
The University of North Carolina at Chapel Hill

Lecture 7: Binding Time and Storage

COMP 524 Programming Language Concepts
Stephen Olivier
February 5, 2009

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goal of Lecture

•The Goal of this lecture is to discuss object binding and
memory management.

2

The University of North Carolina at Chapel Hill

High-Level Programming Languages

•High-Level Programming languages are defined by two
characteristics

• Machine “independence”

• Ease of programming

3

The University of North Carolina at Chapel Hill

Machine “Independence”

•With few exceptions, the code of a high-level
language can be compiled on any system

• For example cout << “hello world”<< endl; means the
same thing on any machine

•However, few languages are completely machine
independent.

•Generally, the more machine dependent a language is
the more “efficient” it is.

4

The University of North Carolina at Chapel Hill

Ease of Programming

5

Names

Control Flow

Types

Subroutines

Object Orientation

Concurrency

Declarative Programming

The University of North Carolina at Chapel Hill

Naming

•Naming is the process by which a programer associates
a name with a potentially complicated program
fragment.

• Purpose is to hide complexity.

• For example, to designate variables, types, classes, operators,
etc ...

6

The University of North Carolina at Chapel Hill

Naming

•Naming is the process by which a programer associates
a name with a potentially complicated program
fragment.

• Purpose is to hide complexity.

• For example, to designate variables, types, classes, operators,
etc ...

7

By naming an
object we
make an

abstraction

The University of North Carolina at Chapel Hill

Abstractions

•Control abstractions allows programs to “hide”
complex code behind simple interface

• Subroutines and functions

• Classes.

•Data abstraction allow the programer to hide data
representation details behind abstract operations

• Abstract Data Types (ADTs)

• Classes.

8

The University of North Carolina at Chapel Hill

Binding Time

•A binding is an association between any two things

• Name of an object and the object.

• A Dook student to a loosing basketball team.

•Binding Time is the time at which a binding is created.

9

The University of North Carolina at Chapel Hill

Binding Time

10

Language Design Time

Language Implementation Time

Program Writing Time

Compile Time

Link Time

Load Time

Run Time

In
cr

ea
si

ng
 F

le
xi

bi
lit

y
Increasing E

fficiency

The University of North Carolina at Chapel Hill

Object Lifetime

•Object lifetimes have two components

• Lifetime of the object.

• Lifetime of the binding.

•These two don’t necessarily correspond.

• For example in C++, when a variable is passed by “reference”,
i.e., using “&”, then the name of the object does not exist even
though the binding does.

• For example in C++, when the value pointed to by an object is
deleted the binding is gone before the object.

11

The University of North Carolina at Chapel Hill

Object Lifetimes

•Object Lifetimes correspond to three principal storage
allocation mechanisms,

• Static objects, which have an absolute address

• Stack objects, which are allocated and deallocated in a Last-
In First-Out (LIFO) order

• Heap objects, which are allocated and deallocated at arbitrary
times.

12

The University of North Carolina at Chapel Hill

Static Allocation

•Under static allocation, objects are given an absolute
address that is retained through the program’s execution

• e.g., global variables

13

Return Address

Arguments &
Returns

Misc.
Bookkeeping

Local Variables

Temps.

Return Address

Arguments &
Returns

Misc.
Bookkeeping

Local Variables

Temps.

Return Address

Arguments &
Returns

Misc.
Bookkeeping

Local Variables

Temps.

Subroutine 1 Subroutine 2 Subroutine X

. . .

The University of North Carolina at Chapel Hill

Stack Allocation

•Under stack-based allocation, objects are allocated in
a Last-In First-Out (LIFO) basis called a stack.

• e.g., recursive subroutine parameters.

14

Subroutine B

Subroutine A
(called from main)

Subroutine C

Subroutine D

Return Address

Misc.
Bookkeeping

Local Variables

Temps

Args to called
routines.

sp

fp

fp

S
ta

ck
 g

ro
w

th

The University of North Carolina at Chapel Hill

Stack Allocation

•Under stack-based allocation, objects are allocated in
a Last-In First-Out (LIFO) basis called a stack.

