
The University of North Carolina at Chapel Hill

Lecture 8: Scope, Symbol Table, & Runtime Stack

COMP 524 Programming Language Concepts
Stephen Olivier
February 10, 2008

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goal of Lecture

•Discuss scoping!

2

The University of North Carolina at Chapel Hill

Sample Memory Layout

3

pc 3125

sp 217560

fp 218380

0000 6024 6356 275000

Code

Global
const Runtime stack Heap

Stack frame

The University of North Carolina at Chapel Hill

Scope

•Scope is the textual region of a program in which
binding is active.

•Programming languages implement

• Static Scoping (or lexical): Active bindings are determined
using the text of the program at compile time

• Most recent scan of the program from top to bottom

• Closes nested subroutine rule.

• Dynamic Scoping: active bindings are determined by the flow
of execution at run time

•Current active binding called Referencing environment.
4

The University of North Carolina at Chapel Hill

Nest Subroutines

•Nest subroutines are able to access parameters and
local variables of the surrounding scope

5

procedure P1(A1);
var X : real;
procedure P2(A2);
procedure P3(A3);
X = 2;

end
end

end

The University of North Carolina at Chapel Hill

Nested Subroutines--Determining Scope

6

A

E

B

 D

C

A

E

B

 D

C
fp

Static
Links

Nesting

The University of North Carolina at Chapel Hill

Dynamic Scope

•Bindings between name
and objects depend on the
flow of control at run time

• the current binding is the one
found most recently during
execution.

7

a:int;

procedure first()
a:=1

procedure second()
a:int
first()

a:=2
if read_int() > 0
second()

else
first()

write_int(a)

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope

•Perl allows dynamic scope.

•If not declared otherwise, variables are dynamically
created, global, and persistent.

• Dynamic creation: Variables appear when referenced.

• Global: Variables can be referenced in any and all code written

• Persistent: Variables stay around until end of execution.

8

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope

9

$a = 1;
aFunc();
$d = $b+$c; #$d = 1 + 3 = 4

sub aFunc{
$b=$a;
$c=3;

}

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope

10

aFunc();

sub bFunc{
$c = $a;
#$c = 1 if run in or after aFunc

}

sub aFunc{
 $a = 1;
 bFunc();
}

The University of North Carolina at Chapel Hill

Perl

•“my $abc”

• Makes variable statically scoped

• Only available to this subroutine

• Not available to called subroutines or originating subroutines

• Destroyed when execution exits the block it is in.

11

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope (my)

12

$a = 1;
aFunc();
$d = $b+$c; #$d = undefined + undefined = 0

sub aFunc{
my($b, $c)
$b=$a;
$c=3;

}

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope (my)

13

aFunc();
sub bFunc{
$c = $a;
#$c is undefined no matter if it
#is run at or in bFunc

}

sub aFunc{
my($a);
$a = 1;
bFunc();

}

The University of North Carolina at Chapel Hill

Perl

•“local $var”

• Makes variable dynamically scoped

• “Temporary global”

• Available to called subroutines, but not available to originating
Subroutines

• Destroyed when execution exits current block

14

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope (local)

15

$a = 1;
aFunc();
$d = $b+$c; #$d = undefined + undefined = 0

sub aFunc{
local($b, $c)
$b=$a;
$c=3;

}

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope (local)

16

aFunc();
sub bFunc{
$c = $a;
#$c is undefined if bFunc is run
#after aFunc, but is 1 if run
#in $aFunc

}
sub aFunc{
local($a);
$a = 1;
bFunc();

}

The University of North Carolina at Chapel Hill

Lifetime vs Scope

•Some objects exist only when scope is active

•... however, this is not always the case.

17

class foo{
public static int sum = 0;
void vooDo(){ sum ++; }

}

//Where is sum? Its not active but it exists.
g1 = new foo;
g1.vooDo();

The University of North Carolina at Chapel Hill

Static Chain

•For finding non-local bindings at run-time

•Each frame contains a static chain pointer (SCP), a
pointer to the most recent frame on the next lexical level
out.

18

The University of North Carolina at Chapel Hill

Nested Subroutines--Determining Scope

19

A

E

B

 D

C

A

E

B

 D

C
fp

Static
Links

Nesting

SCPs

The University of North Carolina at Chapel Hill

Symbol Table

•In statically scoped languages, compilers keep track of
names using a data structure called a symbol table.

•The symbol table might be retained after compiling and
made available at runtime (e.g., for debugging)

20

Scope Level0 othertypename...

curLev

The University of North Carolina at Chapel Hill

Symbol Table

•In statically scoped languages, compilers keep track of
names using a data structure called a symbol table.

•The symbol table might be retained after compiling and
made available at runtime (e.g., for debugging)

21

Scope Level0 othertypename...

curLev

Maps names to info
about objects.

Just like a hash in Perl!

The University of North Carolina at Chapel Hill

Symbol Table: Simplified

• Seeing a new name during parsing makes several things happen.

1.addName to the ST

2.Is the name a new scope? addScope

a.New Scopes: Procedure/method names, nested blocks....

