An RE followed by “*” (called the Kleene star) to denote zero 
or more iterations of the RE. 

• Parentheses (in order to avoid ambiguity).

For example, REs cannot define arithmetic 
expressions with parentheses. 
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Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs 
except that they can handle recursion.

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses
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Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs 
except that they can handle recursion.

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

Each rule is called a production.
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Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs 
except that they can handle recursion.

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

One of the nonterminals, usually the first 
one, is called the start symbol, and it 
defines the construct defined by the 

grammar.

9



The University of North Carolina at Chapel Hill  

Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs 
except that they can handle recursion.

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

Non-terminals are symbols that are defined by 
the CFG and can appear on both the left and 

right side of “→”.
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Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs 
except that they can handle recursion.

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

In the book, non-terminals are written in italics, 
but in other literature they are written in 

<brackets>. 
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Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs 
except that they can handle recursion.

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

Terminals are the strings that define the 
grammar and can only appear on the right side 

of “→”.
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Context-Free Grammars

•Context-Free Grammars (CFGs) are similar to REs 
except that they can handle recursion.

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Arithmetic expression with parentheses

In the book non-terminals are written in 
typewriter font, others write it in “normal” 

font.
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BNF

•Technically, the Kleene star (*) and parentheses are not 
allowed under the CFG rules, called Backus-Naur Form 
(BNF).

•However, for convenience, we will use Extended BNF 
that includes the Kleene star, parentheses, and the 
Kleene Plus (  ), which stands for “one or more 
iterations.”

+
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EBNF Example.

•The Kleene star and parentheses can be we written as 
follows

id_list → id (, id )*

id_list → id

id_list → id_list, id
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Derivation

•A derivation is “a series of replacement operations that 
derive a string of terminals from the start symbol.”

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

(slope) * (x) + (intercept)

slope * x + intercept
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Derivation

•A derivation is “a series of replacement operations that 
derive a string of terminals from the start symbol.”

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

(slope) * (x) + (intercept)

slope * x + intercept

⇒ denotes “derived from”
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Derivation

•A derivation is “a series of replacement operations that 
derive a string of terminals from the start symbol.”

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

(slope) * (x) + (intercept)

slope * x + intercept

This derivation replaces the rightmost 
non-terminal. Derivations with this 
behavior are called (surprisingly) 

rightmost or canonical derivation.
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Parse Tree

•A parse tree is the graphical representation of the 
derivation.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)
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Parse Tree

•A parse tree is the graphical representation of the 
derivation.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

This parse tree constructs the formula 
(slope*x) + intercept
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Parse Tree

•A parse tree is the graphical representation of the 
derivation.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

This is a rightmost 
derivation.

21



The University of North Carolina at Chapel Hill  

Parse Tree

•A parse tree is the graphical representation of the 
derivation.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

Lets try deriving “2*a*b+c”
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Parse Tree (Ambiguous) 

•This grammar is ambiguous and can construct the 
following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)
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Parse Tree (Ambiguous) 

•This grammar is ambiguous and can construct the 
following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

This is a leftmost 
derivation.
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Parse Tree (Ambiguous) 

•This grammar, is ambiguous and can construct the 
following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

This parse tree constructs the formula 
slope*(x+intercept)  which is not equal to

slope*x + intercept
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Parse Tree (Ambiguous) 

•This grammar, is ambiguous and can construct the 
following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

Lets try deriving “2*a*b+c”
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Disambiguating grammar

• The problem with our original grammar was that we did not fully 
express the grammatical structure (i.e., associativity and 
precedence). 

• To create an unambiguous grammar, we need to fully specify the 
grammar.

expr →  term | expr add_op term

term →  factor | term mult_op factor

factor →  id | number | - factor | ( expr )

add_op →  + | -

mult_op →  * | /
27
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Disambiguating grammar

• The problem with our original grammar was that we did not fully 
express the grammatical structure (i.e., associativity and 
precedence). 

• To create an unambiguous grammar, we need to fully specify the 
grammar.

expr →  term | expr add_op term

term →  factor | term mult_op factor

factor →  id | number | - factor | ( expr )

add_op →  + | -

mult_op →  * | /
28
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Parse Tree 

expr

expr add_op expr

+

number (3)

* number(5)

term

factor

term

number (4)

factor

mul_op factor

3+4*5

29



The University of North Carolina at Chapel Hill  

Disambiguating grammar

• The problem with our original grammar was that we did not fully 
express the grammatical structure (i.e., associativity and 
precedence). 

