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Goal of Lecture

•Discuss background on Scripting languages and Perl.
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Origin of scripting languages

•Scripting languages originated as job control languages

• 1960s: IBM System 360 had the “Job Control Language”

• Scripts used to control other programs

• Launch compilation, execution

• Check Return Codes

•Scripting languages became increasingly powerful in 
UNIX

• Shell programing, AWK, Tcl/Tk, Perl

• Scripts used to “glue” applications
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System Programming Languages

•System languages (e.g., Pascal, C++, Java) replaced 
assembly languages.

• Two main advantages:

• Hide unnecessary details (high level of abstraction)

• Strongly Typed. 
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Strongly vs Weakly Typed Langauges

•Under Assembly, any register can take any type of value 
(e.g., integer, string).

•Under Strongly Typed languages, a variable can only 
take values of a particular type. 

• For example, “int a” can only have values of type “integer”
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Strongly vs Weakly Typed Langauges

•Weakly Typed languages infer meaning at run-time

• Advantage: Increase Speed of development. 

• Disadvantage: Less error checking at compile time.

•Not appropriate for low-level programming or large 
programs
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Typing and “Degree of Abstraction”
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Perl (Practical Extraction and Report Language)

•Larry Wall Created Perl in late 80s

• Originally designed to be more powerful than Unix scripting.

• Wanted “naturalness” ... shortcuts, choices, defaults, flexibility.

•Perl is dense and Rich

• “Swiss-army chainsaw”

• “Duct tape for Web”

• “There is more than one way to do it!”

• Often experienced Perl programmers will need a manual when 
reading other people’s code. 
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What Perl Does Well

•String Manipulation

•Text Processing

•File Handling

•Regular Expressions and pattern matching

•Flexible arrays and hashes

•System Interactions (directories, files, processes)

•CGI scripts for Web sites

9



The University of North Carolina at Chapel Hill  

Perl Overview

•Perl is interpreted. 

•Every statement ends in a semicolon

•Comments begin with “#” and extend one line

• We’ll see how to do multi-line comments later

•What Perl doesn’t do well:

• Complex algorithms and data structures.

• Well defined and slowly changing functions. 
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Built-in Data types

•No type Declarations

•Perl has three types:

• Scalar

• Array 

• Hash (Associative Array)

•Integers, float, boolean, etc... are all of type Scalar. 
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Built-in Data Types:  Scalar

•Scalars begin with “$”

•Can take on any integer, real, boolean, and string value

•There is a default variable “$_”

$A = 1;
$B = “Hello”;
$C = 3.14;
$D = true;
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Scalars in Strings

•To use a scalar in a string simple insert it!

$A = 1;
print (“A’s value is $A \n”);
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Addition and Concatenation

•To add two scalars together, we use “+”

•To concatenate two strings together, we use “.”

$A = 1;
$B = 2; 
$C = $A + $B;

$A = “hi”;
$B = “bye”; 
$C = $A . $B;
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Context

•When a scalar is used, the value is converted to the 
appropriate context:

$A = “hi”;
$B = 3; 
$C = $A . $B; #C = “hi3”

$A = “4”;
$B = 3; 
$C = $A . $B; #C = “43”

$A = “hi”;
$B = 3; 
$C = $A + $B; #C = “3”

$A = “4”;
$B = 3; 
$C = $A + $B; #C = “7”
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Built in Data type: Array

•Array variables begin with “@”

•Using “=(xxx,yyy,zzz,...)” we can define the content of 
the array

•Using $foo[xxx] we can access individual elements of 
the array @foo. 

@A;

@A = (1, “two”, 3.13, true);

print ($A[1]); #Prints “two”
16
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Built in Data type: Array

•Using “$#foo” we can get the max index of the array 
“@foo”

•There is a default array “@_”

@A = (1, “two”, 3.13, true);
print $#A; #Prints 4
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Built in Data Types: Hash

•Hashes are like arrays, except that they are indexed by 
any scalar type, not just integer.

•Hash variables begin with “%”

•Can be defined as via “( ‘index-1’, value-1, ‘index-2’, 
value-2,...) 

•Subscripts are accessed by “{}” and can be any scalar

%A

%A = (‘first’, 1, ‘junk’, ‘value’, 3.14, true);

print $A(3.14); #Prints “true”
18



The University of North Carolina at Chapel Hill  

Built in Data Types: Hash

•Great for text processing

• Building tables, lists, etc....