• e.g., recursive subroutine parameters.

15

Subroutine B

Subroutine A
(called from main)

Subroutine C

Subroutine D

Return Address

Misc.
Bookkeeping

Local Variables

Temps

Args to called
routines.

sp

fp

fp

S
ta

ck
 g

ro
w

th
fp is the “Frame Pointer”

sp is the “Stack Pointer”

The University of North Carolina at Chapel Hill

Calling Sequence

•On procedure call and return compilers generate code
that execute to manage the runtime stack.

• Setup at call to procedure foo(a,b).

• Prologue before foo code executes.

• Epilogue at the end of foo code.

• “Teardown” right after calling the code.

16

The University of North Carolina at Chapel Hill

Setup foo(a,b)

•Move sp to allocate a new stack frame

•Copy args a,b into frame

•Copy return address into frame

•Set fp to point to new frame

•Maintain static chain or display

•Move PC to procedure address

17

The University of North Carolina at Chapel Hill

Setup foo(a,b)

•Move sp to allocate a new
stack frame

•Copy args x,y into frame

•Copy return address into
frame

•Set fp to point to new frame

•Maintain static chain or
display

•Move PC to procedure
address

18

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

fp

The University of North Carolina at Chapel Hill

Setup foo(a,b)

•Move sp to allocate a new
stack frame

•Copy args x,y into frame

•Copy return address into
frame

•Set fp to point to new frame

•Maintain static chain or
display

•Move PC to procedure
address

19

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

fp

Subroutine foo

The University of North Carolina at Chapel Hill

Setup foo(a,b)

•Move sp to allocate a new
stack frame

•Copy args x,y into frame

•Copy return address into
frame

•Set fp to point to new frame

•Maintain static chain or
display

•Move PC to procedure
address

20

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

fp

Subroutine foo

x & y

The University of North Carolina at Chapel Hill

Setup foo(a,b)

21

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

x & y

•Move sp to allocate a new
stack frame

•Copy args x,y into frame

•Copy return address into
frame

•Set fp to point to new frame

•Maintain static chain or
display

•Move PC to procedure
address

Return Ad

Subroutine foo

fp

The University of North Carolina at Chapel Hill

Setup foo(a,b)

22

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

fp

x & y

Return Ad

Subroutine foo

•Move sp to allocate a new
stack frame

•Copy args x,y into frame

•Copy return address into
frame

•Set fp to point to new frame

•Maintain static chain or
display

•Move PC to procedure
address

The University of North Carolina at Chapel Hill

Setup foo(a,b)

23

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

A & B

Return Ad

Subroutine foo

•Move sp to allocate a new
stack frame

•Copy args x,y into frame

•Copy return address into
frame

•Set fp to point to new frame

•Maintain static chain or
display

•Move PC to procedure
address

fp

We’ll ignore
this for now

The University of North Carolina at Chapel Hill

Setup foo(a,b)

24

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

A & B

Return Ad

Subroutine foo

•Move sp to allocate a new
stack frame

•Copy args x,y into frame

•Copy return address into
frame

•Set fp to point to new frame

•Maintain static chain or
display

•Move PC to procedure
address

fp

This changes
where the code

is executed.

The University of North Carolina at Chapel Hill

Prologue

•Copy registers into local slots

•Object initialization.

25

The University of North Carolina at Chapel Hill

•Copy registers into local
slots

•Object initialization.

26

fp

Subroutine Bar

x & y

Return Ad

Prologue

The University of North Carolina at Chapel Hill

•Copy registers into local
slots

•Object initialization.

27

fp

Subroutine Bar

x & y

Return Ad

Prologue

Old fp

All old reg.

The University of North Carolina at Chapel Hill 28

fp

Subroutine Bar

x & y

Return Ad

Prologue

Old fp

All old reg.