• To create an unambiguous grammar, we need to fully specify the 
grammar.

expr →  term | expr add_op term

term →  factor | term mult_op factor

factor →  id | number | - factor | ( expr )

add_op →  + | -

mult_op →  * | /

Lets try deriving “3*4+5*6+7”
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Parse Tree 

expr

+

7

term

term

6

add_op

factor

3*4+5*6+7

expr

termadd_opexpr

+ term mul_op factor

*

5

factor

4

term mul_op factor

*

3

factor
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Disambiguating grammar

• The problem with our original grammar was that we did not fully 
express the grammatical structure (i.e., associativity and 
precedence). 

• To create an unambiguous grammar, we need to fully specify the 
grammar.

expr →  term | expr add_op term

term →  factor | term mult_op factor

factor →  id | number | - factor | ( expr )

add_op →  + | -

mult_op →  * | /

Lets try deriving “3*4” & “3+4”
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expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

term

How can you derive these trees by examining 
one character at a time?
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expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

term

In order to derive these trees, the first character 
that we need to examine is the math symbol.
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expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

termThus, to parse these “sentences,” we first need to 
search through them to find the math symbols . . . 
then we need to sort out the multiplication from the 

addition. . . ugh. . .
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Java Spec

•Available on-line

• http://java.sun.com/docs/books/jls/second_edition/html/
j.title.doc.html

•Examples

• Comments: http://java.sun.com/docs/books/jls/
second_edition/html/lexical.doc.html#48125

• Multiplicative Operators: http://java.sun.com/docs/books/jls/
second_edition/html/expressions.doc.html#239829

• Unary Operators: http://java.sun.com/docs/books/jls/
second_edition/html/expressions.doc.html#4990 

36
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LL and LR Derivation

•CFGs can be parsed in O(n^3) time, where n is length of 
the program.

•This is too long for most code; however, there are two 
types of grammars that can be parsed in linear time, 
i.e., O(n).

• LL: “Left-to-right, Left-most derivation”

• LR “Left-to-right, Right-most derivation”

37



The University of North Carolina at Chapel Hill  

Top-down 

•LL parsers are top-down, i.e., they identify the non-
terminals first and terminals second.

• LL grammars are grammars that can be parsed by an LL 
parser.

38
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Top-Down

id_list →  id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail →  ;

A, B, C;

id (A) id_list_tail

id_list

id_list

id (A) id_list_tail

id_list

, id (B) id_list_tail

1.

2.

3.
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Top-Down

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

id (A) id_list_tail

id_list

id_list

id (A) id_list_tail

id_list

, id (B) id_list_tail

1.

2.

3.

LL parsers are some 
time called 

predictive because 
they “predict” the 

next state. 

id_list_tail→,id id_list_tail
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Top-Down

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

id (A) id_list_tail

id_list

id_list

id (A) id_list_tail

id_list

, id (B) id_list_tail

1.

2.

3.

 For example, after 
id(A) is “discovered”, 

the next state is 
“predicted as 

id_list_tail.

id_list_tail→,id id_list_tail
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Top-Down

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

id (A) id_list_tail

id_list

id_list

id (A) id_list_tail

id_list

, id (B) id_list_tail

1.

2.

3.

Notice that tokens 
are placed in the 
tree from the left-

most to right-
most.

id_list_tail→,id id_list_tail
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Bottom-up

•LR parsers are bottom-up, i.e., they discover the 
terminals first and non-terminals second.

• LR grammars are grammars that can be parsed by an LR 
parser.

• All LL grammars are LR grammars but not vice versa. 
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Bottom-up

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

id (A)1.

2. id (A) ,

6. id (A) , id (B) , id (C) ;

7. id (A) , id (B) , id (C)

;

id_list_tail

id_list_tail→,id id_list_tail
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Bottom-up

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

8. id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

id_list_tail→,id id_list_tail
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Bottom-up

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

id (A)1.

