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Goal of Lecture

•Discuss scoping! 
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Sample Memory Layout
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Scope

•Scope is the textual region of a program in which 
binding is active.

•Programming languages implement

• Static Scoping (or lexical): Active bindings are determined 
using the text of the program at compile time

• Most recent scan of the program from top to bottom

• Closes nested subroutine rule.

• Dynamic Scoping: active bindings are determined by the flow 
of execution at run time

•Current active binding called Referencing environment. 
4
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Nest Subroutines

•Nest subroutines are able to access parameters and 
local variables of the surrounding scope
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procedure P1(A1);
var X : real;
procedure P2(A2);
procedure P3(A3);
X = 2;

end
end

end



The University of North Carolina at Chapel Hill  

Nested Subroutines--Determining Scope

6

A

E

B

 D

C

A

E

B

 D

C
fp

Static
Links

Nesting



The University of North Carolina at Chapel Hill  

Dynamic Scope

•Bindings between name 
and objects depend on the 
flow of control at run time

• the current binding is the one 
found most recently during 
execution. 
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a:int;

procedure first()
a:=1

procedure second()
a:int
first()

a:=2
if read_int() > 0
second()

else
first()

write_int(a)
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Perl and Dynamic Scope

•Perl allows dynamic scope.

•If not declared otherwise, variables are dynamically 
created, global, and persistent.

• Dynamic creation: Variables appear when referenced.

• Global: Variables can be referenced in any and all code written

• Persistent: Variables stay around until end of execution. 

8
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Perl and Dynamic Scope

9

$a = 1;
aFunc();
$d = $b+$c; #$d = 1 + 3 = 4

sub aFunc{
$b=$a;
$c=3;

}
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Perl and Dynamic Scope
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aFunc();

sub bFunc{
$c = $a; 
#$c = 1 if run in or after aFunc

}

sub aFunc{
  $a = 1;
  bFunc();
}
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Perl

•“my $abc”

• Makes variable statically scoped

• Only available to this subroutine

• Not available to called subroutines or originating subroutines

• Destroyed when execution exits the block it is in.

11
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Perl and Dynamic Scope (my)
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$a = 1;
aFunc();
$d = $b+$c; #$d = undefined + undefined = 0

sub aFunc{
my($b, $c)
$b=$a;
$c=3;

}
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Perl and Dynamic Scope (my)
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aFunc();
sub bFunc{
$c = $a; 
#$c is undefined no matter if it 
#is run at or in bFunc

}

sub aFunc{
my($a);
$a = 1;
bFunc();

}
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Perl

•“local $var”

• Makes variable dynamically scoped

• “Temporary global”

• Available to called subroutines, but not available to originating 
Subroutines

• Destroyed when execution exits current block

14
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Perl and Dynamic Scope (local)
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$a = 1;
aFunc();
$d = $b+$c; #$d = undefined + undefined = 0

sub aFunc{
local($b, $c)
$b=$a;
$c=3;

}
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Perl and Dynamic Scope (local)
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aFunc();
sub bFunc{
$c = $a; 
#$c is undefined if bFunc is run 
#after aFunc, but is 1 if run 
#in $aFunc

}
sub aFunc{
local($a);
$a = 1;
bFunc();

}
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Lifetime vs Scope

•Some objects exist only when scope is active

•... however, this is not always the case.
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class foo{
public static int sum = 0;
void vooDo(){ sum ++; }

}

//Where is sum? Its not active but it exists.
g1 = new foo;
g1.vooDo();
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Static Chain

•For finding non-local bindings at run-time

•Each frame contains a static chain pointer (SCP), a 
pointer to the most recent frame on the next lexical level 
out. 

18
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Nested Subroutines--Determining Scope
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Symbol Table

•In statically scoped languages, compilers keep track of 
names using a data structure called a symbol table.

•The symbol table might be retained after compiling and 
made available at runtime (e.g., for debugging)

20

Scope Level0 othertypename...

curLev
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Symbol Table

•In statically scoped languages, compilers keep track of 
names using a data structure called a symbol table.