•Copy registers into local
slots

•Object initialization.

Objects that
are used are

initialized.

The University of North Carolina at Chapel Hill

Epilogue

•Place return value into slot
in frame.

•Restore registers.

•Restore PC to return
address.

29

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

x & y

Return Ad

Subroutine foo
sp

fp

The University of North Carolina at Chapel Hill

Epilogue

•Place return value into slot
in frame.

•Restore registers.

•Restore PC to return
address.

30

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

x & y

Return Ad

Subroutine foo
sp

fp

Return Value

The University of North Carolina at Chapel Hill

Epilogue

•Place return value into slot
in frame.

•Restore registers.

•Restore PC to return
address.

31

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

x & y

Return Ad

Subroutine foo
sp

fp

Return Value

Registers stored from
“foo”’s subroutine are

registered.

The University of North Carolina at Chapel Hill

Epilogue

•Place return value into slot
in frame.

•Restore registers.

•Restore PC to return
address.

32

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

x & y

Return Ad

Subroutine foo
sp

fp

Return Value

The program resumes
from where it began.

The University of North Carolina at Chapel Hill

“Teardown”

33

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

x & y

Return Ad

Subroutine foo
sp

fp

Return Value

•Move sp & fp (deallocate
frame)

•Move return values (if in
registers)

The University of North Carolina at Chapel Hill

“Teardown”

•Move sp & fp (deallocate
frame)

•Move return values (if in
registers)

34

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

fp
Return Value

The University of North Carolina at Chapel Hill

“Teardown”

35

Subroutine B

Subroutine A
(called from main)

Subroutine Bar

sp

fp
Return Value

•Move sp & fp (deallocate
frame)

•Move return values (if in
registers)

If the return value was
placed in a register, put

it in the stack.

The University of North Carolina at Chapel Hill

Heap-based allocation

•In heap-based allocation, objects may be allocated
and deallocated at arbitrary times.

• For example, objects created with C++ new and delete.

36

The University of North Carolina at Chapel Hill

Heap Space Management

•In general, the heap is allocated sequentially.

•This creates fragmentation...

37

The University of North Carolina at Chapel Hill

Internal fragmentation

•Internal fragmentation is caused when extra space
within a single block is unused.

38

Used

Unused

The University of North Carolina at Chapel Hill

Internal fragmentation

•Internal fragmentation is caused when extra space
within a single block is unused.

39

Used

Caused by
fixed block

size.

The University of North Carolina at Chapel Hill

External Fragmentation

•External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

40

The University of North Carolina at Chapel Hill

External Fragmentation

•External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

41

The University of North Carolina at Chapel Hill

External Fragmentation

•External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

42

The University of North Carolina at Chapel Hill

External Fragmentation

•External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

43

The University of North Carolina at Chapel Hill

External Fragmentation

•External fragmentation occurs when there is sufficient
available space for a new object, but there is no single
block of free space large enough.

44

Caused by
gaps

between
contiguous

blocks
allocated to

existing
objects.

The University of North Carolina at Chapel Hill

External Fragmentation

•May require heap compaction

• Combine in the heap by moving existing objects (expensive)

• Similar to defragmentation of a hard drive

45

The University of North Carolina at Chapel Hill

Heap Management

•Some languages (C & C++) require explicit heap
management...

• In C, malloc and free

• In C++, new and delete

•Easy to forget free...

• Called a memory leak!

46

The University of North Carolina at Chapel Hill

Heap Management

•Some languages (Java) manage the heap for you

• new() object allocated on heap.

• when done, object is reclaimed.

•Automatic de-allocation after an object has no binding/
references is called garbage collection.

• Some runtime efficiency hit

• No memory leaks.

47

The University of North Carolina at Chapel Hill

Sample Memory Layout

48

pc 3125

sp 217560

fp 218380

0000 6024 6356 275000

Code

Global
const Runtime stack Heap

Stack frame

