Lecture 4: Syntactic Analysis

COMP 524 Programming Language Concepts
Stephen Olivier
January 27, 2009

Based on notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hil ||

Goal of Lecture

‘ Character Stream '\

Token Stream '\ﬁ
Parse Tree '
Abstract syntax tree ' ‘

(Scanner (lavical nnalvsis))

Parser (syntax analysis)

R Symbol Table
‘

Machine-independent

’ optimization (optional)

The University of North Carolina at Chapel Hill

Modified target language '

Parsing

* The main task of parsing is to identify the syntax.

The University of North Carolina at Chapel Hill

Review: Regular Expression Rules

¢ A RE consist of:
e A character (e.g., “0”, “17, ..))
® The empty string (i.e., “€”)

e Two REs next to each other (e.g., “non_negative_digit digit”) to
denote concatenation.

e Two REs separated by “|” next to each other (e.g.,
“non_negative_digit | digit”) to denote one RE or the other.

e An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

e Parentheses (in order to avoid ambiguity).

The University of North Carolina at Chapel Hill

Review: Regular Expression Rules

e A RE consist of:

e A character (e.g., “0”, “17, ..))
r

*The| A RE is NEVER defined in terms of itself!
e Two Thus, REs cannot define recursive
denc statements.

e Two o,
“non_negative_digit | digit”) to denote one RE or the other.

e An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

e Parentheses (in order to avoid ambiguity).

The University of North Carolina at Chapel Hill

Review: Regular Expression Rules

e A RE consist of:
e A character (e.g., “0”, “17, ..))

-
e The

For example, REs cannot define arithmetic

e Two . .
expressions with parentheses.

denc

e Two o,
“non_negative_digit | digit”) to denote one RE or the other.

e An RE followed by “*” (called the Kleene star) to denote zero
or more iterations of the RE.

e Parentheses (in order to avoid ambiguity).

The University of North Carolina at Chapel Hill

Context-Free Grammars

e Context-Free Grammars (CFGs) are similar to REs
except that they can handle recursion.

p
(Arithmetic expression with parentheses)

[expr = id | number | - expr | (expr) | expr op expr]

(op—+l-11/)

The University of North Carolina at Chapel Hill

Context-Free Grammars

Ve N\

-Context‘ Each rule is called a production. ' REs
except that they can hana \recursmn.

p \
(Arithmetic expression with pﬁwjntheses)

’expr — id | number | - expr | (expr) | expr op expr 7\

The University of North Carolina at Chapel Hill

/One of the nonterminals, usually the first
one, Is called the start symbol, and it
defines the construct defined by the
gramma.

except that they can hana \recursion.

p
(Arithmetic expression with p%slntheses)

’expr — id | number | - expr | (expr) | expr op expr 7\
W

The University of North Carolina at Chapel Hill

Non-terminals are symbols that are defined by
the CFG and can appear on both the left and
right side of “—",

except that they Ce?andle recursion.

p
(Arithmetic expreﬁn with parentheses)

C(expr ’idlnumber|—expr|(expr)|exprop expr]
(op—+l-11/)

The University of North Carolina at Chapel Hill

In the book, non-terminals are written in italics,
out in other literature they are written in
<brackets>.

except that they Ceyandle recursion.

p
(Arithmetic expreﬁn with parentheses)

C(expr ’idlnumber|—expr|(expr)|exprop expr]
(op—+l-11/)

The University of North Carolina at Chapel Hill

Terminals are the strings that define the
grammar and can only appear on the right side
Of “_’”.

except that they canr /andle recursion.

p
(Arithmetic express(with parentheses)

(expr (idlx ’wberl—exprl(exprﬂexprop expr]
(op—+l-11/)

The University of North Carolina at Chapel Hill

INn the book non-terminals are written Iin
typewriter font, others write it in “normal”

font.

oC
except that they canr /andle recursion.

p
(Arithmetic express(with parentheses)

(expr (idlx ’wberl—exprl(exprﬂexprop expr]
(op—+l-11/)

The University of North Carolina at Chapel Hill

BNF

e Technically, the Kleene star (*) and parentheses are not

allowed under the CFG rules, called Backus-Naur Form
(BNF).

e However, for convenience, we will use Extended BNF

that includes the Kleene star, parentheses, and the
Kleene Plus (%), which stands for “one or more
iterations.”

The University of North Carolina at Chapel Hill

EBNF Example.

