
The University of North Carolina at Chapel Hill

Lecture 11: Functional Programming Concepts
COMP 524 Programming Language Concepts
Stephen Olivier
February 26, 2009

Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goals

•Discuss functional languages

2

The University of North Carolina at Chapel Hill

Functional Features

•Most functional languages Provide

• Functions as first-class values

• Higher-order functions

• List Type (operators on lists)

• Recursion

• Structured function return

• Garbage collection

• Polymorphism and type inference

3

The University of North Carolina at Chapel Hill

So Why Functional?

•Teaches truly recursive algorithms

•Implicit Polymorphism

•Natural expressiveness for symbolic and algebraic
computations

• Algorithms clearly map to the code that implements them

4

The University of North Carolina at Chapel Hill

History

•Lambda-calculus as semantic model (Church)

•LISP (1958, MIT, McCarthy)

5

(defun fib (n)
(if (or (= n 0) (= n 1))
1
(+ (fib (- n 1))

(fib (- n 2)))))

The University of North Carolina at Chapel Hill

History

•Lisp

• Dynamic Scoping

•Common Lisp (CL), Scheme

• Static scoping

•ML

• Typing, type inference, fewer parentheses

•Haskell, Miranda

• pure functional

6

The University of North Carolina at Chapel Hill

LISP Properties

•Homogeneity of programs and data

• Programs are lists and a program can examine/change itself
while running

•Self-Definition

• Easy to write a Lisp interpreter in Lisp

7

The University of North Carolina at Chapel Hill

Can Programming be Liberated from the von
Neumann Style?

• This is the title of a lecture given by John Backus when he
received the Turing Award in 1977.

• In this, he pointed out that the program should be abstract
description of algorithm rather than sequences of changes in the
state of the memory.

• He called for raising the level of abstraction

• A way to realize this goal is functional programming

• Programs written in modern functional programming languages
are a set of mathematical relationships between objects

• No explicit memory management takes place

8

The University of North Carolina at Chapel Hill

Evaluation Order

•Functional programs are evaluated following a reduction
(or evaluation or simplification) process

•There are two common ways of reducing expressions

• Application order

• Impatient evaluation

• Normal order

• Lazy evaluation

9

The University of North Carolina at Chapel Hill

Applicative Order

•In applicative order, expressions at evaluated following
the parsing tree (deeper expressions are evaluated first)

10

square (3 + 4)
= { definition of + }

square 7
= {definition of square }

7 * 7
= { definition of * }
49

The University of North Carolina at Chapel Hill

Normal Order

•In Normal order, expressions are evaluated only as their
value is needed

11

square (3 + 4)
= { definition of square }

(3 + 4) * (3 + 4)
= {definition of + applied to first term }

7 * (3 + 4)
= {definition of + applied to second term }
7 * 7

= { definition of * }
49

The University of North Carolina at Chapel Hill

Haskell Evaluation Order

•Haskell is a lazy functional programming language

• Expressions are evaluated in normal order

• Identical expressions are evaluated only once

12

square (3 + 4)
= { definition of square }

(3 + 4) * (3 + 4)
= {definition of + applied both terms }

7 * 7
= { definition of * }
49

The University of North Carolina at Chapel Hill

ML History

• ML Stands for “Meta-language”

• Developed in 1970s by Robert Milner at the University of Edinburgh

• Characteristics

• Functional control structures

• strict, formal semantics (provable correctness)

• Strict polymorphic type system

• Coercion not allowed

• Still subject of active industry research

• Microsoft promotes variant called F# for their .NET framework

13

The University of North Carolina at Chapel Hill

Recursion

•Recursion requires no special syntax

•Recursion and logically-controlled iteration are equally
powerful

14

gcd(a, b) =

a if a = b

gcd(a − b, b) if a > b

gcd(a, b − a) if a < b

The University of North Carolina at Chapel Hill

Recursion

15

gcd(a, b) =

a if a = b

gcd(a − b, b) if a > b

gcd(a, b − a) if a < b

int gcd(int a,int b){
if(a == b) return a;
else if (a>b) return gcd(a-b,b);
else return gcd(a,b);

}

Recursion

int gcd(int a,int b){
while(a!=b){
if(a>b) { a = a-b;}
else {b = b-a;}

}
return a;

}

Iteration

The University of North Carolina at Chapel Hill

Tail Recursion

•Tail recursion is when no computation occurs after
the recursive statement.

