Lecture 7: Binding Time and Storage

COMP 524 Programming Language Concepts
Stephen Olivier
February 5, 2009

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hil ||

Goal of Lecture

e The Goal of this lecture is to discuss object binding and
memory management.

The University of North Carolina at Chapel Hill

High-Level Programming Languages

e High-Level Programming languages are defined by two
characteristics

e Machine “independence”

e Ease of programming

The University of North Carolina at Chapel Hill

Machine “Independence”

e \With few exceptions, the code of a high-level
language can be compiled on any system

e For example cout << “hello world”<< endl; means the
same thing on any machine

e However, few languages are completely machine
iIndependent.

e Generally, the more machine dependent a language is
the more “efficient” it is.

The University of North Carolina at Chapel Hill

Ease of Programming

o —~Q

| Names '
Control Flow
| Types ’

| Concurrency '

The University of North CW

Naming

e Naming is the process by which a programer associates
a name with a potentially complicated program
fragment.

e Purpose is to hide complexity.

* For example, to designate variables, types, classes, operators,
etc ...

The University of North Carolina at Chapel Hill

Naming

e Naming is the process by which a programer associates
a name with a potentially complicated program
fragment. 4

By haming an
object we
e For example, to d
etC make an
abstraction

e Purpose is to hide

classes, operators,

The University of North Carolina at Chapel Hill

Abstractions

e Control abstractions allows programs to “hide”
complex code behind simple interface

e Subroutines and functions

e Classes.

e Data abstraction allow the programer to hide data
representation details behind abstract operations

e Abstract Data Types (ADTs)

e Classes.

The University of North Carolina at Chapel Hill

Binding Time

* A binding is an association between any two things
e Name of an object and the object.

e A Dook student to a loosing basketball team.

e Binding Time is the time at which a binding is created.

The University of North Carolina at Chapel Hill

Binding Time

| Language Design Time '
' Language Implementation Time '
| Program Writing Time ’

| Link Time '
| Load Time ’

The University of North CW

Increasing Flexibllity

AduaI01Jg buises.ou|

Object Lifetime

e Object lifetimes have two components
e |ifetime of the object.

e |_ifetime of the binding.

* These two don’t necessarily correspond.

e For example in C++, when a variable is passed by “reference”,
l.e., using “&”, then the name of the object does not exist even
though the binding does.

e For example in C++, when the value pointed to by an object is
deleted the binding is gone before the object.

The University of North Carolina at Chapel Hill

Object Lifetimes

e Object Lifetimes correspond to three principal storage
allocation mechanisms,

e Static objects, which have an absolute address

e Stack objects, which are allocated and deallocated in a Last-
In First-Out (LIFO) order

e Heap objects, which are allocated and deallocated at arbitrary
times.

The University of North Carolina at Chapel Hill

Static Allocation

e Under static allocation, objects are given an absolute
address that is retained through the program’s execution

®e.g., global variables

Arguments &
Arguments & Arguments & Returns
Returns Returns

Stack Allocation

e Under stack-based allocation, objects are allocated in
a Last-In First-Out (LIFO) basis called a stack.

® e.g., recursive subroutine parameters.

Args to called

Temps

Subroutine A

Stack Al fp is the “Frame Pointer '

e Under

b sp is the “Stack Pointer”
a Last-In First-

® e.g., recursive subroutine parameters.

located In

ut (LIFO) basis called a stack.

(s)~

Subroutine D

Subroutine C

Subroutine B

Stack growth '
[®)
|

Subroutine A

(called from main)

....
....
!/

Args to called
routines.

Temps

Local Variables

Misc.
Bookkeeping

Return Address

Calling Sequence

e On procedure call and return compilers generate code
that execute to manage the runtime stack.

e Setup at call to procedure foo(a,b).
* Prologue before foo code executes.
e Epilogue at the end of foo code.

* “Teardown” right after calling the code.

The University of North Carolina at Chapel Hill

Setup foo(a,b)

e Move sp to allocate a new stack frame
e Copy args a,b into frame

e Copy return address into frame

e Set fp to point to new frame

e Maintain static chain or display

e Move PC to procedure address

The University of North Carolina at Chapel Hill

Setup foo(a,b)

e Move sp to allocate a new
stack frame

e Copy args X,y into frame

e Copy return address into
frame

e Set fp to point to new frame

e Maintain static chain or
display

e Move PC to procedure
address

The University of North Carolina at Chapel Hill

Subroutine A

Setup foo(a,b)

e Move sp to allocate a new
stack frame

e Copy args X,y into frame

e Copy return address into
frame

¢Set fp to point to new frame

e Maintain static chain or
display

e Move PC to procedure
address

The University of North Carolina at Chapel Hill

Subroutine A

Setup foo(a,b)

e Move sp to allocate a new
stack frame

e Copy args X,y into frame

e Copy return address into
frame

¢Set fp to point to new frame

e Maintain static chain or
display

e Move PC to procedure
address

The University of North Carolina at Chapel Hill

Subroutine A

Setup foo(a,b)