•The symbol table might be retained after compiling and 
made available at runtime (e.g., for debugging)
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Scope Level0 othertypename...

curLev

Maps names to info 
about objects.

Just like a hash in Perl!
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Symbol Table: Simplified

• Seeing a new name during parsing makes several things happen.

1.addName to the ST

2.Is the name a new scope? addScope

a.New Scopes: Procedure/method names, nested blocks....

3.Nesting Level (Lexical level) is counted as parsing goes

4.Each Name is stored with its scope number

• Compiler keeps track of the lexical level in force when a name is 
declared

• Multiple entries are made for a name in the hash table. .. A new 
inner delectation “hides” an outer declaration. 

22
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Sample Program

23

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

1

curLev

1 otherproc... sum
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Sample Program

24

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

2

curLev

1 otherproc... sum

2 otherproc... foo

2 otherint... x

2 otherint... k
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Sample Program
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Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}
}

}

4

curLev

1 otherproc... sum

2 otherproc... foo

2 otherint... x

2 otherint... k

3 otherreal... sum

3 retIntproc... inDo

4 otherint... sum
The scope tells 
you how many 

static chain hops 
you need to 
make, i.e., 

Current scope 
minus your 

scope. 
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Nested Subroutines--Determining Scope
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Nested Subroutines--Determining Scope
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These hops are 
known from the 
symbol table.
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Nested Subroutines--Determining Scope

33

A

E

B

 D

C

A

E

B

 D

C
fp

Static
Links

Nesting

The problem is that at 
run time this can require 
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Display

•The display is a small 
array that replaces the 
static chain, where the 
jth element of the 
display contains a 
pointer to the jth 
nesting level. 

3434
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Display

•The display is a small 
array that replaces the 
static chain, where the 
jth element of the 
display contains a 
pointer to the jth 
nesting level. 
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The display is faster at 
run time than static 

chain, but requires a little 
more work when entering 
and leaving scope levels.
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Dynamic Chain

•Dynamic Chain Pointer (DCP)

•Shows sequence of stack frames in dynamic (call) order.

•Allows implementation of dynamic scope. 

36

We’ll talk about this later!



The University of North Carolina at Chapel Hill  

Static Scope: Modules

•Many Modern languages are more complicated in their 
scope rules than PASCAL and C

•Modules are a means to explicitly manipulate scopes 
and names visibility. 

• e.g., Namespaces in C++ are modules.

•They are not nested in general

•Objects inside a module can see each other (subject to 
normal lexical scoping)

•Objects outside...able to see in?

37
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Modules

38

namespace fooSpace{
int bar;

}

void main(){
bar = 3; //WRONG!!!
fooSpace.bar = 3; //RIGHT!!!

}
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Module as manager & as Type

•Two ways to view a module:

• Module-as-manager means that the module acts as a 
collection of objects.

• e.g., namespaces in C++

• Module-as-type means that the module acts an object type 
that can have multiple object instances.

• e.g., classes in C++.

39
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Module as manager & as Type

40

namespace fooSpace{
int bar;

}

void main(){
fooSpace.bar = 3; 

}

class fooClass{
public:
int bar;

}

void main(){
fooClass qud,zod;
qud.bar = 3;
zod.bar = 4;

}
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Import/Export

•Objects in a module are not visible outside unless 
exported.

• e.g., In C++ classes, objects are exported via “public”

•In some languages, Objects outside are not visible 
inside the module unless imported.

• e.g., in C++ classes & namespaces, objects are imported via 
“.” as in “namespacename.variable” or “using namespace 
namespacename”

•Bindings made in a module are inactive outside, but 
not gone.

41
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Modules
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namespace fooSpace{
int bar;

}

void main(){
bar = 3; //WRONG!!!
fooSpace.bar = 3; //RIGHT!!!

}
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Open Scope vs. Closed

•Open scope: Names do not have to be imported 
explicitly to be visible.

• For example, Nested subroutines in Pascal

• We can see the names in outer lexical scopes without having to 
ask for the ability. 

•Closed scope: Names must be imported explicitly to 
be visible

• Modules in C++, Perl, etc... 