* The Kleene star and parentheses can be we written as
follows

[id_list > id (, id)*]

[id_list = id]

[id_list = id_list, id)

The University of North Carolina at Chapel Hill

Derivation

e A derivation is “a series of replacement operations that
derive a string of terminals from the start symbol.”

/

[slope * x + intercept)

[= expr op expr + id]

[= exprop id + id]

expr = expr op expr € = expr *id + id

~

= expr op id = id *id + id

= expr + id (slope) * (x) + (intercept)]

Derivation

e A derivation is “a series of replacement operations that

/ bb)
— denotes “derived from” jstart symbol.

[= expr op expr + id]

[= exprop id + id]

ex; @ })I’ op expr g = expr”id + id A

D

— expr op id = id *id + id

= expr + id (slope) * (x) + (intercept)]

-
This derivation replaces the rightmost

non-terminal. Derivations with this
behavior are called (surprisingly) rations that
rightmost or canonical derivation. Jnbol.”

slope * x + intercept

[= expr op expr + id

[= exprop id + id

expr = expr op expr f = expr *id + id

= expr op id = id *id + id

= expr + id (slope) * (x) + (intercept)]

Parse Tree

* A parse tree is the graphical representation of the
derivation.

T

| expr ’

| id (intercept) ’

This parse tree constructs the formula
(slope*x) + intercept

derivation.

G

expr expr
N |

expr . | id (intercept) ’
id (slope) id (x)

Parse Tree

* A parse tree is the graphical representation of the
derivation.

— This Is a rightmost -
derivation.
N

l id (intercept) '
id (X)

Lets try deriving “2*a*b+c”
Parse Tree

* A parse tree is the graphical representation of the

F—

derivation.

| expr ’

| id (intercept) ’

Parse Tree (Ambiguous)

e This grammar is ambiguous and can construct the

I\

following parse tree.

(expr !

id (x) id (intercept)

*

Parse Tree (Ambiguous)

e This grammar is ambiguous and can construct the
following parse tree.

=Ny

/

This is a leftmost
expr -
(ﬁ—) derivation.

() (o
id (x) . id (intercept)

This parse tree constructs the formula
slope*(x+intercept) which is not equal to
slope*x + intercept

I

(expr !

id (intercept)

*

Lets try deriving “2*a*b+c”
Parse Tree (Ar[v ‘)

e This grammar, is ambiguous and can construct the
following parse tree.

Disambiguating grammar

* The problem with our original grammar was that we did not fully
express the grammatical structure (i.e., associativity and
precedence).

e To create an unambiguous grammar, we need to fully specify the
grammar.

N

expr = term | expr add_op term]

term — factor | term mult_op factor)

factor & id | number | - factor | (expr)]

add_op — + | -]

YR YSRYEYS

mult_op — *|/]

The Unive

Disambiguating grammar

® The problem with our orlglnal grammar was that we did not fully
express theg=«=m=smeatiaal atuatiiws ~==qciativity and

precedence Giyes precedence to multiply

e To create a D fully specify the
grammar.

N

expr = term | expr add_op term]

term — factor | term mult_op factor]

factor & id | number | - factor | (expr)]

add_op — + | -]

YR YSRYEYS

mult_op — *|/]

The Unive

number (4)

Disambiguating grammar

* The problem/ ™ o o id not fully

express the| | ets try deriving “3*4+5*6+7” [y and
precedence).

e To create an unambiguous grammar, we need to fully specify the
grammar.

N

expr = term | expr add_op term]

term — factor | term mult_op factor]

factor & id | number | - factor | (expr)]

add_op — + | -]

YR YSRYEYS

mult_op — *|/]

The Unive

(3445647) / "

\ .| term ’[mul_op ’[factor’

term | mul_op ’[factor’ @ . @
I

9 ©

Disambiguating grammar

* The problem/ ™ o o id not fully

express the| | ets try deriving “3*4” & “3+4” [y and
precedence).

e To create an unambiguous grammar, we need to fully specify the
grammar.

N

expr = term | expr add_op term]

term — factor | term mult_op factor]

factor & id | number | - factor | (expr)]

add_op — + | -]

YR YSRYEYS

mult_op — *|/]

The Unive

I

term |term’ mul_op

actor
0) @

)

How can you derive these trees by examining
one character at a time?

