Lecture 8: Scope, Symbol Table, & Runtime Stack

COMP 524 Programming Language Concepts
Stephen Olivier
February 10, 2008

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hil ||

Goal of Lecture

® Discuss scoping!

The University of North Carolina at Chapel Hill

Sample Memory Layout

Global

onSt Runtime Heap
« =

oooo ‘024 6356 —_— 2

pc(3125)

sp(217560) ‘ Stack frame '

fo (218380)

Scope

e Scope is the textual region of a program in which
binding Is active.

* Programming languages implement

e Static Scoping (or lexical): Active bindings are determined
using the text of the program at compile time

e Most recent scan of the program from top to bottom

¢ Closes nested subroutine rule.

e Dynamic Scoping: active bindings are determined by the flow
of execution at run time

e Current active binding called Referencing environment.

The University of North Carolina at Chapel Hill

Nest Subroutines

* Nest subroutines are able to access parameters and
local variables of the surrounding scope

p
procedure P1(Al);

var X : real;
procedure P2(A2);
procedure P3(A3);
X = 2;
end
end
end

The University of North Carolina at Chapel Hill

Nested Subroutines--Determining Scope

Nesting

(fp)

C
B

D

Dynamic Scope

-
a.int;

procedure first()

* Bindings between name
and objects depend on the
flow of control at run time

e the current binding is the one
found most recently during
execution.

a.=1

procedure second()
a:int
first()

a:.=2

1f read_int() > 0
second()

else

first()
write_int(a)

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope

e Per| allows dynamic scope.

e |f not declared otherwise, variables are dynamically
created, global, and persistent.

e Dynamic creation: Variables appear when referenced.
e Global: Variables can be referenced in any and all code written

e Persistent: Variables stay around until end of execution.

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope

p
$a = 1;
aFunc(Q);
$d = $b+%c; #%d =1 + 3 = 4

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope

/aFunc();

sub bFunc{
$c = $a;

=1 1f run in or after aFunc

The University of North Carolina at Chapel Hill

Perl

PY umy $abCu

e Makes variable statically scoped
e Only available to this subroutine
* Not available to called subroutines or originating subroutines

¢ Destroyed when execution exits the block it is in.

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope (my)

p
$a = 1;
aFunc();
$d = $b+$c; #%$d = undefined + undefined = 0@

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope (my)

p
aFunc();

sub bFunc{
$c = $a;
#%c is undefined no matter if it
#1s run at or in bFunc

;

Perl

¢“local $var”

e Makes variable dynamically scoped
* “Temporary global”

¢ Available to called subroutines, but not available to originating
Subroutines

e Destroyed when execution exits current block

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope (local)

p
$a = 1;
aFunc();
$d = $b+$c; #%$d = undefined + undefined = 0@

The University of North Carolina at Chapel Hill

Perl and Dynamic Scope (local)

p
aFunc();

sub bFunc{
$c = $a;
#$c is undefined if bFunc is run
#after aFunc, but 1is 1 1f run
#in $aFunc

e

The University of North Carolina at Chapel Hill

Lifetime vs Scope

e Some objects exist only when scope is active

e .. however, this is not always the case.

-

class foo{
public static int sum = 0;
void vooDo(){ sum ++; }

ks

//Where 1s sum? Its not active but i1t exists.
gl = new foo;
gl.vooDo();

Static Chain

e For finding non-local bindings at run-time

e Each frame contains a static chain pointer (SCP), a
pointer to the most recent frame on the next lexical level
Out.

The University of North Carolina at Chapel Hill

Nested Subroutines--Determining Scope

Nesting

Symbol Table

¢ |n statically scoped languages, compilers keep track of
names using a data structure called a symbol table.

* The symbol table might be retained after compiling and
made available at runtime (e.g., for debugging)

Symbol Tahle

*|n stati I\/Iaps nameg to Info keep track of
names about objects. bol table.
ging)

Symbol Table: Simplified

e Seeing a new name during parsing makes several things happen.
1.addName to the ST
2.ls the name a new scope? addScope
a.New Scopes: Procedure/method names, nested blocks....
3.Nesting Level (Lexical level) is counted as parsing goes
4.Each Name is stored with its scope number

e Compiler keeps track of the lexical level in force when a name is
declared

e Multiple entries are made for a name in the hash table. .. A new
iInner delectation “hides” an outer declaration.

