Lecture 5/6: Scripting and Perl

COMP 524 Programming Language Concepts

Stephen Olivier
January 29, 2009 and February 3, 2009

Based on notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hil ||

Goal of Lecture

e Discuss background on Scripting languages and Perl.

The University of North Carolina at Chapel Hill

Origin of scripting languages

e Scripting languages originated as job control languages
¢ 1960s: IBM System 360 had the “Job Control Language”

e Scripts used to control other programs
e | aunch compilation, execution

e Check Return Codes

e Scripting languages became increasingly powerful in
UNIX

e Shell programing, AWK, Tcl/Tk, Perl

e Scripts used to “glue” applications

The University of North Carolina at Chapel Hill

System Programming Languages

e System languages (e.g., Pascal, C++, Java) replaced
assembly languages.

e Two main advantages:
e Hide unnecessary details (high level of abstraction)

e Strongly Typed.

The University of North Carolina at Chapel Hill

Strongly vs Weakly Typed Langauges

e Under Assembly, any register can take any type of value
(e.g., integer, string).

e Under Strongly Typed languages, a variable can only
take values of a particular type.

e For example, “int a” can only have values of type “integer”

The University of North Carolina at Chapel Hill

Strongly vs Weakly Typed Langauges

e Weakly Typed languages infer meaning at run-time
e Advantage: Increase Speed of development.

e Disadvantage: Less error checking at compile time.

e Not appropriate for low-level programming or large
programs

The University of North Carolina at Chapel Hill

Typing and “Degree of Abstraction”

4

1000

Visual BaS|c
O ; Scripting

TcI/ Perl

System Prog.

—
)

C++ Java
Assembly

v J
None Strong

Degree of Typing

—_—

Instructions/Statement
(Level of Abstraction)

Perl (Practical Extraction and Report Language)

e | arry Wall Created Perl in late 80s
e Originally designed to be more powerful than Unix scripting.

e Wanted “naturalness” ... shortcuts, choices, defaults, flexibility.

*Perl is dense and Rich
e “Swiss-army chainsaw”
¢ “Duct tape for Web”
® “There is more than one way to do it!”

e Often experienced Perl programmers will need a manual when
reading other people’s code.

The University of North Carolina at Chapel Hill

What Perl Does Well

e String Manipulation
e Text Processing
~ile Handling

Regular Expressions and pattern matching

~lexible arrays and hashes

e System Interactions (directories, files, processes)

e CGl scripts for Web sites

The University of North Carolina at Chapel Hill

Perl Overview

e Perl is interpreted.

e Every statement ends in a semicolon

e Comments begin with “#” and extend one line
e \We'll see how to do multi-line comments later
e \What Perl doesn’t do well:

e Complex algorithms and data structures.

e Well defined and slowly changing functions.

The University of North Carolina at Chapel Hill

Built-in Data types

* No type Declarations

* Perl has three types:
e Scalar
e Array

e Hash (Associative Array)

e Integers, float, boolean, etc... are all of type Scalar.

The University of North Carolina at Chapel Hill

Built-in Data Types: Scalar

e Scalars begin with “$”

e Can take on any integer, real, boolean, and string value

e There is a default variable “$ _”

The University of North Carolina at Chapel Hill

Scalars in Strings

* To use a scalar in a string simple insert it!

The University of North Carolina at Chapel Hill

Addition and Concatenation

e To add two scalars together, we use “+”

e [o concatenate two strings together, we use “.

The University of North Carolina at Chapel Hill

Context

e\When a scalar is used, the value is converted to the
appropriate context:

The University of North Carolina at Chapel Hill

Built in Data type: Array

e Array variables begin with “@”

e Using “=(xxx,yyy,zzz,...)” we can define the content of
the array

e Using $foo[xxx] we can access individual elements of
the array @foo.

The University o' ‘!ort! !laro\lna at h!ape| !I“

Built in Data type: Array

e Using “$#foo” we can get the max index of the array
“@fo0”

e There is a default array “@_"

The University of North Carolina at Chapel Hill

Built in Data Types: Hash

e Hashes are like arrays, except that they are indexed by
any scalar type, not just integer.

e Hash variables begin with “%”

e Can be defined as via “(‘index-1’, value-1, ‘index-2’,
value-2,...)

e Subscripts are accessed by “{}” and can be any scalar

The UniverW

Built in Data Types: Hash

e Great for text processing

e Building tables, lists, etc....

e Built-in function “keys” gets all subscripts.

