Lecture 10: Expression Evaluation

COMP 524 Programming Language Concepts
Stephen Olivier
February 17, 2009

Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hil ||

Goal of Talk

* The goal of this talk is to talk about expressions and the
flow of programs

The University of North Carolina at Chapel Hill

Control Flow

e Control flow is the order in which a program executes.

e For imperative languages (e.g., Java), this is
fundamental.

e For other programing paradigms (e.g., functional), the
compilers/interpreters take care of ordering.

The University of North Carolina at Chapel Hill

Expression Evaluation

* An expressions consist of a simple object (e.g., a
variable), an operator, or a function applied to a
collection of objects and/or operators.

e Expression evaluation is a crucial component of
functional languages.

The University of North Carolina at Chapel Hill

-

Functional languages are very "math-like”
and in math a primary concept is
evaluating expressions.

e Expression evaluation is a crucial component of
functional languages.

The University of North Carolina at Chapel Hill

Operators

e Operators are used in
e Prefix notation: operators come first
°(*(+13)2)
e Infix notation: operators in middle
e (1+3)*2
e Postfix notation: operators last

® a++

The University of North Carolina at Chapel Hill

Operators-Precedence

* Precedence rules specify the order in which operators
of different precedence levels are evaluated.

¢ e.g. Multiplication before addition.
* Precedence in boolean expressions very important
* The phrase “1f A<B and C<D” can be read as:
*1f (A<B) and (C<D)
e1f (A< (B and C)) <D

The University of North Carolina at Chapel Hill

Operators--Associativity

e Associativity rules specify the order in which operators
of the same precedence level are evaluated.

e Usually they are evaluated “left-to-right”
*|n Fortran, ** associates from right-to-left
°X ™y =Xy
e Thus 2**3"*4 is read as 2/ (3"4) rather than (2/3)M\4.

* Also assignment in C

ea=Db=cC

The University of North Carolina at Chapel Hill

Assignment

* The basic operation language is assignment.

* An assignment places a value into a specific memory
location.

The University of North Carolina at Chapel Hill

-

{ As a result, assignments have longevity
and can exist beyond their original
context.

X

2030

[Befo rej

Context

e [0 see the difference between context consider the two

following statements.

g . g
int sum(int n){

. - int sum(int n){
1nt val=0; 1f (n<=0) then

for(int 1=0,1<=n;1++){

: return 0
val+=1;

else

3
I return n+sum(n-1)

l Imperative ' l Functional '

The University of North Carolina at Chapel Hill

Context

" In the imperative code the

¢ [0 see th

value of val changes within
the context of sum

the two

following statements.

-

int sum(int n){

-

int sum(int n){
1f (n<=0) then
return 0
else
return n+sum(n-1)

int val=0;

for(int 1=0,1<=n;1++){
val+=1;

Iy

return val;

¥

l Imperative ' | Functional '

The University of North Carolina at Chapel Hill

Context

¢ [0 see th

following statements.

value of n changes but only
between contexts of sum

-

int sum(int n){

int val=0;
for(int i=0,i<=n;i++){
val+=1;

¥

return val;

l Imperative '

! In the functional code the

the two

-

int sum(int n){
1f (n<=0) then
return 0
else
return n+sum(n-1)

¥

l Functional '

The University of North Carolina at Chapel Hill

Variables

e Two ways to model variables:

e Value model

e Reference model

The University of North Carolina at Chapel Hill

Value Model

e Under the value model variables on the left-hand side
(called I-values) of equations denote references, and
variables on the right-hand side (called r-values)
denote values.

The University of North Carolina at Chapel Hill

Pascal and C use this model

~N

mem(1024)= 2;
mem(2036)= 2;

J

2 X

b a
1024 2036

2 2

b a
1024 20360

The University of North Carolina at Chapel Hill

Reterence Model

e Under the reference model variables on both the left-
and right-hand side are references.

= 2 2 48 X
= b; 2 b a

< 48 1024 2036

48 48

b a

1024 2036

mem(1024)= loc(2);
mem(2036)= mem(1024);

J

The University of North Carolina at Chapel Hill

Lisp, Clu use this model.

48 X
b a
1024 2036

48 48
b a
1024 2036

mem(1024)= loc(2);
mem(2036)= mem(1024);

Expressions: Initialization

e \ariable initialization can be implicit or explicit.
e Implicit: variables are initialized as they are used (e.g., Perl).
$a += 3;

e Explicit: variables are initialized by the programmer (e.g., C).

int a = 0;
a += 3,
e Java, C# require definite assignment

* Variables must be assigned a value before they are used in
expressions

The University of North Carolina at Chapel Hill

Expressions: Orthogonality

e Orthogonality means that features can be used in any
combination and the meaning is consistent
regardless of the surrounding features

e Good idea in principle, but requires careful thought
® .g. assignment as an expression

e unfortunate when combined with poor syntactic choices, as in C:

if(a=b){ } 1fCa==b){ }

The University of North Carolina at Chapel Hill

Expressions: Complication

e Execution ordering within expressions is complicated
by side effects (and code improvements)

ecg.,inC @=1;

int inc(int a) {
b+=1;
return a+l;

i
C

= (3*b) * inc(b);

e|f inc(b) is evaluated before (3*b), the final value of c is
12. If the (3*b) is evaluated first, then the value is c is 6.

The University of North Carolina at Chapel Hill

Expressions: Short-Circuit

® Expressions may be executed using short-circuit
evaluation

p

p = my_list;

while (p && p->key !=val)
p=p->hext

The University of North Carolina at Chapel Hill

Expressions: Short-Circuit

® Expressions may be executed using short-circuit
evaluation

p

p = my_list;

while (p && p->key !=val)
p=p->hext

______________A‘\\\‘

if p = nul, then p->key is never
checked. Thus, it is “short-circuited”

The University of North Carolina at Chapel Hill

Expressions: Short-Circuit

® Expressions may be executed using short-circuit
evaluation

p

p = my_list;

while (p && p->key !=val)
p=p->hext

;= my_list;
while (p<>nil) and
(p~r.key <> val) do

«—NA
p:=pA.next

»
Since Pascal does not have short circuiting, this will
check both. Thus, if p=nil, then pA.key will

return an error.

The University of North Carolina at Chapel Hill