e Move sp to allocate a new
stack frame

e Copy args X,y into frame

e Copy return address into
frame

¢Set fp to point to new frame

e Maintain static chain or
display

e Move PC to procedure
address

The University of North Carolina at Chapel Hill

Subroutine foo

Subroutine A

Setup foo(a,b)

e Move sp to allocate a new
stack frame

e Copy args X,y into frame

e Copy return address into
frame

e Set fp to point to new frame

e Maintain static chain or
display

e Move PC to procedure
address

The University of North Carolina at Chapel Hill

Subroutine foo

Subroutine A

Setup foo(a,b)

e Move sp to allocate a new
stack frame

e Copy args x,y into frame

e Copy return address into
frame

¢Set fp to point to new frame

e Maintain static chain or
display

e Move PC to procedure
address

The University of North Carolina at Chapel Hill

Subroutine foo

We’'ll ignore
this for now

Setup foo(a,b)

e Move sp to allocate a new
stack frame

e Copy args x,y into frame

e Copy return address into
frame

¢Set fp to point to new frame

e Maintain static chain or
display

e Move PC to procedure
address

The University of North Carolina at Chapel Hill

Subroutine foo

his changes
nere the code

IS executed.

Prologue

e Copy registers into local slots

e Object initialization.

The University of North Carolina at Chapel Hill

Prologue

e Copy registers into local
slots

e Object initialization.

The University of North Carolina at Chapel

Prologue

e Copy registers into local
slots

e Object initialization.

The University of North Carolina at Chapel

Prologue

e Copy registers into local
slots

e Object initialization.

Objects that
are used are
INitialized.

Epilogue

e Place return value into slot
In frame.

e Restore registers. Sllioutige o0

e Restore PC to return
address.

Subroutine A

The University of North Carolina at Chapel Hill

Epilogue

e Place return value into slot
In frame.

e Restore registers. SlbiGedes

e Restore PC to return
address.

Return Value

Subroutine A

The University of North Carolina at Chapel Hill

s

Registers stored from
“fo0”’s subroutine are

ePlace return value into slo registered.
in frame.

Epilogue

e Restore registers. Sloiuiinadog

e Restore PC to return
address.

Siihrautine Bar
Return Value

Subroutine B

Subroutine A
(called from main)

The University of North Carolina at Chapel Hill

Epilogue The program resumes
from where It began.

e Place return value into slo
INn frame.

e Restore registers. Sllioutige o0

e Restore PC to return
address.

Siihrautine Bar
Return Value

Subroutine B

Subroutine A
(called from main)

The University of North Carolina at Chapel Hill

“Teardown”

e Move sp & fp (deallocate
frame)

e Move return values (if in SlbiGedes
registers)

Return Value

Subroutine A

The University of North Carolina at Chapel Hill

“Teardown”

e Move sp & fp (deallocate
frame)

e Move return values (if in
registers)

Return Value

Subroutine A

The University of North Carolina at Chapel Hill

“Teardown”

s

It the

e Move sp & fp (deallocate
frame)

e Move return values (if in
registers)

placec

return value was
IN a register, put

it

The University of North Carolina at Chapel Hill

n the stack.

Subrovtine Rar

Return Value
1

Subroutine B

Subroutine A

(called from main)
S —

Heap-based allocation

*|n heap-based allocation, objects may be allocated
and deallocated at arbitrary times.

e For example, objects created with C++ new and delete.

The University of North Carolina at Chapel Hill

Heap Space Management

*|n general, the heap is allocated sequentially.

e This creates fragmentation...

The University of North Carolina at Chapel Hill

Internal fragmentation

e Internal fragmentation is caused when extra space

within a single block is unused.
~ Used '

e

|Unused. "'k
The University of North Ca ll

Internal fragmentation

e Internal fragmentation is caused when extra space

within a single block is unused.
~ Used '

Caused by
fixed block
size.

~-

The University of North Carolina at Chapel Hill

External Fragmentation

e External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

The University of North Carolina at Chapel Hill

External Fragmentation

e External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

The University of North Carolina at Chapel Hill

External Fragmentation

e External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

The University of North Carolina at Chapel Hill

External Fragmentation

e External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

The University of North Carolina at Chapel Hill

External Fragmentation

e Externg : urs when there is sufficient
availab, Gaused by ject, but there is no single

block @ gaps ough.
between
contiguous
blocks
D allocated to
existing
objects.

The University of North Carolina at Chapel Hill

External Fragmentation

e May require heap compaction
* Combine in the heap by moving existing objects (expensive)

e Similar to defragmentation of a hard drive

The University of North Carolina at Chapel Hill

Heap Management

e Some languages (C & C++) require explicit heap
management...

e In C, malloc and free

e In C++, new and delete

e Fasy to forget free...

e Called a memory leak!

The University of North Carolina at Chapel Hill

Heap Management

e Some languages (Java) manage the heap for you
* new() object allocated on heap.

* when done, object is reclaimed.

e Automatic de-allocation after an object has no binding/
references is called garbage collection.

e Some runtime efficiency hit

e No memory leaks.

The University of North Carolina at Chapel Hill

Sample Memory Layout

Global

Code)| °°™' [Runtime
< - < =

|

0000 8024 6356 pP—ary
pc(3125) .&

sp(217560) ‘ Stack frame '

fo (218380)

