Lecture 9: Parameter Passing, Generics and
Polymorphism, Exceptions

COMP 524 Programming Language Concepts
Stephen Olivier
February 12, 2008

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hil ||

Parameter Passing

e Pass-by-value: Input parameter

e Pass-by-result: Output parameter

e Pass-by-value-result: Input/output parameter

e Pass-by-reference: Input/output parameter, no copy

e Pass-by-name: Effectively textual substitution

The University of North Carolina at Chapel Hill

Pass-by-value

p
int m=8, 1=5;
foo(m);

print m; # print 8

The University of North Carolina at Chapel Hill

Pass-by-reference

p
int m=8§;
foo(m);
print m; # print 13

The University of North Carolina at Chapel Hill

Pass-by-value-result

p
int m=8§;
foo(m);
print m; # print 13

The University of North Carolina at Chapel Hill

Pass-by-name

* Arguments passed by name are re-evaluated in the
caller’s referencing environment every time they are
used.

* They are implemented using a hidden-subroutine,
known as a thunk.

® This is a costly parameter passing mechanism.

e Think of it as an in-line substitution (subroutine code put
iIn-line at point of call, with parameters substituted).

e Or, actual parameters substituted textually in the
subroutine body for the formulas.

The University of North Carolina at Chapel Hill

Pass-by-name

-
array A[1..100] of 1int;
int 1=5;

foo(A[1], 1);

print A[1]; #print A[6]=7

#GO0D example

proc foo(name B, name k){
k=0;
B=/;

3

#text sub does this
proc foo{

1=0;

A[1]=7;

¥
N—

-

array A[1l..100] of 1int;
int 1=5;

foo(A[1]);

print A[1]; #print A[5]=7?7

#BAD Example

proc foo(name B){
int 1=2;
B=/;

3

#text sub does this
proc foo{

int 1=2;

A[1]=7;
b

.
(‘k

. y= Y 3z2-5x+2 Pass-by-name

1<z<10

e Evaluate

N\

*|n pass-by-name: [y =sum(3-z-x—5-z+2,z,1, 10))

‘real proc sum(expr, 1, low, high);
value low, high;
real expr;
integer 1,low,high;
begin
real rtn;
rtn := 0;
for 1:= low step 1 until high do
rth := rtn + expr,
sum:=rtn
end sum;

.

Ada

e in is call-by-value
e out is call-by-result

*in out is call-by-value/result

® Pass-by-value is expensive for complex types, so it can
be implemented by passing either values or references

* However, programs can have different semantics with
two solutions

e This is “erroneous” in Ada.

The University of North Carolina at Chapel Hill

Ada Example

/type t 1s record
a,b :integer;

end record;

r. t;

procedure foo(s:in out t) 1s
begin

r.a :=r.a+ 1;

s.a :=s.a + 1;
end foo;

r.a :=3;
foo(r);
put(r.a); --does this print 4 or 5?7

Summary

Implementatio | permissible

:) Changes to actual?
n mechanism Operations

value Value read, write no

in, const Val or ref read only no

out (Ada) Val or ref write only

value/result Va| read, write

var, ref Ref Read, write

sharing val or ref | Read, write

in out (Ada)| valorref | Read, write

Name (Algo 60) | Closure (thunk) [Read, write

Other Parameter Passing Features

e \ariable length parameter lists

e flexible in C using “...”

e C++, C#, Java require that all are the same type
e Named parameters

e Eliminates requirement for programmer to match the order of
formal parameters to the order of actual parameters

e Default parameters

e Default value provided in the definition of the subroutine

The University of North Carolina at Chapel Hill

Return Values

e Allow return values of complex types?

e Some restrict to primitive types and pointers

e Allow subroutine closures to be returned?

¢ A closure bundles a reference to a subroutine and a referencing
environment

¢ Available in some imperative languages

e C instead allows function pointers to be returned

The University of North Carolina at Chapel Hill

Return Values

e How to specify the return value?

e Fortran, Algol, Pascal: same name as the function name

" function add_five (valuel : integer) : 1integer;
begin

add_five := valuel + 5;
end;

e C, C++, Java: return statement

e Other languages: name for function result provided in header

procedure a () returns retvar : int
retval := 5;

Exception Handling

* An exception is an unexpected or unusual condition that
arises during program execution.