Plina at Chapel

@) .| _£9

In order to derive these trees, the first character
/| that we need to examine is the math symbol.

|term’mulop

B))

) Y

lina at Chapel

/] expr '\ | expr '

o

Thus, to parse these “sentences,” we first need to

search through them to find the math symbols . . .

then we need to sort out the multiplication from the
addition. . . ugh. ..

Plina at Chapel

Java Spec

e Available on-line

¢ http://java.sun.com/docs/books/jls/second edition/html/
|.title.doc.html

e Examples

e Comments: http://java.sun.com/docs/books/jls/
second_edition/html/lexical.doc.htm|#48125

e Multiplicative Operators: http://java.sun.com/docs/books/|ls/
second edition/html/expressions.doc.htm|#239829

e Unary Operators: http://java.sun.com/docs/books/jls/
second_edition/html/expressions.doc.html#4990

The University of North Carolina at Chapel Hill

http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48125
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48125
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48125
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48125
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#239829
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#239829
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#239829
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#239829
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#
http://java.sun.com/docs/books/jls/second_edition/html/expressions.doc.html#

L. and LR Derivation

e CFGs can be parsed in O(n”*3) time, where n is length of
the program.

e This is too long for most code; however, there are two
types of grammars that can be parsed in linear time,

.e., O(n).
o LL: “Left-to-right, Left-most derivation”
e LR “Left-to-right, Right-most derivation”

The University of North Carolina at Chapel Hill

Top-down

oL parsers are top-down, i.e., they identify the non-
terminals first and terminals second.

e LL grammars are grammars that can be parsed by an LL
parser.

The University of North Carolina at Chapel Hill

r
(}CLﬁst—* idiCLﬁstjaﬂ:) (:kLﬁStjaﬂ-* ;:)

_Op-DOWﬂ [id_list_tail—», id id_list_tail] [A, B, C;J
\

1. l id_list '

ISt

e

id (A) id_list_tail

id_list

A& N

1[!" 'IHIHH' id_list_tail
//

id (B) || /d_list_tail

hapel Hill

'op-Down

P
(id_list — idid_list_tail) (id_list_tail -]

[id_list_tail—», id id_list_tail] [A, B, C;J
\

1. l id_list ’

< LL parsers are some
id_list_tail

ISt

/

time called
predictive because

A& N

id (A) id_list_tail

id_list they “predict” the
next state.

~

id (B) || id_list_tail
hapel Hill

P
(:ktﬁ%t-* ididLﬁstjaﬂ:) (:kLﬁStjaﬂ-* ;:)

op-Down [id_/ist_tai/—»,id id_list_tail] [A, B, C;J
\

v

[()

/

For example, after
Id(A) is “discovered”,
the next state is
“predicted as
id_list_tail.

hapel Hill

r
(}CLﬁst—* idiCLﬁstjaﬂ:) (:kLﬁStjaﬂ-* ;:)

op-Down [id_/ist_tai/—»,id id_list_tail] [A, B, C;J
\

v

(iast)

/

Notice that tokens
are placed In the
tree from the left-
most to right-
most.

hapel Hill

Bottom-up

e LR parsers are bottom-up, i.e., they discover the
terminals first and non-terminals second.

* LR grammars are grammars that can be parsed by an LR
parset.

e All LL grammars are LR grammars but not vice versa.

The University of North Carolina at Chapel Hill

r
(id_list — idid_list_tail) [id_list_tail -]

Bottom—up (id_list_tail—v ,1d id_list_tail) [A, B, C; j

\

r
(id_list — idid_list_tail) [id_list_tail -]

Bottom—up (id_list_tail—v ,1d id_list_tail) [A, B, C; j

() (aw)()(e®) (s ta,,)\
/ \ | id_list_tail ’
J (o) ()

The University of North Carolina at Chapel Hill

Bottom-up

r
(id_list — idid_list_tail) [id_list_tail -]

(id_/ist_tail—' ,/id id list tai/w (A R (\.'w

\ﬁ

LR parsers are sometimes
called shift because they
“shift” the states

r
(id list = idid_list tail] [id list tail —]

Bottom- up (/d list_tail—, id id_list ta/l) [A B, C; J

@ Em))(en) (ummh
/ \ | id_list_tail ’
J o) .

% !\‘
Notice that tokens are added

to the tree from the right-
most to the left-most.

