
The University of North Carolina at Chapel Hill

Lecture 5/6: Scripting and Perl

COMP 524 Programming Language Concepts
Stephen Olivier
January 29, 2009 and February 3, 2009

Based on notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goal of Lecture

•Discuss background on Scripting languages and Perl.

2

The University of North Carolina at Chapel Hill

Origin of scripting languages

•Scripting languages originated as job control languages

• 1960s: IBM System 360 had the “Job Control Language”

• Scripts used to control other programs

• Launch compilation, execution

• Check Return Codes

•Scripting languages became increasingly powerful in
UNIX

• Shell programing, AWK, Tcl/Tk, Perl

• Scripts used to “glue” applications

3

The University of North Carolina at Chapel Hill

System Programming Languages

•System languages (e.g., Pascal, C++, Java) replaced
assembly languages.

• Two main advantages:

• Hide unnecessary details (high level of abstraction)

• Strongly Typed.

4

The University of North Carolina at Chapel Hill

Strongly vs Weakly Typed Langauges

•Under Assembly, any register can take any type of value
(e.g., integer, string).

•Under Strongly Typed languages, a variable can only
take values of a particular type.

• For example, “int a” can only have values of type “integer”

5

The University of North Carolina at Chapel Hill

Strongly vs Weakly Typed Langauges

•Weakly Typed languages infer meaning at run-time

• Advantage: Increase Speed of development.

• Disadvantage: Less error checking at compile time.

•Not appropriate for low-level programming or large
programs

6

The University of North Carolina at Chapel Hill

Typing and “Degree of Abstraction”

Assembly C
C++ Java

Tcl/Perl

Visual Basic
Scripting

System Prog.

1000

100

10

1

None Strong

Degree of Typing

In
st

ru
ct

io
ns

/S
ta

te
m

en
t

(L
ev

el
 o

f
A

b
st

ra
ct

io
n)

7

The University of North Carolina at Chapel Hill

Perl (Practical Extraction and Report Language)

•Larry Wall Created Perl in late 80s

• Originally designed to be more powerful than Unix scripting.

• Wanted “naturalness” ... shortcuts, choices, defaults, flexibility.

•Perl is dense and Rich

• “Swiss-army chainsaw”

• “Duct tape for Web”

• “There is more than one way to do it!”

• Often experienced Perl programmers will need a manual when
reading other people’s code.

8

The University of North Carolina at Chapel Hill

What Perl Does Well

•String Manipulation

•Text Processing

•File Handling

•Regular Expressions and pattern matching

•Flexible arrays and hashes

•System Interactions (directories, files, processes)

•CGI scripts for Web sites

9

The University of North Carolina at Chapel Hill

Perl Overview

•Perl is interpreted.

•Every statement ends in a semicolon

•Comments begin with “#” and extend one line

• We’ll see how to do multi-line comments later

•What Perl doesn’t do well:

• Complex algorithms and data structures.

• Well defined and slowly changing functions.

10

The University of North Carolina at Chapel Hill

Built-in Data types

•No type Declarations

•Perl has three types:

• Scalar

• Array

• Hash (Associative Array)

•Integers, float, boolean, etc... are all of type Scalar.

11

The University of North Carolina at Chapel Hill

Built-in Data Types: Scalar

•Scalars begin with “$”

•Can take on any integer, real, boolean, and string value

•There is a default variable “$_”

$A = 1;
$B = “Hello”;
$C = 3.14;
$D = true;

12

The University of North Carolina at Chapel Hill

Scalars in Strings

•To use a scalar in a string simple insert it!

$A = 1;
print (“A’s value is $A \n”);

13

The University of North Carolina at Chapel Hill

Addition and Concatenation

•To add two scalars together, we use “+”

•To concatenate two strings together, we use “.”

$A = 1;
$B = 2;
$C = $A + $B;

$A = “hi”;
$B = “bye”;
$C = $A . $B;

14

The University of North Carolina at Chapel Hill

Context

•When a scalar is used, the value is converted to the
appropriate context:

$A = “hi”;
$B = 3;
$C = $A . $B; #C = “hi3”

$A = “4”;
$B = 3;
$C = $A . $B; #C = “43”

$A = “hi”;
$B = 3;
$C = $A + $B; #C = “3”

$A = “4”;
$B = 3;
$C = $A + $B; #C = “7”

15

The University of North Carolina at Chapel Hill

Built in Data type: Array

•Array variables begin with “@”

•Using “=(xxx,yyy,zzz,...)” we can define the content of
the array

•Using $foo[xxx] we can access individual elements of
the array @foo.

@A;

@A = (1, “two”, 3.13, true);

print ($A[1]); #Prints “two”
16

The University of North Carolina at Chapel Hill

Built in Data type: Array

•Using “$#foo” we can get the max index of the array
“@foo”

•There is a default array “@_”

@A = (1, “two”, 3.13, true);
print $#A; #Prints 4

17

The University of North Carolina at Chapel Hill

Built in Data Types: Hash

•Hashes are like arrays, except that they are indexed by
any scalar type, not just integer.