•The advantage of tail recursion is that space can be
reused.

16

int gcd(int a,int b){
if(a == b) return a;
else if (a>b) return gcd(a-b,b);
else return gcd(a,b);

}

int gcd(int a,int b){
int x;
if(a == b) x=a;
else if (a>b) x= gcd(a-b,b);
else x= gcd(a,b);
return x;

}
Tail Recursion

Not Tail Recursion

The University of North Carolina at Chapel Hill

Tail Recursion

17

int gcd(int a,int b){
if(a == b) return a;
else if (a>b) return gcd(a-b,b);
else return gcd(a,b);

}

gcd

Tail Recursion

The University of North Carolina at Chapel Hill

Tail Recursion

18

gcd-1

int gcd(int a,int b){
int x;
if(a == b) x=a;
else if (a>b) x= gcd(a-b,b);
else x= gcd(a,b);
return x;

}

Not Tail Recursion

gcd-2

gcd-3

gcd-4

The University of North Carolina at Chapel Hill

Function Definitions in ML

•Tail-Recursive Functions:

•On good implementations, equivalent in speed (and
sometimes machine code) to iterative version!

•What is the inferred type of this function?
19

fun fib(n)=
let fun fib_helper(f1, f2, i) =
if i = n then f2
else fib_helper(f2, f1+f2, i+1)

in
fib_helper(0,1,0)

end;
fib(7);

The University of North Carolina at Chapel Hill

Types in ML

•Built-in Types:
• Integer
• Real
• String
• Char
• Boolean

•From these we can construct
• Tuples: Heterogeneous element types with finite fixed length

• (#“a”, 5, 3.0, “hello”, true): char *int *real*string*bool
• Lists:

• [5.0, 3.2, 6.7] : real list
• [(# “a”, 7), (# “b”, 8)]: (char *int)list

• Functions
• Records

20

The University of North Carolina at Chapel Hill

Types inference in ML

•Everything is inferred; ML complains if anything is
ambiguous.

•What is the inferred type of r? Why?

•How about the function?
• r must be of type real.

• Can be explicit by defining fun circum(r:real)...
• Type of function circum:

• real->real

21

fun circum(r) = r * 2.0 * 3.14159;
circum(7.0);

The University of North Carolina at Chapel Hill

Polymorphism in ML

•Consider the following function in ML:

22

fun compare(x,p,q) =
if x = p then
if x = q then “both”
else “first”

else
if x = q then “second”
either “neither”

The University of North Carolina at Chapel Hill

Polymorphism in ML

•Consider the following function in ML:

23

fun compare(x,p,q) =
if x = p then
if x = q then “both”
else “first”

else
if x = q then “second”
either “neither”

What is type of compare? x? p? q?

The University of North Carolina at Chapel Hill

Polymorphism in ML

•Consider the following function in ML:

24

fun compare(x,p,q) =
if x = p then
if x = q then “both”
else “first”

else
if x = q then “second”
either “neither”

What is type of compare? x? p? q?
`a*`a*`a->string

The University of North Carolina at Chapel Hill

Polymorphism in ML

•Consider the following function in ML:

25

fun compare(x,p,q) =
if x = p then
if x = q then “both”
else “first”

else
if x = q then “second”
either “neither”

All of these are valid:
compare(1,2,3);
compare(1,1,1);

let val t = (“larry”, “moe”, “curly”) in compare(t) end;

The University of North Carolina at Chapel Hill

Type Checking

•ML verifies type consistency
•Set of constraints

• All occurrences of same identifier (in same scope) have the
same type.

• In an if...then..else... construct, if condition must have
type bool, and then and else must have same type.

• Programmer defines functions have type `a->`b where `a is
type of function parameters and `b is type of function return.

• When function is called, the arguments passed and value
returned must have same type as definition.

•Process of checking if two types are the same is called
unification.