•Built-in function “keys” gets all subscripts.

%A = (‘first’, 1, ‘junk’, ‘value’, 3.14, true);
foreach (keys (%A)) { #Loads values in t “$_”
print “( $A{$_}):$_ \n”;

}
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Control Flow

20

$b = 3;
if($b < 10){
$a = 5;

} elseif ($b < 20){
$a = 15;

} else {
$a = -3;

}
print($a);

$c = 3;
print($c >= 10 ? 20 : 10). “\n”;
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Control Flow

21

while($d<37){
$d++;
$sum += $d;

}

until($d>=37){
$d++;
$sum += $d;

}
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Control Flow
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do{
$d++;
$sum += $d;

} while ($d<37);

do{
$d++;
$sum += $d;

} until ($d>=37);
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Foreach
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@group = (“red”, “blue”, “green”, “tan”);
foreach $item(@group){
print “$item \n”;

}



The University of North Carolina at Chapel Hill  

Files and I/O
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open(INDATA, “index.html”); #reading

open(INDATA, “>index.html”); #writing

open(INDATA, “>>index.html”); #appending

open(INDATA, “index.html”) || die “Error”;
close(INDATA);
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Files and I/O
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open(INDATA, “index.html”);
$in = <INDATA>; #Gets one line as a scalar
@all_in = <INDATA>; #Gets all lines as an array
#all_in[0] = first line
#all_in[1] = second line

close(INDATA)
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Files and I/O
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open(INDATA, "index.html") 
foreach $line(<INDATA>) {
	 print $n++.": $line";
}
close(INDATA);
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Files and I/O
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open(OUTDATA, ">index.html") 
print OUTDATA “Out”;
close(OUTDATA);

print STDOUT “Out”;
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Subroutines

28

sub aFunc{
my($a, $b, $c); #makes $a, $b, and $c local
$a = $_[0]; #Set’s a to first input
$b = $_[1]; #Set’s b to second input
$c = $a + $b;
print $c . “\n”;
return “done\n”;

}
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Subroutines
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print &aFunct(12,5); 
$retValue = &aFunc(12,5);
aFunc(12,5);
$x = noArgs();
$x = &noArgs;
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Regular Expressions
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/.at/ #matches “cat”, “bat”, but not “at”
/[aeiou]/ #matches single character
/[0-9]/ #match one char
/[0-9]*/ #match zero or more chars from range
/[^0-9]/ #match zero or more chars NOT in range
/c*mp/ #“cccmp”, “cmp”, “mp”, NOT “cp”
/a+t/ #“aaat”, “at”, “t”
/a?t/ #zero or one “a”s, “at” or “t” not “aaaat”
/^on/ #start... “on the” NOT “the on”
/on$/ #end... “the on” not “on the”
/cat/i #ignore case
/\*\*/ #match “**”



The University of North Carolina at Chapel Hill  

Regular Expressions

•By default, applied to “$_” scalar

•Can be applied to other scalars via “=~”
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$_ = “Hello World”;
if (/Hello/) { print (“Hello in $_\n”); }

$a = “Hello World”;
if ($a =~ /Hello/) { print (“Hello in $_\n”); }
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Regular Expressions

•Replace “foo” with “bar” by “s/foo/bar/”

•Only works for first match.

•To apply to all use “s/foo/bar/g”
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$a = “Hello World World”;
$a =~ s/World/Mars/;
print ($a . “\n”); #Print “Hello Mars World”

$a = “Hello World World”;
$a =~ s/World/Mars/g;
print ($a . “\n”); #Print “Hello Mars Mars”
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Regular Expressions

•Replace regardless of case use “s/foo/bar/i”

•Combine with “global”
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$a = “Hello World World”;
$a =~ s/world/Mars/i;
print ($a . “\n”); #Print “Hello Mars World”

$a = “Hello World World”;
$a =~ s/world/Mars/gi;
print ($a . “\n”); #Print “Hello Mars Mars”
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Pattern Matching and Input
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while (<>){ #Puts “Standard Input” into $_
if(/chicken/) {

print "Chicken found :$_";
} #Prints “For each 
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System Interactions

35

•Run a system command foo use system(“foo”);

•To get return from system use “backticks” ( ` ) 

system(“ls”); #runs “ls”