The University of North Carolina at Chapel Hill

r
(id list = idid_list tail] (id list tail —]

Bottom- up [/d list_tail—, id id_list ta/l) [A B, C; J

OO G |
/ (ld list_tail

Sometimes you see LL and LR
parsers written as LL(n) and LR(n)
to denote the parser needs to look

ahead n tokens .

The University of North Carolina at Chapel Hill

r
[id list = idid_list tail) (id list_tail — ;]

Bottom- up [/d list_tail—, id id_list ta/l) [A B, C; J

D0 G |
/ (ld list_tail

The problem with this grammar is
that it can require an arbitrarily
large number of terminals to be

S “shifted” before placing them into

the tree

The University of North Carolina at Chapel Hill

A better bottom-up grammar

This grammar limits the number of
“suspended” non-terminals.

id_list = id_list_prefix]

id_list_prefix — id_list_prefix, id]

[id_list_prefix = id]

The University of North Carolina at Chapel Hill

A better bottom-up grammar

Lets try parsing “A, B, C;”

id_list = id_list_prefix]

id_list_prefix — id_list_prefix, id]

[id_list_prefix = id)

The University of North Carolina at Chapel Hill

A bet;er pbottom-up grammar

However, it cannot be parsed by LL (top-down)
parser. Since when the parser discovers an “id” it
does not “know” the number of “id_list_prefixs”

id_list = id_list_prefix)

id_list_prefix — id_list_prefix, id]

[id_list_prefix = id]

The University of North Carolina at Chapel Hill

~
id_list = id_list_prefix]

A better bottom-up gramni (id_jist_prefix » id_list_prefix, id)

(id_list_prefix = id]

/

4 Both of these are valid break
RSB downs, but we don’t know

| which one. Therefore, is

id_list_prefix | id_list_prefix ' NOT a valid LL grammar,
| but it is a valid LR

id_list_prefix id (A) grammar.

P
program — stmt_list $$)

-
\stmt_list — stmt stmt_list | €)

/stmt—> id:= expr| read id|write exp
-

)

>
\expr — term term_tail)

p
\term_tai/ — add_op term term_tail | €)

P
\term — factor factor tail)

P
\factor_tail — mult_op factor factor_tail | €)

-
\factor — (expr) | id| literal)

- A
\add_op - +| -

/
mult_op = *| /
N

(

This grammar (for the
calculator) unlike the
previous calculator
grammar is an LL
grammar, because
when an “id” is
encountered we know
exactly where it
belongs.

P
program — stmt_list $$)

s 4
stmt_list & stmt stmt_list | €)

Let’'s try “c := 2"A+B”
)

.

/stmt—> id:= expr| read id|write exp
-

>
\expr — term term_tail)

p
\term_tai/ — add_op term term_tail | €)

P
\term — factor factor tail)

P
\factor_tail — mult_op factor factor_tail | €)

-
\factor — (expr) | id| literal)

- A
\add_op - +| -

/
mult_op = *| /
N

Let’s try “2"A+B”

expr = term | expr add_op term]

term — factor | term mult_op factor]

factor & id | number | - factor | (expr)]

dd |)
— _
add_op = +|-

mult op = *|/
ult_op 17

Y SYS Y2 YS

The University of North Carolina at Chapel Hill

Let’'s try “c := 2"A+B”

p

[expr = id | number | - expr | (expr) | expr op expr]

(o +l-171/

The University of North Carolina at Chapel Hill

Recursive Descent & LI Parse Table

* There are two ways to code a parser for LL grammars:

* Recursive Descent, which is a recursive program with case
statements that correspond to each one-to-one to
nonterminals.

e LL Parse Table, which consist of an iterative driver program
and a table that contains all of the nonterminals.

The University of North Carolina at Chapel Hill

P
program — stmt_list $$)

-
\stmt_list — stmt stmt_list | €)

p
stmt & id:= expr|read id|write expr)
-

>
\expr — term term_tail)

p
\term_tai/ — add_op term term_tail | €)

P
\term — factor factor tail)

P
\factor_tail — mult_op factor factor_tail | €)

-
\factor — (expr) | id| literal)

- A
\add_op - +| -

/
mult_op = *| /
N

Recursive Descent

~

g
procedure program()
case in_tok of
id, read, write, S$:
stmt_list()
match($$)
else

g return error

procedure stmt()
case in_tok of
id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()
else
return error

P
procedure stmt_list()

case in_tok of
1d, read, write:
stmt(); stmt_list();
$S:
skip
else
return error

J

e
procedure match(expec)
If in_tok = expec
consume in_tok
else
return error

.