26

The University of North Carolina at Chapel Hill

Lists in ML

•Heterogeneous & Homogeneous Lists operator:

• Appending (joining) two lists:

• Prefixing a list with an item:

27

[1,4]@[3,5] => [1,4,3,5]
(“hi”, 3.0)@(4, “bye”) => (“hi”, 3.0, 4, “bye”)

1::[2,7,9] => [1,2,7,9];
NOTE: [2,7,9]::1 is illegal (use [2,7,9]@[1] instead)

The University of North Carolina at Chapel Hill

Lists in ML

•Heterogeneous & Homogeneous Lists operator:

• Appending (joining) two lists:

• Prefixing a list with an item:

28

[1,4]@[3,5] => [1,4,3,5]
(“hi”, 3.0)@(4, “bye”) => (“hi”, 3.0, 4, “bye”)

1::[2,7,9] => [1,2,7,9];
NOTE: [2,7,9]::1 is illegal (use [2,7,9]@[1] instead)

Other useful List functions:
hd= head

tl = tail
nth = list element selctor

rev =reverse a list
length = number of elements

The University of North Carolina at Chapel Hill

Function Pattern Matching in ML

•Function definition as series of alternatives:

•Becomes

29

fun appends(l1, l2) =
if l1 = nil then l2
else hd(l1) :: append (tl(l1), l2);

fun append(nil, l2) = l2
| append (h::t, l2) = h :: append(t, l2);

The University of North Carolina at Chapel Hill

Function Pattern Matching in ML

•More complex example

30

fun split(nil) = (nil, nil)
 | split([a]) = ([a], nil)
 | split(a::b::cs) =
 let val (M,N) = split(cs)
 in
 (a::M,b::N)
 end;

The University of North Carolina at Chapel Hill

Higher-Order Functions

•Higher-order functions are functions that take functions
as arguments and/or return functions

31

fun map(F, nil) = nil
 | map(F, x::cs) = F(x)::map(F,xs);

fun add5(x) = x+5;
map add5, [3,24,7,9]; => [8,29,12,14]

map (fn x=> x+5) [3,24,7,9]; => [8,29,12,14]

To Add 5 to every integer we could...

The University of North Carolina at Chapel Hill

“Currying” in ML

•Currying is a method in which a multiple argument
function is replaced by a single argument function
that returns a function with the remaining arguments.

32

fun add(x,y) = x + y : int;
>> val add = fn int * int -> int

fun add x = fn y=> x+y;
>> val add = fn int -> int ->int

fun add x y = x+y;
>> val add = fn int -> int ->int

The University of North Carolina at Chapel Hill

Standard ML of New Jersey

•Download and Install from

• http://www.smlnj.org/smlnk.html

•to run (after installation): Type “sml”

•Try some stuff from Stott’s ML Class notes.

•If you want to exit type:

• OS.Process.exit(OS.Process.success);

• OR press Ctrl-D

33

http://www.smlnj.org/smlnk.html
http://www.smlnj.org/smlnk.html

The University of North Carolina at Chapel Hill

Scope in ML is Lexical

•Top level environment has all pre-defined bindings

•Every val binding adds another row to the symbol table
when compiling/interpreting

•Each row hides earlier bindings of the same name
(does not destroy them)

•Local bindings can be made in functions definitions

•Locals are removed from the symbol stack when the
function definition is complete

34

The University of North Carolina at Chapel Hill

Binding of Referencing Environments

•Scope rules are used to determine the reference
environment

• Static and dynamic scoping

•Some languages allow references to subroutines

• Are the scope rules applied when the reference is created or
when the subroutine is called?

•In shallow (late) binding, the referencing environment is
bound when the subroutine is called

•In deep (early) binding, the referencing environment is
bound when the reference is created.

35

•Earlier binding of x is used due to static scope rules

The University of North Carolina at Chapel Hill

ML Example

36

- val x = 5;
val x = 5 : int
- fun wow z = z + x;
val wow = fn : int -> int
- wow 9;
val it = 14 : int
- val x = 10;
val x = 10 : int
- wow 9; (* wow uses x = 5 *)
val it = 14 : int

•Earlier binding of x is used due to static scope rules

The University of North Carolina at Chapel Hill

ML Example

37

- val x = 5;
val x = 5 : int
- fun wow z = z + x;
val wow = fn : int -> int
- wow 9;
val it = 14 : int
- val x = 10;
val x = 10 : int
- wow 9; (* wow uses x = 5 *)
val it = 14 : int

What if we pass the function wow as an argument to another
function declared after the new binding x = 10 has been

created?

