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Goal of Talk

•The goal of this talk is to talk about expressions and the 
flow of programs
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Control Flow

•Control flow is the order in which a program executes. 

•For imperative languages (e.g., Java), this is 
fundamental. 

•For other programing paradigms (e.g., functional), the 
compilers/interpreters take care of ordering.
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Expression Evaluation

•An expressions consist of a simple object (e.g., a 
variable), an operator, or a function applied to a 
collection of objects and/or operators.

•Expression evaluation is a crucial component of 
functional languages.
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Expression Evaluation

•An expressions consist of a simple object (e.g., a 
variable), an operator, or a function applied to a 
collection of objects and/or operators.

•Expression evaluation is a crucial component of 
functional languages.
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Functional languages are very “math-like” 
and in math a primary concept is 

evaluating expressions. 
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Operators

•Operators are used in 

• Prefix notation: operators come first

• (* (+ 1 3) 2 )

• Infix notation: operators in middle

• (1+3)*2

• Postfix notation: operators last

• a++
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Operators-Precedence 

•Precedence rules specify the order in which operators 
of different precedence levels are evaluated.

• e.g. Multiplication before addition.

•Precedence in boolean expressions very important

• The phrase “if A<B and C<D” can be read as:

•if (A<B) and (C<D)

•if (A< (B and C)) <D
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Operators--Associativity 

•Associativity rules specify the order in which operators 
of the same precedence level are evaluated. 

• Usually they are evaluated “left-to-right”

•In Fortran, ** associates from right-to-left 

• x ** y = x^y

• Thus 2**3**4 is read as 2^(3^4) rather than (2^3)^4.

•Also assignment in C

• a = b = c
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Assignment 

•The basic operation language is assignment.

•An assignment places a value into a specific memory 
location.
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a = 2;
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Assignment 

•The basic operation language is assignment.

•An assignment places a value into a specific memory 
location.
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a = 2;
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As a result, assignments have longevity 
and can exist beyond their original 

context. 
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Context

•To see the difference between context consider the two 
following statements.
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int sum(int n){
int val=0;
for(int i=0,i<=n;i++){
val+=i;

}
return val;

}

int sum(int n){
if (n<=0) then
return 0

else
return n+sum(n-1)

}

Imperative Functional 
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Context

•To see the difference between context consider the two 
following statements.
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int sum(int n){
int val=0;
for(int i=0,i<=n;i++){
val+=i;

}
return val;

}

int sum(int n){
if (n<=0) then
return 0

else
return n+sum(n-1)

}

In the imperative code the 
value of val changes within 

the context of sum

Imperative Functional 
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Context

•To see the difference between context consider the two 
following statements.
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int sum(int n){
int val=0;
for(int i=0,i<=n;i++){
val+=i;

}
return val;

}

int sum(int n){
if (n<=0) then
return 0

else
return n+sum(n-1)

}

Imperative Functional 

In the functional code the 
value of n changes but only 
between contexts of sum
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Variables

•Two ways to model variables:

• Value model

• Reference model
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Value Model

•Under the value model variables on the left-hand side 
(called l-values) of equations denote references, and 
variables on the right-hand side (called r-values) 
denote values.
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Value Model

•Under the value model variables on the left-hand side 
(called l-values) of equations denote references, and 
variables on the right-hand side (called r-values) 
denote values.
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b = 2;
a = b; a

2036

X
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mem(2036)= 2;
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Pascal and C use this model
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Reference Model

•Under the reference model variables on both the left- 
and right-hand side are references.
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a = b; a
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Reference Model

•Under the reference model variables on both the left- 
and right-hand side are references.
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Lisp, Clu use this model.
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Expressions: Initialization 

•Variable initialization can be implicit or explicit. 

• Implicit: variables are initialized as they are used (e.g., Perl).

•  Explicit: variables are initialized by the programmer (e.g., C).

•Java, C# require definite assignment

• Variables must be assigned a value before they are used in 
expressions
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$a += 3;

int a = 0;
a += 3;
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Expressions: Orthogonality

•Orthogonality means that features can be used in any 
combination and the meaning is consistent 
regardless of the surrounding features

• Good idea in principle, but requires careful thought

• e.g. assignment as an expression

• unfortunate when combined with poor syntactic choices, as in C:
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if(a=b){ } if(a==b){ }
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Expressions: Complication

•Execution ordering within expressions is complicated 
by side effects (and code improvements)

• e.g., in C

•If inc(b) is evaluated before (3*b), the final value of c is 
12. If the (3*b) is evaluated first, then the value is c is 6.
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b=1;
int inc(int a) {
b+=1;
return a+1;

}
c = (3*b) * inc(b);
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Expressions: Short-Circuit

•Expressions may be executed using short-circuit 
evaluation

22

p = my_list;
while (p && p->key !=val)
p=p->next
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Expressions: Short-Circuit

•Expressions may be executed using short-circuit 
evaluation
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p = my_list;
while (p && p->key !=val)
p=p->next

if p = nul, then p->key is never 
checked. Thus, it is “short-circuited” 
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Expressions: Short-Circuit

•Expressions may be executed using short-circuit 
evaluation
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p = my_list;
while (p && p->key !=val)
p=p->next

p := my_list;
while (p<>nil) and
(p^.key <> val) do
p:=p^.next

Since Pascal does not have short circuiting, this will 
check both. Thus, if p=nil, then p^.key will 

return an error. 