43
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Open Scope vs. Closed
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namespace fooSpace{
int bar;

}

void main(){
fooSpace.bar = 3; 

}

sub foo()
a:int;

sub bar()
a = 2

end
end
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Referencing in Modules

•We need a more complicated symbol table to 
generate code for non-local referencing at run-time

•Seeing a new name during parsing makes several things 
happen.

• Scopes are counted and numbered serially

• Nesting level is also counted implicitly: scope stack

45
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Scope Stack Example: Code
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type T = record F1:int; F2:real; end;
Var V:T;
Module M;
export I; import V;
var I : int;
proc P1(A1:real, A2:int):real
END-P1

proc P2(A3:real);
var I: int;
with V DO... END;

END-P2;
END-M;

1

2

3

4

5
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Scope Stack Example: Symbol Table

47

3procX P2 X parameters

Hash
 Link

Name
Category

Scope
Ty

pe
Oth

er

5ParaX A3 XXXXX

3ModX M X XXXXX

0typeX real X XXXXX
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Scope Stack

•A scope stack indicates the order and scopes that 
compose the current referencing environment.

4851

2 rec v

5

3 X
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Scope Stack Example: Code

49

type T = record F1:int; F2:real; end;
Var V:T;
Module M;
export I; import V;
var I : int;
proc P1(A1:real, A2:int):real
END-P1

proc P2(A3:real);
var I: int;
with V DO... END;

END-P2;
END-M;

1

2

3

4

5

Lets look at this line
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Scope Stack With Symbol Table

50

4paraA2 (1) XXXXX

2fieldF2 (2) XXXXX

5typeX T X Record  2

3varV X import

1varV XXX

2 rec v

5

3 X

1

Scope
Close

d?

Oth
er

with v

P2

M

Global
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When a name is seen (parsing)

•When a name is seen during parsing

• If it’s a declaration -- hash name and create new entry

• If it’s a new scope -- push onto scope stack.

• If it’s a reference -- look up, then scan down the scope stack 
to see if the scope of the name is visible. 

• If it’s a module -- begin making new entries for the imported 
names

•When a name is looked up.

• Hash the name in the table to get entry

• Hops... stack depth - level where name’s scope is found on. 

51
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Binding within a Scope: Aliasing

•Aliasing: two names refer to a single object.

• What are aliases good for? (Absolutely nothing? No!!)

• space saving

• linked data structures

• Also, aliases arise in parameter passing as an unfortunate side 
effect. 

52

double sum, sum_squares;
void acc(double &x){
sum += x;
sum_squares += x*x;

}
acc(sum);
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Binding within a Scope

•Aliasing: two names refer to single objects.

• What are aliases good for? (Absolutely nothing? No!!)

• space saving

• linked data structures

• Also, aliases arise in parameter passing as an unfortunate side 
effect. 
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double sum, sum_squares;
void acc(double &x){
sum += x;
sum_squares += x*x;

}
acc(sum);

Since x is passed by reference, this 
adds the value to sum, then takes 
the new value and squares that!
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Binding within a Scope: Overloading & Coercion

•Overloading

• Overloaded names can refer to more than one object in a given 
scope

• Some overloading happens in almost all languages

• Typical for arithmetic operators for numerical types

•Coercion

• Compiler converts types automatically as required by context

•Overloading and coercion are prominent in C++

54
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Polymorphism

•Single subroutine accepts unconverted arguments of 
unconverted types

•Subtype polymorphism

• Commonly paired with inheritance in OO languages

•Parametric polymorphism

• Explicit (genericity): programmer specifies type in “metadata”

• C++ templates and Java (v. 5+) generics

• Implicit: type inferred by compiler or interpreter

55
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Overloading vs Genericity

•Overloading in C++ requires multiple functions

•Genericity in C++ using a single function template:

56

int min (int a, int b) 
  { return ( (a < b) ? a : b ); }

float min (float a, float b) 
  { return ( (a < b) ? a : b ); }

template <class T>
T min (T a, T b) { return ( (a < b) ? a : b ); }