The University of North Carolina at Chapel Hill

ML Example

38

•Deep binding uses original reference environment

- val x = 5;
val x = 5 : int
- fun wow z = z + x;
val wow = fn : int -> int
- val x = 10;
val x = 10 : int
- fun twice (a,b) = b (a * 2);
val twice = fn : int * (int -> 'a) -> 'a
- twice (3, wow); (* still uses x = 5 *)
val it = 11 : int

The University of North Carolina at Chapel Hill

Deep and Shallow Binding

•Deep Binding, Shallow Binding are both concepts
related to giving a function/subroutine a referencing
environment in which to run.

•This is important when a subprogram is passed in our
out as a parameter to another (i.e., a “funarg”).

39

Some questions:
When a funarg that is passed in is run, does it use the

environment it has when run? or the when when defined?
Also, when a funarg is passed out and run the environment it

created in is gone; how do we deal with that?

The University of North Carolina at Chapel Hill

Closures

•Deep binding is implemented using closures

• Remember them from chapter 3?

•A closure is the combination of a reference to a
subroutine and an explicit representation of its
referencing environment

40

The University of North Carolina at Chapel Hill

Referential Transparency

•Bindings are immutable.

•Any time you see a name, you may substitute in the
value bound to that name and NOT alter the semantics
of the expression.

•“no side effects.”

•Functional programing languages try to enforce
referential transparency.

• ML is not pure functional: “Don’t get lulled into a false sense of
referential transparency” (from ML for the Working Programmer)

41

The University of North Carolina at Chapel Hill

Referential Transparency

•“equals can be substituted for equals”

• If two expressions are defined to have equal values, then one
can be substituted for the other in any expression without
affecting the result of the computation.

• For example, in

42

s = sqrt(2); z = f(s,s); we can write
z = f(sqrt(2), sqrt(2));

The University of North Carolina at Chapel Hill

Referential Transparency

•A function is called referentially transparent if given the
same parameter(s), it always returns the same result.

•In mathematics all functions are referentially transparent

•In programming this is not always the case, with use of
imperative features in languages.

• The subroutine/function called could affect some global variable
that will cause a second invocation to return a different value.

• Input/Output

• In ML, what if we replace print “abc” by its return value ()

43

The University of North Carolina at Chapel Hill

Why is referential transparency important?

•Because it allows the programmer to reason about
program behavior, which can help in proving
correctness, finding bugs that couldn’t be found by
testing, simplifying the algorithm, assist in modify the
code without breaking it, or even finding ways of
optimizing it.

44

s = sqrt(9);
x = s*s + 17 *k / (s-1);
// can replace x with:
// sqrt(9)*sqrt(9) + 17 *k/(sqrt(9)-1) = 9+17*k/2;

The University of North Carolina at Chapel Hill

Advantages of functional programming (Scott)

•Lack of side effects makes programs easier to
understand

•Lack of explicit evaluation order (in some languages)
offers possibility of parallel evaluation (e.g. MultiLisp)

•Lack of side effects and explicit evaluation order
simplifies some things for a compiler (provided you
don't blow it in other ways)

•Programs are often surprisingly short

•Language can be extremely small and yet powerful

45

The University of North Carolina at Chapel Hill

Problems for functional programming (Scott)

•Difficult (but not impossible!) to implement efficiently on
von Neumann machines

• Lots of copying of data through parameters

• (Apparent) need to create a whole new array in order to
changeone element

• Very heavy use of pointers (space and time and locality
problem)

• Frequent procedure calls

• Heavy space use for recursion

• Requires garbage collection

46

The University of North Carolina at Chapel Hill

Problems for functional programming (Scott)

•Requires a different mode of thinking by the
programmer

•Difficult to integrate I/O into purely functional model

• Leading approach is the monads of Haskell -- sort of an
imperative wrapper around a purely functional program; allows
functions to be used not only to calculate values, but also to
decide on the order in which imperative actions should be
performed.

47