The University of North Carolina at Chapel Hill

Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

The University of North Carolina at Chapel Hill

Sample Program

y-

proc sum(int x){
int k = 0;

2

curLev

proc foo()1{
real sum = 0.0;

proc inDo(int sum){
return sum * Xx;

¥

Sample Program

y-

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * Xx;

¥

3

curLev

other

other

other

other

retint

Sample Program

-

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * Xx;

¥

4

curLev

other

other

other

other

other

retint

Sample Program

y-

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * x;

}

2]

curLev

other

other

other

other

retint

Sample Program

y-

proc sum(int x){ [::]
int k = 0;

curLev

proc foo(){
real sum = 0.0;

proc inDo(int sum){
return sum * Xx;

}

Sample Program

proc sum(int x){
int k = 0;

proc foo(){
real sum = 0.0;

The University of North Carolina at Chapel Hill

he scope tells
you how many

static chain hops

you need to
make, I.e.,

Current scope
minus your
scope.

4

curLev

other

other

other

other

other

retint

Nested Subroutines--Determining Scope

Nesting

If in C we used a
variable X declared
N A, then we
would have two

hops

Nested Subroutines--Determining Scope

Nesting

(fp)

C

These hops are

known from the
symbol table.

Nested Subroutines--Determining Scope

Nesting

(fp)

The problem is that at
run time this can require
n hops

->

Display

* The display is a small
array that replaces the
static chain, where the
jth element of the
display contains a
pointer to the jth
nesting level.

The University of North Carolina 4

The display is faster at
run time than static

e The display is a small chain, but requires a little
array that replaces the more work when entering

static chain, where the d| , | |
jth element of the ana leaving scope Ievels.

Display

display contains a
pointer to the jth .

nesting level. >

The University of North Carolina 4

Dynamic Chain

e Dynamic Chain Pointer (DCP)
e Shows sequence of stack frames in dynamic (call) order.

e Allows implementation of dynamic scope.

/

We'll talk about this later!

The University of North Carolina at Chapel Hill

Static Scope: Modules

e Many Modern languages are more complicated in their
scope rules than PASCAL and C

* Modules are a means to explicitly manipulate scopes
and names visibility.

® e.g., Namespaces in C++ are modules.
* They are not nested in general

e Objects inside a module can see each other (subject to
normal lexical scoping)

e Objects outside...able to see in?

The University of North Carolina at Chapel Hill

-

namespace fooSpace{
int bar;

}

The University of North Carolina at Chapel Hill

Module as manager & as Type

e Two ways to view a module:

* Module-as-manager means that the module acts as a
collection of objects.

* e.g., namespaces in C++

e Module-as-type means that the module acts an object type
that can have multiple object instances.

® e.g., classes in C++.

The University of North Carolina at Chapel Hill

Module as manager & as Type

4 4

namespace fooSpaceq class foo(Class{
int bar; public:

1 int bar;

ks

void main(){

fooSpace.bar = 3; void main(){
} fooClass qud,zod;

qud.bar = 3;
zod.bar = 4;

¥

The University of North Carolina at Chapel Hill

Import/Export

e Objects in a module are not visible outside unless
exported.

¢ e.g., In C++ classes, objects are exported via “public”

*|In some languages, Objects outside are not visible
iInside the module unless imported.

®e.g., in C++ classes & namespaces, objects are imported via
“.” as In “namespacename.variable” or “using namespace
namespacename”

e Bindings made in a module are inactive outside, but
not gone.

The University of North Carolina at Chapel Hill

-

namespace fooSpace{
int bar;

}

The University of North Carolina at Chapel Hill

Open Scope vs. Closed

e Open scope: Names do not have to be imported
explicitly to be visible.

* For example, Nested subroutines in Pascal

* \We can see the names in outer lexical scopes without having to
ask for the ability.

¢ Closed scope: Names must be imported explicitly to
be visible

e Modules in C++, Perl, etc...