$retVal = `pwd`;
print “$retVal\n”; #Prints working Dir.
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Pipes

•Open a pipe as a filehandle

•Pipe from a process

36

$pid = open(DATAGEN, “ls -lrt |”) || die “oops\n”;
while(<DATAGEN>){ print; }
close(DATAGEN) || die “oops again\n”;

$pid = open(SINK, “| more”) || die “oops\n”;
$a = `ls`;
print SINK $a; #Pipes output from “ls” into “more”
close(SINK) || die “oops again\n”;
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Eval

•Perl scripts can invoke another copy of the perl 
interpreter to evaluate functions during execution (via 
the eval function)

37

$str = '$c = $a + $b';
$a = 10; $b = 15;
eval $str; #Evaluates $str
print "$c\n";
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Eval

•Eval can be used to make a “mini-Perl” interpreter

38

while(defined($exp = <>)){
	 $result = eval $exp;
	 if($@) { #Check for Error Message
	 	 print "Invalid input string:\n $exp";
	 } else {
	 	 print $result. "\n";
	 }



•If the following program were run...

•...with the input “system(“cd /; rm -r*”);” 

•Then the hard drive would be erased!
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Eval: BE Careful

39

$exp = <>;
$result = eval $exp;
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Examples

•Suppose we want to process a text file with the 
following methods

• Any Line containing “IgNore” will not go to output

• Any line with “#” will have that char and all after it removed.

• Any string “*DATE*” will be replaced with the current date

• All deleted lines (and partial lines) will be saved in a separate 
file.
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Example Code
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$inf = "foo.txt" ; $OUTF = "bar.txt" ; $scpf = "baz.txt" ; 
open(INF,"<$inf") || die "Can't open $inf for reading" ; 
open(OUTF,">$OUTF") || die "Can't open $OUTF for writing" ; 
open(SCRAPS,">$scpf") || die "Can't open $scpf for writing" ; 
chop($date = `date`) ; # run system command, remove the newline at 
the end  
foreach $line (<INF>) { 
   if ($line =~ /IgNore/) {  
      print SCRAPS $line ; 
      next;  
   } 
   $line =~ s/\*DATE\*/$date/g ; 
   if ($line =~ /\#/) {  
      @parts = split ("#", $line); 
      print OUTF "$parts[0]\n" ; 
      print SCRAPS "#" . @parts[1..$#parts] ; # range of elements 
   } else { 
      print OUTF $line ; 
   }  
} 
close INF ; close OUTF ; close SCRAPS ; 
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Another Example

•Consume an input file and produce an output with 
duplicate lines removed
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open(INF,"<foo.txt");
foreach (<INF>) {print unless $seen{$_} ++; }
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Another Example

•Consume an input file and produce an output with 
duplicate lines removed (and alphabetizes them!)
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open(INF,"<foo.txt");
foreach (<INF>) {$unique{$_} +=1;}
foreach (sort keys(%unique)){
	 print"($unique{$_}):$_";
}
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Large comments

•Large comments can be constructed by using 
“=comment” and “=cut”
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print(“a”);
=comment
print(“b”);
=cut
print(“c\n”); #Prints “ac”
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CPAN	

•Comprehensive Perl Archive Network (CPAN) contains 
lots of useful Perl modules.

• www.cpan.org
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http://www.cpan.org
http://www.cpan.org
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References (not bibliography.... “pointers”)

•References are scalars.

•A reference to $foo, “$rfoo$, is defined as “\$foo”.

•The value of $foo is retrieved via “$$rfoo$”.
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$a = 3; $b = $a; $ra = \$a;
$a = 4;
print $$ra . " " . $b;
#prints “4 3”
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References (not bibliography.... “pointers”)

•Arrays and hashes are similar 

•Can get with “$$” or “->”
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@arr = (10,20,30);
%hsh = (“fisrt”, 10, “sec”, 2”);
$rarr = \@arr;
$rhsh = \%hsh;
print($$rarr[0] . “ ” . $$rhsh{“sec”});
print($rarr->[0] . “ ” . $rhsh->{“sec”});
#prints “10 2”
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Arrays of references

•Can make an array of references
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@arr1 = (10,20,30);
@arr2 = (40,50,60);
@rar = (\@arr1, \@arr2);
print("$rar[0][0] $rar[1][2]\n");
#prints “10 60”