•Hash variables begin with “%”

•Can be defined as via “(‘index-1’, value-1, ‘index-2’,
value-2,...)

•Subscripts are accessed by “{}” and can be any scalar

%A

%A = (‘first’, 1, ‘junk’, ‘value’, 3.14, true);

print $A(3.14); #Prints “true”
18

The University of North Carolina at Chapel Hill

Built in Data Types: Hash

•Great for text processing

• Building tables, lists, etc....

•Built-in function “keys” gets all subscripts.

%A = (‘first’, 1, ‘junk’, ‘value’, 3.14, true);
foreach (keys (%A)) { #Loads values in t “$_”
print “($A{$_}):$_ \n”;

}

19

The University of North Carolina at Chapel Hill

Control Flow

20

$b = 3;
if($b < 10){
$a = 5;

} elseif ($b < 20){
$a = 15;

} else {
$a = -3;

}
print($a);

$c = 3;
print($c >= 10 ? 20 : 10). “\n”;

The University of North Carolina at Chapel Hill

Control Flow

21

while($d<37){
$d++;
$sum += $d;

}

until($d>=37){
$d++;
$sum += $d;

}

The University of North Carolina at Chapel Hill

Control Flow

22

do{
$d++;
$sum += $d;

} while ($d<37);

do{
$d++;
$sum += $d;

} until ($d>=37);

The University of North Carolina at Chapel Hill

Foreach

23

@group = (“red”, “blue”, “green”, “tan”);
foreach $item(@group){
print “$item \n”;

}

The University of North Carolina at Chapel Hill

Files and I/O

24

open(INDATA, “index.html”); #reading

open(INDATA, “>index.html”); #writing

open(INDATA, “>>index.html”); #appending

open(INDATA, “index.html”) || die “Error”;
close(INDATA);

The University of North Carolina at Chapel Hill

Files and I/O

25

open(INDATA, “index.html”);
$in = <INDATA>; #Gets one line as a scalar
@all_in = <INDATA>; #Gets all lines as an array
#all_in[0] = first line
#all_in[1] = second line

close(INDATA)

The University of North Carolina at Chapel Hill

Files and I/O

26

open(INDATA, "index.html")
foreach $line(<INDATA>) {
	 print $n++.": $line";
}
close(INDATA);

The University of North Carolina at Chapel Hill

Files and I/O

27

open(OUTDATA, ">index.html")
print OUTDATA “Out”;
close(OUTDATA);

print STDOUT “Out”;

The University of North Carolina at Chapel Hill

Subroutines

28

sub aFunc{
my($a, $b, $c); #makes $a, $b, and $c local
$a = $_[0]; #Set’s a to first input
$b = $_[1]; #Set’s b to second input
$c = $a + $b;
print $c . “\n”;
return “done\n”;

}

The University of North Carolina at Chapel Hill

Subroutines

29

print &aFunct(12,5);
$retValue = &aFunc(12,5);
aFunc(12,5);
$x = noArgs();
$x = &noArgs;

The University of North Carolina at Chapel Hill

Regular Expressions

30

/.at/ #matches “cat”, “bat”, but not “at”
/[aeiou]/ #matches single character
/[0-9]/ #match one char
/[0-9]*/ #match zero or more chars from range
/[^0-9]/ #match zero or more chars NOT in range
/c*mp/ #“cccmp”, “cmp”, “mp”, NOT “cp”
/a+t/ #“aaat”, “at”, “t”
/a?t/ #zero or one “a”s, “at” or “t” not “aaaat”
/^on/ #start... “on the” NOT “the on”
/on$/ #end... “the on” not “on the”
/cat/i #ignore case
/**/ #match “**”

The University of North Carolina at Chapel Hill

Regular Expressions

•By default, applied to “$_” scalar

•Can be applied to other scalars via “=~”

31

$_ = “Hello World”;
if (/Hello/) { print (“Hello in $_\n”); }

$a = “Hello World”;
if ($a =~ /Hello/) { print (“Hello in $_\n”); }

The University of North Carolina at Chapel Hill

Regular Expressions

•Replace “foo” with “bar” by “s/foo/bar/”

•Only works for first match.

•To apply to all use “s/foo/bar/g”

32

$a = “Hello World World”;
$a =~ s/World/Mars/;
print ($a . “\n”); #Print “Hello Mars World”

$a = “Hello World World”;
$a =~ s/World/Mars/g;
print ($a . “\n”); #Print “Hello Mars Mars”

The University of North Carolina at Chapel Hill

Regular Expressions

•Replace regardless of case use “s/foo/bar/i”

•Combine with “global”

33

$a = “Hello World World”;
$a =~ s/world/Mars/i;
print ($a . “\n”); #Print “Hello Mars World”

$a = “Hello World World”;
$a =~ s/world/Mars/gi;
print ($a . “\n”); #Print “Hello Mars Mars”

The University of North Carolina at Chapel Hill

Pattern Matching and Input

34

while (<>){ #Puts “Standard Input” into $_
if(/chicken/) {

print "Chicken found :$_";
} #Prints “For each

The University of North Carolina at Chapel Hill

System Interactions

35

•Run a system command foo use system(“foo”);

•To get return from system use “backticks” (`)

system(“ls”); #runs “ls”

$retVal = `pwd`;
print “$retVal\n”; #Prints working Dir.

