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Goal of Lecture

•The Goal of this lecture is to discuss object binding and 
memory management. 
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High-Level Programming Languages

•High-Level Programming languages are defined by two 
characteristics 

• Machine “independence”

• Ease of programming
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Machine “Independence”

•With few exceptions, the code of a high-level 
language can be compiled on any system

• For example cout << “hello world”<< endl; means the 
same thing on any machine

•However, few languages are completely machine 
independent.

•Generally, the more machine dependent a language is 
the more “efficient” it is. 

4



The University of North Carolina at Chapel Hill  

Ease of Programming
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Control Flow
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Subroutines
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Naming

•Naming is the process by which a programer associates 
a name with a potentially complicated program 
fragment.

• Purpose is to hide complexity.

• For example, to designate variables, types, classes, operators, 
etc ...
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By naming an 
object we 
make an 

abstraction
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Abstractions

•Control abstractions allows programs to “hide” 
complex code behind simple interface

• Subroutines and functions

• Classes.

•Data abstraction allow the programer to hide data 
representation details behind abstract operations

• Abstract Data Types (ADTs)

• Classes.
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Binding Time

•A binding is an association between any two things

• Name of an object and the object. 

• A Dook student to a loosing basketball team.

•Binding Time is the time at which a binding is created.
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Binding Time
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Object Lifetime

•Object lifetimes have two components

• Lifetime of the object.

• Lifetime of the binding.

•These two don’t necessarily correspond.

• For example in C++, when a variable is passed by “reference”, 
i.e., using “&”, then the name of the object does not exist even 
though the binding does.

• For example in C++, when the value pointed to by an object is 
deleted the binding is gone before the object.
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Object Lifetimes

•Object Lifetimes correspond to three principal storage 
allocation mechanisms, 

• Static objects, which have an absolute address

• Stack objects, which are allocated and deallocated in a Last-
In First-Out (LIFO) order

• Heap objects, which are allocated and deallocated at arbitrary 
times. 
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Static Allocation

•Under static allocation, objects are given an absolute 
address that is retained through the program’s execution

• e.g., global variables
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Stack Allocation

•Under stack-based allocation, objects are allocated in 
a Last-In First-Out (LIFO) basis called a stack. 

• e.g., recursive subroutine parameters. 
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Calling Sequence

•On procedure call and return compilers generate code 
that execute to manage the runtime stack.

• Setup at call to procedure foo(a,b).

• Prologue before foo code executes.

• Epilogue at the end of foo code.

• “Teardown” right after calling the code. 
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Setup foo(a,b)

•Move sp to allocate a new stack frame

•Copy args a,b into frame

•Copy return address into frame

•Set fp to point to new frame

•Maintain static chain or display

•Move PC to procedure address
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Setup foo(a,b)

•Move sp to allocate a new 
stack frame

•Copy args x,y into frame

•Copy return address into 
frame

•Set fp to point to new frame

•Maintain static chain or 
display

•Move PC to procedure 
address
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Setup foo(a,b)
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Setup foo(a,b)
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Subroutine B

Subroutine A 
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Setup foo(a,b)
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Setup foo(a,b)
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Subroutine B

Subroutine A 
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Setup foo(a,b)
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Subroutine B

Subroutine A 
(called from main)

Subroutine Bar

sp
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Subroutine foo

•Move sp to allocate a new 
stack frame

•Copy args x,y into frame

•Copy return address into 
frame

•Set fp to point to new frame

•Maintain static chain or 
display

•Move PC to procedure 
address
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Prologue

•Copy registers into local slots

•Object initialization. 

25



The University of North Carolina at Chapel Hill  

•Copy registers into local 
slots

•Object initialization. 
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•Copy registers into local 
slots

•Object initialization. 
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fp

Subroutine Bar

x & y

Return Ad

Prologue

Old fp

All old reg.

•Copy registers into local 
slots

•Object initialization. 

Objects that 
are used are 

initialized. 
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Epilogue

•Place return value into slot 
in frame.

•Restore registers.

•Restore PC to return 
address.
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Epilogue

•Place return value into slot 
in frame.

•Restore registers.

•Restore PC to return 
address.
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Epilogue

•Place return value into slot 
in frame.

•Restore registers.

•Restore PC to return 
address.
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Subroutine B

Subroutine A 
(called from main)

Subroutine Bar

x & y

Return Ad

Subroutine foo
sp

fp

Return Value

Registers stored from 
“foo”’s subroutine are 

registered. 
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Epilogue

•Place return value into slot 
in frame.

•Restore registers.

•Restore PC to return 
address.
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Subroutine B

Subroutine A 
(called from main)

Subroutine Bar

x & y

Return Ad

Subroutine foo
sp

fp

Return Value

The program resumes 
from where it began.
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“Teardown”
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Subroutine B

Subroutine A 
(called from main)

Subroutine Bar

x & y

Return Ad

Subroutine foo
sp

fp

Return Value

•Move sp & fp (deallocate 
frame)

•Move return values (if in 
registers) 
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“Teardown”

•Move sp & fp (deallocate 
frame)

•Move return values (if in 
registers) 
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“Teardown”
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Subroutine B

Subroutine A 
(called from main)

Subroutine Bar

sp

fp
Return Value

•Move sp & fp (deallocate 
frame)

•Move return values (if in 
registers) 

If the return value was 
placed in a register, put 

it in the stack.
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Heap-based allocation

•In heap-based allocation, objects may be allocated 
and deallocated at arbitrary times.

• For example, objects created with C++ new and delete. 
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Heap Space Management

•In general, the heap is allocated sequentially. 

•This creates fragmentation...
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Internal fragmentation

•Internal fragmentation is caused when extra space 
within a single block is unused. 
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Internal fragmentation

•Internal fragmentation is caused when extra space 
within a single block is unused. 
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Used 

Caused by 
fixed block 

size. 
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External Fragmentation 

•External fragmentation occurs when there is sufficient 
available space for a new object, but there is no single 
block of free space large enough.
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External Fragmentation 
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External Fragmentation 

•External fragmentation occurs when there is sufficient 
available space for a new object, but there is no single 
block of free space large enough.
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Caused by 
gaps 
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contiguous 

blocks 
allocated to 
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External Fragmentation 

•May require heap compaction

• Combine in the heap by moving existing objects (expensive)

• Similar to defragmentation of a hard drive
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Heap Management

•Some languages (C & C++) require explicit heap 
management...

• In C, malloc and free

• In C++, new and delete

•Easy to forget free...

• Called a memory leak!
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Heap Management

•Some languages (Java) manage the heap for you

• new( ) object allocated on heap.

• when done, object is reclaimed. 

•Automatic de-allocation after an object has no binding/
references is called garbage collection.

• Some runtime efficiency hit

• No memory leaks. 
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Sample Memory Layout
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pc 3125

sp 217560

fp 218380

0000 6024 6356 275000

Code

Global 
const Runtime stack Heap

Stack frame