3.Nesting Level (Lexical level) is counted as parsing goes

4.Each Name is stored with its scope number

• Compiler keeps track of the lexical level in force when a name is
declared

• Multiple entries are made for a name in the hash table. .. A new
inner delectation “hides” an outer declaration.

22

The University of North Carolina at Chapel Hill

Sample Program

23

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

1

curLev

1 otherproc... sum

The University of North Carolina at Chapel Hill

Sample Program

24

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

2

curLev

1 otherproc... sum

2 otherproc... foo

2 otherint... x

2 otherint... k

The University of North Carolina at Chapel Hill

Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

3

curLev

1 otherproc... sum

2 otherproc... foo

2 otherint... x

2 otherint... k

3 otherreal... sum

3 retIntproc... inDo

The University of North Carolina at Chapel Hill

Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

4

curLev

1 otherproc... sum

2 otherproc... foo

2 otherint... x

2 otherint... k

3 otherreal... sum

3 retIntproc... inDo

4 otherint... sum

The University of North Carolina at Chapel Hill

Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

3

curLev

1 otherproc... sum

2 otherproc... foo

2 otherint... x

2 otherint... k

3 otherreal... sum

3 retIntproc... inDo

The University of North Carolina at Chapel Hill

Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

2

curLev

1 otherproc... sum

2 otherproc... foo

2 otherint... x

2 otherint... k

The University of North Carolina at Chapel Hill

Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

1

curLev

1 otherproc... sum

The University of North Carolina at Chapel Hill

Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

4

curLev

1 otherproc... sum

2 otherproc... foo

2 otherint... x

2 otherint... k

3 otherreal... sum

3 retIntproc... inDo

4 otherint... sum
The scope tells
you how many

static chain hops
you need to
make, i.e.,

Current scope
minus your

scope.

The University of North Carolina at Chapel Hill

Nested Subroutines--Determining Scope

31

A

E

B

 D

C

A

E

B

 D

C
fp

Static
Links

Nesting

If in C we used a
variable X declared

in A, then we
would have two

hops

The University of North Carolina at Chapel Hill

Nested Subroutines--Determining Scope

32

A

E

B

 D

C

A

E

B

 D

C
fp

Static
Links

Nesting

These hops are
known from the
symbol table.

The University of North Carolina at Chapel Hill

Nested Subroutines--Determining Scope

33

A

E

B

 D

C

A

E

B

 D

C
fp

Static
Links

Nesting

The problem is that at
run time this can require

n hops

The University of North Carolina at Chapel Hill

Display

•The display is a small
array that replaces the
static chain, where the
jth element of the
display contains a
pointer to the jth
nesting level.

3434

A

E

B

 D

C

Static
Links

fp

1 2 3

Display

Glob

The University of North Carolina at Chapel Hill

Display

•The display is a small
array that replaces the
static chain, where the
jth element of the
display contains a
pointer to the jth
nesting level.

3534

A

E

B

 D

C

Static
Links

fp

1 2 3

Display

Glob

The display is faster at
run time than static

chain, but requires a little
more work when entering
and leaving scope levels.

The University of North Carolina at Chapel Hill

Dynamic Chain

•Dynamic Chain Pointer (DCP)

•Shows sequence of stack frames in dynamic (call) order.

•Allows implementation of dynamic scope.

36

We’ll talk about this later!

The University of North Carolina at Chapel Hill

Static Scope: Modules

•Many Modern languages are more complicated in their
scope rules than PASCAL and C

•Modules are a means to explicitly manipulate scopes
and names visibility.

• e.g., Namespaces in C++ are modules.

•They are not nested in general

•Objects inside a module can see each other (subject to
normal lexical scoping)

•Objects outside...able to see in?

37

The University of North Carolina at Chapel Hill

Modules

38

namespace fooSpace{
int bar;

}

void main(){
bar = 3; //WRONG!!!
fooSpace.bar = 3; //RIGHT!!!

}

The University of North Carolina at Chapel Hill

Module as manager & as Type

•Two ways to view a module:

• Module-as-manager means that the module acts as a
collection of objects.

• e.g., namespaces in C++

• Module-as-type means that the module acts an object type
that can have multiple object instances.

• e.g., classes in C++.

39

The University of North Carolina at Chapel Hill

Module as manager & as Type

40

namespace fooSpace{
int bar;

}

void main(){
fooSpace.bar = 3;

}

class fooClass{
public:
int bar;

}

void main(){
fooClass qud,zod;
qud.bar = 3;
zod.bar = 4;

}

The University of North Carolina at Chapel Hill

Import/Export

•Objects in a module are not visible outside unless
exported.

• e.g., In C++ classes, objects are exported via “public”

•In some languages, Objects outside are not visible
inside the module unless imported.

• e.g., in C++ classes & namespaces, objects are imported via
“.” as in “namespacename.variable” or “using namespace
namespacename”

•Bindings made in a module are inactive outside, but
not gone.