The University of North Carolina at Chapel Hill

Pipes

•Open a pipe as a filehandle

•Pipe from a process

36

$pid = open(DATAGEN, “ls -lrt |”) || die “oops\n”;
while(<DATAGEN>){ print; }
close(DATAGEN) || die “oops again\n”;

$pid = open(SINK, “| more”) || die “oops\n”;
$a = `ls`;
print SINK $a; #Pipes output from “ls” into “more”
close(SINK) || die “oops again\n”;

The University of North Carolina at Chapel Hill

Eval

•Perl scripts can invoke another copy of the perl
interpreter to evaluate functions during execution (via
the eval function)

37

$str = '$c = $a + $b';
$a = 10; $b = 15;
eval $str; #Evaluates $str
print "$c\n";

The University of North Carolina at Chapel Hill

Eval

•Eval can be used to make a “mini-Perl” interpreter

38

while(defined($exp = <>)){
	 $result = eval $exp;
	 if($@) { #Check for Error Message
	 	 print "Invalid input string:\n $exp";
	 } else {
	 	 print $result. "\n";
	 }

•If the following program were run...

•...with the input “system(“cd /; rm -r*”);”

•Then the hard drive would be erased!

The University of North Carolina at Chapel Hill

Eval: BE Careful

39

$exp = <>;
$result = eval $exp;

The University of North Carolina at Chapel Hill

Examples

•Suppose we want to process a text file with the
following methods

• Any Line containing “IgNore” will not go to output

• Any line with “#” will have that char and all after it removed.

• Any string “*DATE*” will be replaced with the current date

• All deleted lines (and partial lines) will be saved in a separate
file.

40

The University of North Carolina at Chapel Hill

Example Code

41

$inf = "foo.txt" ; $OUTF = "bar.txt" ; $scpf = "baz.txt" ;
open(INF,"<$inf") || die "Can't open $inf for reading" ;
open(OUTF,">$OUTF") || die "Can't open $OUTF for writing" ;
open(SCRAPS,">$scpf") || die "Can't open $scpf for writing" ;
chop($date = `date`) ; # run system command, remove the newline at
the end
foreach $line (<INF>) {
 if ($line =~ /IgNore/) {
 print SCRAPS $line ;
 next;
 }
 $line =~ s/*DATE*/$date/g ;
 if ($line =~ /\#/) {
 @parts = split ("#", $line);
 print OUTF "$parts[0]\n" ;
 print SCRAPS "#" . @parts[1..$#parts] ; # range of elements
 } else {
 print OUTF $line ;
 }
}
close INF ; close OUTF ; close SCRAPS ;

The University of North Carolina at Chapel Hill

Another Example

•Consume an input file and produce an output with
duplicate lines removed

42

open(INF,"<foo.txt");
foreach (<INF>) {print unless $seen{$_} ++; }

The University of North Carolina at Chapel Hill

Another Example

•Consume an input file and produce an output with
duplicate lines removed (and alphabetizes them!)

43

open(INF,"<foo.txt");
foreach (<INF>) {$unique{$_} +=1;}
foreach (sort keys(%unique)){
	 print"($unique{$_}):$_";
}

The University of North Carolina at Chapel Hill

Large comments

•Large comments can be constructed by using
“=comment” and “=cut”

44

print(“a”);
=comment
print(“b”);
=cut
print(“c\n”); #Prints “ac”

The University of North Carolina at Chapel Hill

CPAN	

•Comprehensive Perl Archive Network (CPAN) contains
lots of useful Perl modules.

• www.cpan.org

45

http://www.cpan.org
http://www.cpan.org

The University of North Carolina at Chapel Hill

References (not bibliography.... “pointers”)

•References are scalars.

•A reference to $foo, “$rfoo$, is defined as “\$foo”.

•The value of $foo is retrieved via “$$rfoo$”.

46

$a = 3; $b = $a; $ra = \$a;
$a = 4;
print $$ra . " " . $b;
#prints “4 3”

The University of North Carolina at Chapel Hill

References (not bibliography.... “pointers”)

•Arrays and hashes are similar

•Can get with “$$” or “->”

47

@arr = (10,20,30);
%hsh = (“fisrt”, 10, “sec”, 2”);
$rarr = \@arr;
$rhsh = \%hsh;
print($$rarr[0] . “ ” . $$rhsh{“sec”});
print($rarr->[0] . “ ” . $rhsh->{“sec”});
#prints “10 2”

The University of North Carolina at Chapel Hill

Arrays of references

•Can make an array of references

48

@arr1 = (10,20,30);
@arr2 = (40,50,60);
@rar = (\@arr1, \@arr2);
print("$rar[0][0] $rar[1][2]\n");
#prints “10 60”

