
The University of North Carolina at Chapel Hill  

Lecture 10: Expression Evaluation

COMP 524 Programming Language Concepts 
Stephen Olivier
February 17, 2009

Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts



The University of North Carolina at Chapel Hill  

Goal of Talk

•The goal of this talk is to talk about expressions and the 
flow of programs

2



The University of North Carolina at Chapel Hill  

Control Flow

•Control flow is the order in which a program executes. 

•For imperative languages (e.g., Java), this is 
fundamental. 

•For other programing paradigms (e.g., functional), the 
compilers/interpreters take care of ordering.

3



The University of North Carolina at Chapel Hill  

Expression Evaluation

•An expressions consist of a simple object (e.g., a 
variable), an operator, or a function applied to a 
collection of objects and/or operators.

•Expression evaluation is a crucial component of 
functional languages.

4



The University of North Carolina at Chapel Hill  

Expression Evaluation

•An expressions consist of a simple object (e.g., a 
variable), an operator, or a function applied to a 
collection of objects and/or operators.

•Expression evaluation is a crucial component of 
functional languages.

5

Functional languages are very “math-like” 
and in math a primary concept is 

evaluating expressions. 



The University of North Carolina at Chapel Hill  

Operators

•Operators are used in 

• Prefix notation: operators come first

• (* (+ 1 3) 2 )

• Infix notation: operators in middle

• (1+3)*2

• Postfix notation: operators last

• a++

6



The University of North Carolina at Chapel Hill  

Operators-Precedence 

•Precedence rules specify the order in which operators 
of different precedence levels are evaluated.

• e.g. Multiplication before addition.

•Precedence in boolean expressions very important

• The phrase “if A<B and C<D” can be read as:

•if (A<B) and (C<D)

•if (A< (B and C)) <D

7



The University of North Carolina at Chapel Hill  

Operators--Associativity 

•Associativity rules specify the order in which operators 
of the same precedence level are evaluated. 

• Usually they are evaluated “left-to-right”

•In Fortran, ** associates from right-to-left 

• x ** y = x^y

• Thus 2**3**4 is read as 2^(3^4) rather than (2^3)^4.

•Also assignment in C

• a = b = c

8



The University of North Carolina at Chapel Hill  

Assignment 

•The basic operation language is assignment.

•An assignment places a value into a specific memory 
location.

9

a = 2;

a
2036

X
a

2036

2

Before After



The University of North Carolina at Chapel Hill  

Assignment 

•The basic operation language is assignment.

•An assignment places a value into a specific memory 
location.

10

a = 2;

a
2036

X
a

2036

2

Before After

As a result, assignments have longevity 
and can exist beyond their original 

context. 



The University of North Carolina at Chapel Hill  

Context

•To see the difference between context consider the two 
following statements.

11

int sum(int n){
int val=0;
for(int i=0,i<=n;i++){
val+=i;

}
return val;

}

int sum(int n){
if (n<=0) then
return 0

else
return n+sum(n-1)

}

Imperative Functional 



The University of North Carolina at Chapel Hill  

Context

•To see the difference between context consider the two 
following statements.

12

int sum(int n){
int val=0;
for(int i=0,i<=n;i++){
val+=i;

}
return val;

}

int sum(int n){
if (n<=0) then
return 0

else
return n+sum(n-1)

}

In the imperative code the 
value of val changes within 

the context of sum

Imperative Functional 



The University of North Carolina at Chapel Hill  

Context

•To see the difference between context consider the two 
following statements.

13

int sum(int n){
int val=0;
for(int i=0,i<=n;i++){
val+=i;

}
return val;

}

int sum(int n){
if (n<=0) then
return 0

else
return n+sum(n-1)

}

Imperative Functional 

In the functional code the 
value of n changes but only 
between contexts of sum



The University of North Carolina at Chapel Hill  

Variables

•Two ways to model variables:

• Value model

• Reference model

14



The University of North Carolina at Chapel Hill  

Value Model

•Under the value model variables on the left-hand side 
(called l-values) of equations denote references, and 
variables on the right-hand side (called r-values) 
denote values.

15

b = 2;
a = b; a

2036

X

mem(1024)= 2;
mem(2036)= 2;

b
1024

2

a
2036

2
b

1024

2



The University of North Carolina at Chapel Hill  

Value Model

•Under the value model variables on the left-hand side 
(called l-values) of equations denote references, and 
variables on the right-hand side (called r-values) 
denote values.

16

b = 2;
a = b; a

2036

X

mem(1024)= 2;
mem(2036)= 2;

b
1024

2

a
2036

2
b

1024

2

Pascal and C use this model



The University of North Carolina at Chapel Hill  

Reference Model

•Under the reference model variables on both the left- 
and right-hand side are references.

17

b = 2;
a = b; a

2036

X

mem(1024)= loc(2);
mem(2036)= mem(1024);

b
1024

48

a
2036

48
b

1024

48

2
2
48



The University of North Carolina at Chapel Hill  

Reference Model

•Under the reference model variables on both the left- 
and right-hand side are references.

18

b = 2;
a = b; a

2036

X

mem(1024)= loc(2);
mem(2036)= mem(1024);

b
1024

48

a
2036

48
b

1024

48

2
2
48

Lisp, Clu use this model.



The University of North Carolina at Chapel Hill  

Expressions: Initialization 

•Variable initialization can be implicit or explicit. 

• Implicit: variables are initialized as they are used (e.g., Perl).

•  Explicit: variables are initialized by the programmer (e.g., C).

•Java, C# require definite assignment

• Variables must be assigned a value before they are used in 
expressions

19

$a += 3;

int a = 0;
a += 3;



The University of North Carolina at Chapel Hill  

Expressions: Orthogonality

•Orthogonality means that features can be used in any 
combination and the meaning is consistent 
regardless of the surrounding features

• Good idea in principle, but requires careful thought

• e.g. assignment as an expression

• unfortunate when combined with poor syntactic choices, as in C:

20

if(a=b){ } if(a==b){ }



The University of North Carolina at Chapel Hill  

Expressions: Complication

•Execution ordering within expressions is complicated 
by side effects (and code improvements)

• e.g., in C

•If inc(b) is evaluated before (3*b), the final value of c is 
12. If the (3*b) is evaluated first, then the value is c is 6.

21

b=1;
int inc(int a) {
b+=1;
return a+1;

}
c = (3*b) * inc(b);



The University of North Carolina at Chapel Hill  

Expressions: Short-Circuit

•Expressions may be executed using short-circuit 
evaluation

22

p = my_list;
while (p && p->key !=val)
p=p->next



The University of North Carolina at Chapel Hill  

Expressions: Short-Circuit

•Expressions may be executed using short-circuit 
evaluation

23

p = my_list;
while (p && p->key !=val)
p=p->next

if p = nul, then p->key is never 
checked. Thus, it is “short-circuited” 



The University of North Carolina at Chapel Hill  

Expressions: Short-Circuit

•Expressions may be executed using short-circuit 
evaluation

24

p = my_list;
while (p && p->key !=val)
p=p->next

p := my_list;
while (p<>nil) and
(p^.key <> val) do
p:=p^.next

Since Pascal does not have short circuiting, this will 
check both. Thus, if p=nil, then p^.key will 

return an error. 