41

The University of North Carolina at Chapel Hill

Modules

42

namespace fooSpace{
int bar;

}

void main(){
bar = 3; //WRONG!!!
fooSpace.bar = 3; //RIGHT!!!

}

The University of North Carolina at Chapel Hill

Open Scope vs. Closed

•Open scope: Names do not have to be imported
explicitly to be visible.

• For example, Nested subroutines in Pascal

• We can see the names in outer lexical scopes without having to
ask for the ability.

•Closed scope: Names must be imported explicitly to
be visible

• Modules in C++, Perl, etc...

43

The University of North Carolina at Chapel Hill

Open Scope vs. Closed

44

namespace fooSpace{
int bar;

}

void main(){
fooSpace.bar = 3;

}

sub foo()
a:int;

sub bar()
a = 2

end
end

The University of North Carolina at Chapel Hill

Referencing in Modules

•We need a more complicated symbol table to
generate code for non-local referencing at run-time

•Seeing a new name during parsing makes several things
happen.

• Scopes are counted and numbered serially

• Nesting level is also counted implicitly: scope stack

45

The University of North Carolina at Chapel Hill

Scope Stack Example: Code

46

type T = record F1:int; F2:real; end;
Var V:T;
Module M;
export I; import V;
var I : int;
proc P1(A1:real, A2:int):real
END-P1

proc P2(A3:real);
var I: int;
with V DO... END;

END-P2;
END-M;

1

2

3

4

5

The University of North Carolina at Chapel Hill

Scope Stack Example: Symbol Table

47

3procX P2 X parameters

Hash
 Link

Name
Category

Scope
Ty

pe
Oth

er

5ParaX A3 XXXXX

3ModX M X XXXXX

0typeX real X XXXXX

The University of North Carolina at Chapel Hill

Scope Stack

•A scope stack indicates the order and scopes that
compose the current referencing environment.

4851

2 rec v

5

3 X

1

Scope
Close

d?

Oth
er

with v

P2

M

Global

The University of North Carolina at Chapel Hill

Scope Stack Example: Code

49

type T = record F1:int; F2:real; end;
Var V:T;
Module M;
export I; import V;
var I : int;
proc P1(A1:real, A2:int):real
END-P1

proc P2(A3:real);
var I: int;
with V DO... END;

END-P2;
END-M;

1

2

3

4

5

Lets look at this line

The University of North Carolina at Chapel Hill

Scope Stack With Symbol Table

50

4paraA2 (1) XXXXX

2fieldF2 (2) XXXXX

5typeX T X Record 2

3varV X import

1varV XXX

2 rec v

5

3 X

1

Scope
Close

d?

Oth
er

with v

P2

M

Global

The University of North Carolina at Chapel Hill

When a name is seen (parsing)

•When a name is seen during parsing

• If it’s a declaration -- hash name and create new entry

• If it’s a new scope -- push onto scope stack.

• If it’s a reference -- look up, then scan down the scope stack
to see if the scope of the name is visible.

• If it’s a module -- begin making new entries for the imported
names

•When a name is looked up.

• Hash the name in the table to get entry

• Hops... stack depth - level where name’s scope is found on.

51

The University of North Carolina at Chapel Hill

Binding within a Scope: Aliasing

•Aliasing: two names refer to a single object.

• What are aliases good for? (Absolutely nothing? No!!)

• space saving

• linked data structures

• Also, aliases arise in parameter passing as an unfortunate side
effect.

52

double sum, sum_squares;
void acc(double &x){
sum += x;
sum_squares += x*x;

}
acc(sum);

The University of North Carolina at Chapel Hill

Binding within a Scope

•Aliasing: two names refer to single objects.

• What are aliases good for? (Absolutely nothing? No!!)

• space saving

• linked data structures

• Also, aliases arise in parameter passing as an unfortunate side
effect.

53

double sum, sum_squares;
void acc(double &x){
sum += x;
sum_squares += x*x;

}
acc(sum);

Since x is passed by reference, this
adds the value to sum, then takes
the new value and squares that!

The University of North Carolina at Chapel Hill

Binding within a Scope: Overloading & Coercion

•Overloading

• Overloaded names can refer to more than one object in a given
scope

• Some overloading happens in almost all languages

• Typical for arithmetic operators for numerical types

•Coercion

• Compiler converts types automatically as required by context

•Overloading and coercion are prominent in C++

54

The University of North Carolina at Chapel Hill

Polymorphism

•Single subroutine accepts unconverted arguments of
unconverted types

•Subtype polymorphism

• Commonly paired with inheritance in OO languages

•Parametric polymorphism

• Explicit (genericity): programmer specifies type in “metadata”

• C++ templates and Java (v. 5+) generics

• Implicit: type inferred by compiler or interpreter

55

The University of North Carolina at Chapel Hill

Overloading vs Genericity

•Overloading in C++ requires multiple functions

•Genericity in C++ using a single function template:

56

int min (int a, int b)
 { return ((a < b) ? a : b); }

float min (float a, float b)
 { return ((a < b) ? a : b); }

template <class T>
T min (T a, T b) { return ((a < b) ? a : b); }

