
The University of North Carolina at Chapel Hill  

Lecture 9: Parameter Passing, Generics and 
Polymorphism, Exceptions
COMP 524 Programming Language Concepts 
Stephen Olivier
February 12, 2008

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts



The University of North Carolina at Chapel Hill  

Parameter Passing

•Pass-by-value: Input parameter

•Pass-by-result: Output parameter

•Pass-by-value-result: Input/output parameter

•Pass-by-reference: Input/output parameter, no copy

•Pass-by-name: Effectively textual substitution 

2



The University of North Carolina at Chapel Hill  

Pass-by-value

3

int m=8, i=5;
foo(m);
print m; # print 8

proc foo(int b){
  b = b+5;
}



The University of North Carolina at Chapel Hill  

Pass-by-reference

4

int m=8;
foo(m);
print m; # print 13

proc foo(int b){
  b = b+5;
}



The University of North Carolina at Chapel Hill  

Pass-by-value-result

5

int m=8;
foo(m);
print m; # print 13

proc foo(int b){
  b = b+5;
}



The University of North Carolina at Chapel Hill  

Pass-by-name

•Arguments passed by name are re-evaluated in the 
caller’s referencing environment every time they are 
used.

•They are implemented using a hidden-subroutine, 
known as a thunk.

•This is a costly parameter passing mechanism.

•Think of it as an in-line substitution (subroutine code put 
in-line at point of call, with parameters substituted). 

•Or, actual parameters substituted textually in the 
subroutine body for the formulas. 

6



The University of North Carolina at Chapel Hill  

Pass-by-name

7

array A[1..100] of int;
int i=5;
foo(A[i], i);
print A[i]; #print A[6]=7

#GOOD example
proc foo(name B, name k){
  k=6;
  B=7;
}

#text sub does this
proc foo{
  i=6;
  A[i]=7;
}

array A[1..100] of int;
int i=5;
foo(A[i]);
print A[i]; #print A[5]=??

#BAD Example
proc foo(name B){
  int i=2;
  B=7;
}

#text sub does this
proc foo{
  int i=2;
  A[i]=7;
}



The University of North Carolina at Chapel Hill  

Pass-by-name•Evaluate

•In pass-by-name:

8

real proc sum(expr, i, low, high);
  value low, high;
  real expr;
  integer i,low,high;
begin
  real rtn;
  rtn := 0;
  for i:= low step 1 until high do
    rtn := rtn + expr;
  sum:=rtn
end sum;



The University of North Carolina at Chapel Hill  

Ada

•in is call-by-value

•out is call-by-result

•in out is call-by-value/result

•Pass-by-value is expensive for complex types, so it can 
be implemented by passing either values or references

•However, programs can have different semantics with 
two solutions

• This is “erroneous” in Ada. 

9



The University of North Carolina at Chapel Hill  

Ada Example

10

type t is record
  a,b :integer;
end record;
r: t;

procedure foo(s:in out t) is
begin
  r.a := r.a + 1;
  s.a := s.a + 1;
end foo;
...
r.a :=3;
foo(r);
put(r.a);  --does this print 4 or 5?



The University of North Carolina at Chapel Hill  

Summary

11

Implementatio

n mechanism
Permissible 
Operations

Changes to actual? Alias?

value Value read, write no no

in, const Val or ref read only no maybe

out (Ada) Val or ref write only yes maybe

value/result Val read, write yes no

var, ref Ref Read, write yes yes

sharing val or ref Read, write yes yes

in out (Ada) val or ref Read, write yes maybe

Name (Algo 60) Closure (thunk) Read, write yes yes



The University of North Carolina at Chapel Hill  

Other Parameter Passing Features

•Variable length parameter lists

• flexible in C using “...”

• C++, C#, Java require that all are the same type

•Named parameters

• Eliminates requirement for programmer to match the order of 
formal parameters to the order of actual parameters

•Default parameters

• Default value provided in the definition of the subroutine

12



The University of North Carolina at Chapel Hill  

Return Values

•Allow return values of complex types?

• Some restrict to primitive types and pointers

•Allow subroutine closures to be returned?

• A closure bundles a reference to a subroutine and a referencing 
environment

• Available in some imperative languages

• C instead allows function pointers to be returned

13



The University of North Carolina at Chapel Hill  

Return Values

•How to specify the return value?

• Fortran, Algol, Pascal: same name as the function name

• C, C++, Java: return statement

• Other languages: name for function result provided in header

14

function  add_five ( value1 : integer ) : integer;
	 begin
	      add_five := value1 + 5;
	 end;

procedure a () returns retvar : int
   retval := 5;
end 



The University of North Carolina at Chapel Hill  

Exception Handling

•An exception is an unexpected or unusual condition that 
arises during program execution.