The University of North Carolina at Chapel Hill

Control Flow

p
$b = 3;

if($b < 10){
$a = 5;

} elseif ($b < 20){

q
10
- —— = o Y
(

Control Flow

& 4

while($d<37){ until($d>=37){
$d++; $d++;

The University of North Carolina at Chapel Hill

Control Flow

The University of North Carolina at Chapel Hill

Foreach

/

@gI"OUp _ (“r'ed”, “blue”, “gr'een”, “tan”);
foreach $item(@group){

print “%$i |)

The University of North Carolina at Chapel Hill

Files and I/O

lopen(INDATA, “index.html”); #reading '
.open(INDATA, “>index.html”); #writing '

lopen(INDATA, “>>index.html”); #appending '

p
open(INDATA, “index.html”) || die “Error”;

close(INDATA);

The University of North Carolina at Chapel Hill

Files and I/O

p

open(INDATA, “index.html”);

$in = <INDATA>; #Gets one line as a scalar

@all_in = <INDATA>; #Gets all lines as an array
#all_1n[@] = first line

#all_in[1l] = second line
close(INDATA)

The University of North Carolina at Chapel Hill

Files and |/O

-

open(INDATA, "index.html")
Foreach $11ne(<INDATA>) {

The University of North Carolina at Chapel Hill

Files and |/O

The University of North Carolina at Chapel Hill

Subroutines

-~

sub aFunc{
my($a, $b, $c); #makes $a, $b, and $c local
$a = $_[0]; #Set’s a to first input
$b = $_[1]; #Set

’s b to second input

The University of North Carolina at Chapel Hill

Subroutines

print &aFunct(12,5);
$retValue &aFunc(12,5);

The University of North Carolina at Chapel Hill

Regular Expressions

-

/.at/ #matches “cat”, “bat”, but not “at”
aelou]/ #matches single character

[0-9]/ #match one char

(0-9]1*/ #match zero or more chars from range
(A0-9]/ #match zero or more chars NOT in range
/C*mp/ #“CCCI’YIP”, “Cmp”, ccmp”, NOT “Cp”

/a+t/ #“aaat”, “at”, “t”

/a?t/ #zero or one “a”s, “at” or “t” not “aaaat”
/Non/ #start... “on the” NOT “the on”

/on$/ #end... “the on” not “on the”

/cat/1 #ignore case

/**/ f#match “**”

.

Regular Expressions

e By default, applied to “$_" scalar

$_ = “Hello World”;
if (/Hello/) { print (“Hello in $_\n”); }

e Can be applied to other scalars via “=~"

$a = “Hello World”;
if ($a =~ /Hello/) { print (“Hello in $_\n”); }

The University of North Carolina at Chapel Hill

Regular Expressions

e Replace “foo” with “bar” by “s/foo/bar/”

p
$a = “Hello World World”;

$a =~ s/World/Mars/;
print ($a . “\n”); #Print “Hello Mars World”

e Only works for first match.

*To apply to all use “s/foo/bar/g”
p

$a = “Hello World World”;
$a =~ s/World/Mars/g;
print ($3a . “\n”); #Print “Hello Mars Mars”

Regular Expressions

* Replace regardless of case use “s/foo/bar/i”

p
$a = “Hello World World”;

$a =~ s/world/Mars/i;
print ($a . “\n”); #Print “Hello Mars World”

e Combine with “globa

p
$a = “Hello World World”;

$a =~ s/world/Mars/gi;

print ($3a . “\n”); #Print “Hello Mars Mars”

The University of North Carolina at Chapel Hill

Pattern Matching and Input

&
while (<>){ #Puts “Standard Input” into $_
1f(/chicken

The University of North Carolina at Chapel Hill

System Interactions

e Run a system command foo use system(“foo”);

‘ system(“1ls”); #runs “ls” '

e To get return from system use “backticks” ()

$retVal = “pwd’;
print “$retVal\n”; #Prints working Dir.