2. id (A) ,

6. id (A) , id (B) , id (C) ;

7. id (A) , id (B) , id (C)

;

id_list_tail

id_list_tail→,id id_list_tail

LR parsers are sometimes 
called shift because they 

“shift” the states
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Bottom-up

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

8. id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

Notice that tokens are added 
to the tree from the right-
most to the left-most.

id_list_tail→,id id_list_tail
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Bottom-up

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

8. id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

Sometimes you see LL and LR 
parsers written as LL(n) and LR(n) 
to denote the parser needs to look 

ahead n tokens .

id_list_tail→,id id_list_tail
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Bottom-up

id_list →  id id_list_tail id_list_tail →  ;

A, B, C;

8. id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

The problem with this grammar is 
that it can require an arbitrarily 
large number of terminals to be 
“shifted” before placing them into 

the tree

id_list_tail→,id id_list_tail

49



The University of North Carolina at Chapel Hill  

A better bottom-up grammar

id_list →  id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix →  id

This grammar limits the number of 
“suspended” non-terminals.
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A better bottom-up grammar

id_list →  id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix →  id

Lets try parsing “A, B, C;”
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A better bottom-up grammar

id_list →  id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix →  id

However, it cannot be parsed by LL (top-down) 
parser. Since when the parser discovers an “id” it 
does not “know” the number of “id_list_prefixs” 
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A better bottom-up grammar

id_list →  id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix →  id

id (A)

id_list

id_list_prefix

id_list_prefix

id_list_prefix id (A)

id_list
Both of these are valid break 
downs, but we don’t know 

which one. Therefore, is 
NOT a valid LL grammar, 

but it is a valid LR 
grammar.

53
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This grammar (for the 
calculator) unlike the 
previous calculator 
grammar is an LL 
grammar, because 

when an “id” is 
encountered we know 

exactly where it 
belongs.

program →  stmt_list $$

stmt_list → stmt stmt_list | ε

stmt →  id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor →  (expr) | id | literal

add_op →  +| -

mult_op →  *| /
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Let’s try “c := 2*A+B”

program →  stmt_list $$

stmt_list → stmt stmt_list | ε

stmt →  id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor →  (expr) | id | literal

add_op →  +| -

mult_op →  *| /
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expr →  term | expr add_op term

term →  factor | term mult_op factor

factor →  id | number | - factor | ( expr )

add_op →  + | -

mult_op →  * | /

Let’s try “2*A+B”
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expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Let’s try “c := 2*A+B”
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Recursive Descent & LL Parse Table

•There are two ways to code a parser for LL grammars:

• Recursive Descent, which is a recursive program with case 
statements that correspond to each one-to-one to 
nonterminals.

• LL Parse Table,  which consist of an iterative driver program 
and a table that contains all of the nonterminals.
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program →  stmt_list $$

stmt_list → stmt stmt_list | ε

stmt →  id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor →  (expr) | id | literal

add_op →  +| -

mult_op →  *| /

59



The University of North Carolina at Chapel Hill  

Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error
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Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error

•in_tok is a global variable that 
is the current token
•consume changes in_tok to 
the next token.
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Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error
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Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error

The question is how do we label 
the case statements?
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First, Follow, and Predict

•Three functions allow us to label the branches

• FIRST(a): The terminals (and  ε) that can be the first tokens of 
the non-terminal symbol a.

• FOLLOW(A): The terminals that can follow the terminal or non-
terminal symbol A

• PREDICT(A → a): The terminals that can be the first tokens as 
a result of the production  A → a
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First

• FIRST(program) = {id, 
read, write, $$}

• FOLLOW(program) = {ε}

• PREDICT(program → 
stmt_list $$) = {id, 
read, write, $$}

• FOLLOW(id) = {+,-, 
*,/,),:=,id,read, 
write,$$}

program →  stmt_list $$

stmt_list → stmt stmt_list | ε

stmt →  id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor →  (expr) | id | literal

add_op →  +| -

mult_op →  *| /
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First

• FIRST(factor_tail) 
={ *, /, ε}

• FOLLOW(factor_tail) = 
{+,-,),id,read, 
write,$$}

• PREDICT(factor_tail → 
m_op  factor factor_tail) 
= {*,/}

• PREDICT(factor_tail → ε) 
= {+,-,),id,read, 
write, $$}

program →  stmt_list $$

stmt_list → stmt stmt_list | ε

stmt →  id:= expr | read id | write expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor →  (expr) | id | literal