MMV STy OO T O eroNm e ot oncoerrmm

Recursive Descent

7

-

.

g
procedure program

case in_tok of
id, read, wr

stmt_list()

match($$)

oin_tok is a global variable that
IS the current token

econsume changes in_tok to
the next token.

else
return error

return error

: =); expr()
atch(id)

, expr()

-

procedure stmt_list() 4

case in_tok of

procedure match(expec)

id, read, write: iIf in_tok = expec

stmt(); stmt_li
S5 ¢
skip
else

return error

st(); consume in_tok
else
return error

Recursive Descent

~

g
procedure program()
case in_tok of
id, read, write, S$:
stmt_list()
match($$)
else

g return error

procedure stmt()
case in_tok of
id: match(id); match(:=); expr()
read: match(read); match(id)
write: match(write); expr()
else
return error

P
procedure stmt_list()

case in_tok of
1d, read, write:
stmt(); stmt_list();
$S:
skip
else
return error

J

e
procedure match(expec)
If in_tok = expec
consume in_tok
else
return error

.

MMV STy OO T O eroNm e ot oncoerrmm

/

The question is how do we label

Recursive D the case statements?

\

(-
procedure nroaraml)

‘ id, _read, write, S$$:

~+mt |iqt()

else

g return error

N ([

procedure stmt()
. of
h(id); match(: =); expr()
tch(read); match(id)
atch(write); expr()

P
procedure stmt_list()

~-
dd, read, write:”

s N\ . L. _ L e

return error

procedure match(expec)
iIf in_tok = expec
consume in_tok
else
return error

First, Follow, and Predict

e Three functions allow us to label the branches

e FIRST(a): The terminals (and ¢) that can be the first tokens of
the non-terminal symbol a.

e FOLLOW(A): The terminals that can follow the terminal or non-
terminal symbol A

e PREDICT(A — a): The terminals that can be the first tokens as
a result of the production A — a

The University of North Carolina at Chapel Hill

P
program — stmt_list $$)

-
\stmt_list — stmt stmt_list | €)

(stmt = id:= expr| read id|write expr) e FIRST(program) = {id,
N read, write, $3}

e FOLLOW(program) = {¢}

* PREDICT(program -
) stmt_list $$) = {id,
read, write, $$}

>
\expr — term term_tail)

p
\term_tai/ — add_op term term_tail | €)

P
\term — factor factor tail

P
factor_tail & mult_op factor factor tail | €

N) e FOLLOW(id) = {+, -,

é L
factor & (expr) | id| literal) *,/,),:=,1d, read,

.

write, $$}

- A
\add_op - +| -

/
mult_op = *| /
N Y,

P
program — stmt_list $$)

-
\stmt_list — stmt stmt_list | €)

p e FIRST(factor_tail)
stmt & id:= expr|read id|write expr) ={*, /., &
_ - ’ ’

4 .
(expr ~ torm term_tail | » FOLLOW(factor-tai) =
{+,-,),1d, read,
) write, $$}

p
\term_tai/ — add_op term term_tail | €

Eerm — factor factor_tail) e PREDICT(factor _tail -
) m_op factor factor_tail)

={*,/}
(¢ . .
aeior = e || ad | LEeral) e PREDICT(factor_tail - ¢)

4 ™\ — [y .
add_op = +| - {. r—+),1d, read,
b ~ write, $$}

P
\factor_tail — mult_op factor factor_tail | €

/
mult_op = *| /
N Y,

P
program — stmt_list $$)

~

>
stmt _list & str

_

p Since factor_tail can be “transformed” into an
\'stmt — id:=| empty statement PREDICT(factor _tail — €)
equals FOLLOW(factor _tail)

p
expr = term t [\ =
&P ail)

>
\term_tai/ — add_op term term_tail | €

Eerm — factor factor_tail] e PREDICT(factor _tail -
) m_op factor factor_tail)

{+,-,),1d, read,
) write, $3}

P
\factor_tail — mult_op factor factor_tail | €

>
\factor — (expr) |id|literal) REDICT (factor tail — 2
4 ™\ — [y .

add_op = +| - {+,-,),1d, read,

N write, $S}
/
mult_op = *| /
\

/1

C UTTVC A

/

These are all of the PREDICT()

Recursive D(values from every production.