The University of North Carolina at Chapel Hill

Pipes

e Open a pipe as a filehandle

p
$pid = open(DATAGEN, “ls -1rt |”) Il die “oops\n”;
while(<DATAGEN>){ print; }

close(DATAGEN) || die “oops again\n”;

* Pipe from a process
p

$pid = open(SINK, “| more”) || die “oops\n”;

$a = “1s;

print SINK $a; #Pipes output from “1s” into “more”
close(SINK) || die “oops again\n”;

Il The University of North Carolina at Chapel Hill

Eval

* Perl scripts can invoke another copy of the perl
interpreter to evaluate functions during execution (via
the eval function)

p
$str = '$c = $a + $b';

$a = 10; $b = 15;

eval $str; #Evaluates $str

, ‘ 1 , ‘Jj—‘ { \‘” (7Y
| N C\Nn

The University of North Carolina at Chapel Hill

Eval

e Eval can be used to make a “mini-Perl” interpreter

p
while(defined($exp = <>)){

$result = eval $exp;

if($@) { #Check for Error Message

print "Invalid input string:\n $exp";

} else {

The University of North Carolina at Chapel Hill

Eval: BE Careful

e |f the following program were run...

p
$exp = <>;
$result = eval $exp;

e ..with the input “system(“cd /; rm -r*”);

e Then the hard drive would be erased!

The University of North Carolina at Chapel Hill

Examples

e Suppose we want to process a text file with the
following methods

e Any Line containing “IgNore” will not go to output
e Any line with “#” will have that char and all after it removed.
e Any string “*DATE™” will be replaced with the current date

e All deleted lines (and partial lines) will be saved in a separate
file.

The University of North Carolina at Chapel Hill

(;inf = "foo.txt" ; $OUTF = "bar.txt" ; $scpf = "baz.txt" ;
open(INF,"<$inf") || die "Can't open $inf for reading" ;
open(OUTF,">$0UTF") || die "Can't open $OUTF for writing" ;
open(SCRAPS, ">$scpf") || die "Can't open $scpf for writing" ;
chop($date = “date’) ; # run system command, remove the newline
the end
foreach $line (<INF>) {
if ($line =~ /IgNore/) {
print SCRAPS $line ;
nhext;
Iy
$line =~ s/*DATE*/$date/g ;
if ($1line =~ /\#/) {
@parts = split ("#", $line);
print OUTF "$parts[@]\n" ;
print SCRAPS "#" . @parts[1..$#parts] ; # range of elements
} else {
print OUTF $line ;

¥

Iy
{close INF ; close OUTF ; close SCRAPS ;

Another Example

e Consume an input file and produce an output with
duplicate lines removed

p
open(INF, "<foo.txt");

foreach (<INF>) {print unless $seen{$_} ++; }

The University of North Carolina at Chapel Hill

Another Example

e Consume an input file and produce an output with
duplicate lines removed (and alphabetizes them!)

p

open(INF, "<foo.txt");

foreach (<INF>) {$unique{$_} +=1;}

foreach (sort keys(%unique)){
print"($unique{$_3}):$_";

¥

The University of North Carolina at Chapel Hill

Large comments

e| arge comments can be constructed by using
*=comment” and “=cut”

p
print(“a”);
=comment

print(“b”);

The University of North Carolina at Chapel Hill

CPAN

e Comprehensive Perl Archive Network (CPAN) contains
lots of useful Perl modules.

* Www.Cpan.org

The University of North Carolina at Chapel Hill

http://www.cpan.org
http://www.cpan.org

References (not bibliography.... “pointers”)

e References are scalars.
o A reference to $foo, “$rfoo$, is defined as “\$foo”.

e The value of $foo is retrieved via “$$rfoo$”.

p
$a = 3; $b = $a; $ra = \$a;

$a = 4;
print $$ra . " " . $b;
#prints “4 37

The University of North Carolina at Chapel Hill

References (not bibliography.... “pointers”)

e Arrays and hashes are similar

e Can get with “$$” or “->”

‘@arr = (10,20,30):

%hsh = (“fisrt”, 10, “sec”, 2”);
$rarr = \@arr;
$rhsh = \%hsh;

print($$rarr[@] . “ ” . $$rhsh{“sec”});

print($rarr->[0] . “ ” . $rhsh->{“sec”});
#prints “10 2”

The University of North Carolina at Chapel Hill

Arrays of references

e Can make an array of references

-

@arrl = (10,20,30);

@arr?2 = (40,50,00);

@rar = (\@arrl, \@arr2);
print("$rar[@][0] $rar[1][2]\n");
#prints “10 60”

The University of North Carolina at Chapel Hill