The University of North Carolina at Chapel Hill

Open Scope vs. Closed

4 4

sub foo() namespace fooSpace{
int bar;

¥

The University of North Carolina at Chapel Hill

Referencing in Modules

¢\We need a more complicated symbol table to
generate code for non-local referencing at run-time

® Seeing a new name during parsing makes several things
happen.

e Scopes are counted and numbered serially

e Nesting level is also counted implicitly: scope stack

The University of North Carolina at Chapel Hill

Scope Stack Example: Code

-

(;ype T = record Fl:int; F2:real; end;
Var V:T;
(Module M;

export I; import V;

var I : 1int;

proc P1(Al:real, AZ2:1nt):real
END-P1

proc P2(A3:real);
var I: 1int;
with V DO... END;

END-P2Z;

END-M;

_

Scope Stack Example: Symbol Table

—

N
&
&

.\<\‘1’
A"
<&

é‘b

&

&

8

(]

c.,OoQ &*Q

(]

X
&

P2

proc

3

X

parameters \

M

Mod

X

XXXXX

X

real

type

A= B ialiValdaliaValalill i\ lalzial @M= 17allial- =)l G al= 1aT=) = i

Scope Stack

e A scope stack indicates the order and scopes that
compose the current referencing environment.

The University of North Carolina at Chapel Hill

Scope Stack Example: Code

v

[type (| ets look at this line

Var
(Module™W®

export I; 1import ';

var I : 1int;

-

. END-P1
proc P2(A3:real

proc P1(Al:rea. 'Z:int):r'eal
),

V DO... END;
END—M;

_

Scope Stack With Symbol Table

(1)] XXXXX

2 XXXXX

Lb(Record 2

III Hal=S B ialValdaliaVilatil\\lalaiali @1l a1l G ale TaT= = Il

When a name Is seen (parsing)

*\When a name is seen during parsing
e |f it’s a declaration -- hash name and create new entry
e |f it’s a new scope -- push onto scope stack.

e |f it’'s a reference -- look up, then scan down the scope stack
to see if the scope of the name is visible.

e |f it’'s a module -- begin making new entries for the imported
names

*\When a name is looked up.
* Hash the name in the table to get entry

e Hops... stack depth - level where name’s scope is found on.

The University of North Carolina at Chapel Hill

Binding within a Scope: Aliasing

e Aliasing: two names refer to a single object.

e What are aliases good for? (Absolutely nothing? No!!)
® space saving
e linked data structures

¢ Also, aliases arise in parameter passing as an unfortunate side
effect.

/50ub1e sum, sum_squares;
vold acc(double &x){
sum += X;
sum_squares += x*x;

¥

acc(sum);

The Univers

-~

Bindi Since X Is passed by reference, this
- Aliag @dds the value to sum, then takes
.w the new value and squares that!

¢ Space saving

¢ inked data structures

¢ Also, aliases arise in pa! er passing as an unfortunate side
effect.

-

acc(double &x)
sum += X;
sum_squares += x*x;

The Univers

Binding within a Scope: Overloading & Coercion

e Overloading

e Overloaded names can refer to more than one object in a given
scope

e Some overloading happens in almost all languages
e Typical for arithmetic operators for numerical types
e Coercion

e Compiler converts types automatically as required by context

e Overloading and coercion are prominent in C++

The University of North Carolina at Chapel Hill

Polymorphism

* Single subroutine accepts unconverted arguments of
unconverted types

e Subtype polymorphism
e Commonly paired with inheritance in OO languages
e Parametric polymorphism
e Explicit (genericity): programmer specifies type in “metadata”
e C++ templates and Java (v. 5+) generics

e Implicit: type inferred by compiler or interpreter

The University of North Carolina at Chapel Hill

Overloading vs Genericity

e Overloading in C++ requires multiple functions

p
int min (1int a, int b)

{ return ((a <b) 27a : b); }

float min (float a, float b)
{ return ((a<b) 27a : b); }

e Genericity in C++ using a single function template:
p
template <class T>

T min (Ta, Tb) { return C (a<b) 2a : b); }

The University of North Carolina at Chapel Hill