¢ Raised by the program or detected by the language
Implementation

e Example: read a value after EOF reached

e Alternatives:
e Invent the value (e.g., -1)

e Always return the value and a status code (must be checked
each time)

e Pass a closure (if available) to handle errors

The University of North Carolina at Chapel Hill

Exception Handling

e Exceptions move error-checking out of the normal flow
of the program

* No special values to be returned

* No error checking after each call

The University of North Carolina at Chapel Hill

Exception Handlers
Pioneered in PL/1

e Syntax: ON condition statement
e The nested statement is not executed when the ON

statement is encountered, but when the condition occurs
¢ e.g., overflow condition

* The binding of handlers depends on the flow of control.

e After the statement is executed, the program
e terminates if the condition is considered irrecoverable
e continues at the statement that followed the one in which the
exception occurred.

e Dynamic binding of handlers and automatic resumption
can potentially make programs confusing and error-prone.

The University of North Carolina at Chapel Hill

Exception Handlers

e Modern languages make exception handler lexically
bound, so they replace the portion of the code yet-to-
be-completed

* |n addition, exceptions that are not handled in the
current block are propagated back up the dynamic
chain.

e The dynamic chain is the sequence of dynamic links.

e Each activation record maintains a pointer to its caller, a.k.a.,
the dynamic link

* This is a restricted form of dynamic binding.

The University of North Carolina at Chapel Hill

Exception Handlers

e Java uses lexically scoped exception handlers

new 1nt[2];

} catch (ArrayIndexOutOfBoundsException e){
System.out.println(“exception: ” + e.getMessage());
e.printStackTrace();

The University of North Carolina at Chapel Hill

Exception Handlers
Use of Exceptions

® Recover from an unexpected condition and continue
® e.g., request additional space to the OS after out-of-memory
exception

e Graceful termination after an unrecoverable exception
* Printing some helpful error message
® e.g., dynamic Link and line number where the exception was
raised in Java
e | ocal handling and propagation of exception
e Some exception have to be resolved at multiple level in the
dynamic chain.
® e.9., Exceptions can be reraised in Java using the throw
statement.

The University of North Carolina at Chapel Hill

Returning Exceptions

* Propagation of exceptions effectively makes them return
values.

e Consequently, programming languages include them in
subroutine declarations

e Modula-3 requires all exceptions that are not caught internally
to be declared in the subroutine header.

e C++ makes the list of exception optional

e Java divides them up into checked and unchecked
exceptions

The University of North Carolina at Chapel Hill

Hierarchy of Exceptions

e|n PL/1, exceptions do not have a type.

*|n Ada, all exceptions are of type exception

e Exception handler can handle one specific exception or all of
them

e Since exceptions are classes in Java, exception
handlers can capture an entire class of exceptions
(parent classes and all its derived classes)

e Hierarchy of exceptions.

The University of North Carolina at Chapel Hill

Implementation

e | inked-list of dynamically-bound handlers maintained at
run-time
e Each subroutine has a default handler that takes care of the
epilogue before propagating an exception
e This is slow, since the list must be updated for each block of
code.

e Compile-time table of blocks and handlers
e Two fields: starting address of the block and address of the
corresponding handler
e Exception handling using a binary search indexed by the
program counter
* | ogarithmic cost of the number handlers.

The University of North Carolina at Chapel Hill

Java

e Fach subroutine has a separate exception handling
table.

e Thanks to independent compilation of code fragments.

e Each stack frame contains a pointer to the appropriate

table.

The University of North Carolina at Chapel Hill

C

e Exception can be simulated

e setjmp() can store a representation of the current
program state in a buffer

e Returns O if normal return, 1 if return from long jump

* longjmp() can restore this state

-
1f(!setjmp(buffer)){
/* protected code */
} else {
/* handler */

¥

The University of

C

* The state is usually the set of registers

* longjmp() restores this set of registers

*|s this good enough?

* Changes to variables before the long jump are
committed, but changes to registers are ignored

e |f the handler needs to see changes to a variable that
may be modified in the protected code, the programmer
must include the volatile keyword in the variable’s
declaration.

The University of North Carolina at Chapel Hill

Generics, Polymorphism

e Polymorphism is the property of code working for
arguments/data of different types.

e Sort (list) works for list of int, list of string

e Many functional languages allow this but at cost...
dynamic type checking

* Generics, templates allow static type checking but some
measure of polymorphism.

The University of North Carolina at Chapel Hill

Generics, Polymorphism

z

generic compare (x,y: type T) returns bool{
return Xx<y;

¥

Creal new compare(T=real);
Cint = new compare(T=1nt);
Cstr = new compare(T=string);

generic inc(a: type T) returns T{
return a+1l;

}

Cint = new compare(T=1nt);

Cstr = new compare(T=string); #NO... Compiler reject

J

28