add_op →  +| -

mult_op →  *| /
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First

• FIRST(factor_tail) 
={ *, /, ε}

• FOLLOW(factor_tail) = 
{+,-,),id,read, 
write,$$}

• PREDICT(factor_tail → 
m_op  factor factor_tail) 
= {*,/}

• PREDICT(factor_tail → ε) 
= {+,-,),id,read, 
write, $$}

program →  stmt_list $$

stmt_list → stmt stmt_list | ε

stmt →  id:= expr | read id | read expr

expr → term term_tail

term_tail → add_op term term_tail | ε

term → factor factor_tail

factor_tail → mult_op factor factor_tail | ε

factor →  (expr) | id | literal

add_op →  +| -

mult_op →  *| /

Since factor_tail  can be “transformed” into an 
empty statement PREDICT(factor_tail → ε) 

equals FOLLOW(factor_tail)
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Recursive Descent

procedure program()
case in_tok of
id, read, write, $$:

stmt_list()
match($$)

else
return error

procedure stmt_list()
case in_tok of
id, read, write:

stmt(); stmt_list();
$$:

skip
else

return error

procedure stmt()
case in_tok of

id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()

else
return error

procedure match(expec)
if in_tok = expec

consume in_tok
else

return error

These are all of the PREDICT() 
values from every production.
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Constructing FIRST, FOLLOW, and PREDICT

•To construct the FIRST, FOLLOW, and PREDICT tables 
we iterate through the grammar building on knowledge.

• First, we define all of the “obvious” FIRST and FOLLOW values

• For example, $$ ∈ FOLLOW (stmt_list) and {id,read,write}∈ 
FIRST(stmt)

• Next, we build on this,

• For example, {id,read,write}∈ FIRST(stmt_list) since stmt_list 
can begin with stmt and {id,read,write}∈ FIRST(stmt)

• We then continue on until we get no more knowledge.
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expr →  term | expr add_op term

term →  factor | term mult_op factor

factor →  id | number | - factor | ( expr )

add_op →  + | -

mult_op →  * | /

Let’s try making tables 
for this grammar
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Table-Driven

p_stack: stack of symbols;
p_stack.push(st_symbol);
loop

exp_sym := p_stack.pop
if exp_sym = terminal

match(exp_sym);
if exp_sym=$$ return

else
if table[exp_sym,in_tok].action = error

return error
else

prediction := table[exp_sym,in_tok].prod;
foreach sym in prod_table[prediction]

p_stack.push(sym)
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Parse Stack Input Stream

program  read A read B 

stmt_list  $$  read A read B

stmt stmt_list $$  read A read B

read id stmt_list $$  read A read B

id stmt_list $$ A read B
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Writing an LL(1) Grammar--Left Recursion

•Left recursion is where the leftmost symbol is a 
recursive non-terminal symbol.

•This can cause a grammar not to be LL(1).

•It is desirable for LR grammars.

id_list →  id_list_prefx;

id_list_prefix →  id_list_prefx, id

id_list_prefix →  id
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Writing an LL(1) Grammar-- Eliminating Left 
Recursion

•To eliminate left recursion replace it with right 
recursion.

id_list →  id_list_prefx;

id_list_prefix →  id_list_prefx, id

id_list_prefix →  id

id_list → id id_list_tail

id_list_tail → , id id_list_tail

id_list_tail → ;

74



The University of North Carolina at Chapel Hill  

Writing an LL(1) Grammar--Common Prefix

•Common prefixes occur when there is more than one 
prefix for a given nonterminal.

•Again, this causes a grammar not to be LL(1).

stmt → id := expr

stmt → id (arguments)
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Writing an LL(1) Grammar--Left factoring

•Common prefixes To get rid of common prefixes we 
use a technique called left factoring.

stmt → id := expr

stmt → id (arguments)

stmt → id stmt_list_tail

stmt_list_tail → := expr | (arguments)
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Dangling else

•Even if left recursion and common prefixes  don’t exist a 
language may not be LL(1).

•In Pascal, there is the problem that an else statement in 
if-then-else statements is optional. Because we don’t 
know which if to match else to.

if AAA then
if BBB then
CCC

else 
DDD

77



The University of North Carolina at Chapel Hill  

Dangling else

•In Pascal there is NO LL(1) parser that can handle this 
problem.

•Even though a proper LR(1) parser can handle this, it 
may not handle it in a method the programmer 
desires.

if AAA then
if BBB then
CCC

else 
DDD
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Dangling else

•Thus, to write this code correctly (based on indention) 
“begin” and “end” statements must be added. 

if AAA then
if BBB then
CCC

else 
DDD

if AAA then
  begin

if BBB then
CCC

  end
else 
DDD
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