• Raised by the program or detected by the language 
implementation

•Example: read a value after EOF reached 

•Alternatives:

• Invent the value (e.g., -1)

• Always return the value and a status code (must be checked 
each time)

• Pass a closure (if available) to handle errors

15



The University of North Carolina at Chapel Hill  

Exception Handling

•Exceptions move error-checking out of the normal flow 
of the program

• No special values to be returned

• No error checking after each call

16



The University of North Carolina at Chapel Hill  

Exception Handlers
Pioneered in PL/1

•Syntax: ON condition statement
•The nested statement is not executed when the ON 

statement is encountered, but when the condition occurs
• e.g., overflow condition

•The binding of handlers depends on the flow of control.
•After the statement is executed, the program

• terminates if the condition is considered irrecoverable
• continues at the statement that followed the one in which the 

exception occurred. 
•Dynamic binding of handlers and automatic resumption 

can potentially make programs confusing and error-prone.

17



The University of North Carolina at Chapel Hill  

Exception Handlers

•Modern languages make exception handler lexically 
bound, so they replace the portion of the code yet-to-
be-completed

•In addition, exceptions that are not handled in the 
current block are propagated back up the dynamic 
chain.

• The dynamic chain is the sequence of dynamic links.

• Each activation record maintains a pointer to its caller, a.k.a., 
the dynamic link

• This is a restricted form of dynamic binding. 

18



The University of North Carolina at Chapel Hill  

Exception Handlers

•Java uses lexically scoped exception handlers

19

try{
  int a[] = new int[2];
  a[4];
} catch (ArrayIndexOutOfBoundsException e){
  System.out.println(“exception: ” + e.getMessage());
  e.printStackTrace();
}



The University of North Carolina at Chapel Hill  

Exception Handlers
Use of Exceptions 

•Recover from an unexpected condition and continue
• e.g., request additional space to the OS after out-of-memory 

exception
•Graceful termination after an unrecoverable exception

• Printing some helpful error message
• e.g., dynamic Link and line number where the exception was 

raised in Java

•Local handling and propagation of exception
• Some exception have to be resolved at multiple level in the 

dynamic chain. 
• e.g., Exceptions can be reraised in Java using the throw 

statement. 

20



The University of North Carolina at Chapel Hill  

Returning Exceptions

•Propagation of exceptions effectively makes them return 
values. 

•Consequently, programming languages include them in 
subroutine declarations

• Modula-3 requires all exceptions that are not caught internally 
to be declared in the subroutine header.

• C++ makes the list of exception optional

• Java divides them up into checked and unchecked 
exceptions

21



The University of North Carolina at Chapel Hill  

Hierarchy of Exceptions

•In PL/1, exceptions do not have a type.

•In Ada, all exceptions are of type exception

• Exception handler can handle one specific exception or all of 
them

•Since exceptions are classes in Java, exception 
handlers can capture an entire class of exceptions 
(parent classes and all its derived classes)

• Hierarchy of exceptions. 

22



The University of North Carolina at Chapel Hill  

Implementation

•Linked-list of dynamically-bound handlers maintained at 
run-time
• Each subroutine has a default handler that takes care of the 

epilogue before propagating an exception
• This is slow, since the list must be updated for each block of 

code.
•Compile-time table of blocks and handlers

• Two fields: starting address of the block and address of the 
corresponding handler

• Exception handling using a binary search indexed by the 
program counter

• Logarithmic cost of the number handlers. 

23



The University of North Carolina at Chapel Hill  

Java

•Each subroutine has a separate exception handling 
table.

• Thanks to independent compilation of code fragments.

•Each stack frame contains a pointer to the appropriate 
table.

24



The University of North Carolina at Chapel Hill  

C

•Exception can be simulated

•setjmp() can store a representation of the current 
program state in a buffer

• Returns 0 if normal return, 1 if return from long jump

•longjmp() can restore this state

25

if(!setjmp(buffer)){
  /* protected code */
} else {
  /* handler */
}



The University of North Carolina at Chapel Hill  

C

•The state is usually the set of registers

•longjmp() restores this set of registers

•Is this good enough?

•Changes to variables before the long jump are 
committed, but changes to registers are ignored

•If the handler needs to see changes to a variable that 
may be modified in the protected code, the programmer 
must include the volatile keyword in the variable’s 
declaration. 

26



The University of North Carolina at Chapel Hill  

Generics, Polymorphism

•Polymorphism is the property of code working for 
arguments/data of different types.

• Sort (list) works for list of int, list of string

•Many functional languages allow this but at cost... 
dynamic type checking

•Generics, templates allow static type checking but some 
measure of polymorphism. 

27



The University of North Carolina at Chapel Hill  

Generics, Polymorphism 

28

generic compare (x,y: type T) returns bool{
  return x<y;
}
...
Creal = new compare(T=real);
Cint = new compare(T=int);
Cstr = new compare(T=string);
..
generic inc(a: type T) returns T{
  return a+1;
}
Cint = new compare(T=int);
Cstr = new compare(T=string); #NO... Compiler reject