\

(-
procedure nroaraml)

‘ id, _read, write, S$$:

~+mt ligt()

else

g return error

N ([

procedure stmt()
. of
h(id); match(: =); expr()
tch(read); match(id)
atch(write); expr()

P
procedure stmt_list()

o
dd, read, write:™

s N\ . L. _ L e

return error

procedure match(expec)
iIf in_tok = expec
consume in_tok
else
return error

Constructing FIRST, FOLLOW, and PREDICT

e To construct the FIRST, FOLLOW, and PREDICT tables
we iterate through the grammar building on knowledge.

e First, we define all of the “obvious” FIRST and FOLLOW values

e For example, $$ € FOLLOW (stmt_list) and {id, read, write}e
FIRST(stmt)

e Next, we build on this,

e For example, {id, read, write}e FIRST(stmt_list) since stmt_list
can begin with stmt and {id, read, write}e FIRST(stmt)

¢ \We then continue on until we get no more knowledge.

The University of North Carolina at Chapel Hill

-

Let’s try making tables
for this grammar

expr = term | expr add_op term)

term — factor | term mult_op factor)

factor & id | number | - factor | (expr))

N
add op = +|-

mult_op = *|/

Y SYSY2YS

The University of North Carolina at Chapel Hill

Table-Driven

(r

p_stack: stack of symbols;
p_stack.push(st_symbol);
loop
exp_sym := p_stack.pop
if exp_sym = terminal
match(exp_sym);
if exp_sym=%$$ return
else
if table[exp_sym,in_tok].action = error
return error
else
prediction := table[exp_sym,in_tok].prod;
foreach sym in prod_table[prediction]
p_stack.push(sym)

The University of North Carolina at Chapel Hill

Parse Stack Input Stream

program read A read B

stmt_list $$ read A read B

stmt stmt_list $$ read A read B

read id stmt list $$ read A read B

id stmt list $$ A read B

III e nversnv oo T Caronmea areonaper=m

Writing an LL(1) Grammar--Left Recursion

o eft recursion is where the leftmost symbol is a

recursive non-terminal symbol.
4

-
(d_list — id_list_prefx;)

id_list_prefix = id_list_prefx, id)

id_list_prefix = id)

* This can cause a grammar not to be LL(1).

¢|t is desirable for LR grammars.

The University of North Carolina at Chapel Hill

Writing an LL(1) Grammar-- Eliminating Left
Recursion

e To eliminate left recursion replace it with right
recursion.

[oy L .
('d_list — id_list_prefx;) (d_l/st — id id_list_tail]
(.

. .y g : c g .
id_list_prefix = id_list_prefx, id) id_list_tail =, id id_list_tail]

o

-
p
(’d_list_prefix — id] Gd_list_tail -)

The University of North Carolina at Chapel Hill

Writing an LL(1) Grammar--Common Prefix

e Common prefixes occur when there is more than one
prefix for a given nonterminal.

-

/
\stmt—v id := expr

-
\stmt — 1id (arguments)

e Again, this causes a grammar not to be LL(1).

The University of North Carolina at Chapel Hill

Writing an LL(1) Grammar--Left factoring

e Common prefixes To get rid of common prefixes we
use a technique called left factoring.

p

4 4
\stmt — id := expr \stmt — 1id stmt_list_tail]

4 4
\stmt — 1id (arguments) \stmt_list_tail — := expr| (arguments)]

The University of North Carolina at Chapel Hill

Dangling else

eEven If left recursion and common prefixes don’t exist a
language may not be LL(1).

*|n Pascal, there is the problem that an else statement in
If-then-else statements is optional. Because we don’t

know which if to match else to.
e

/
if AAA then

1if BBB then
CCC
else
DDD
NG

The University of North Carolina at Chapel Hill

Dangling else

e |n Pascal there is NO LL(1) parser that can handle this
problem.

e Even though a proper LR(1) parser can handle this, it
may not handle it in a method the programmer
desires.

/

/
if AAA then

1if BBB then
CCC
else
DDD
NG

The University of North Carolina at Chapel Hill

Dangling else

* Thus, to write this code correctly (based on indention)
“pegin” and “end” statements must be added.

-

/
if AAA then

1if BBB then
CCC
else
DDD

o

p

-
if AAA then

begin
1f BBB then
CCC
end
else

DDD
-

The University of North Carolina at Chapel Hill

