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Goals

•Introduce concepts pertaining to data types

•Examine the ML type system, polymorphism, and higher 
order functions

• map, foldl, and foldr built-ins especially
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Data Types

•Computers manipulate sequences of bits

•We manipulate higher level data (numbers, strings, etc.)

•Data types transform bits into higher level data
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Data Types: 

•Types provide implicit context

• Compilers can infer information, so programmers write less 
code.

• e.g., The expression a+b in Java may be adding two integer, 
two floats or two strings depending on context

•Types provide a set of semantically valid operations

• Compilers can detect semantic mistakes

• e.g., Python’s list type supports append() and pop(), but 
complex numbers do not
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Type Systems

•A type system consists of

1.A mechanism to define types and associate them with 
language constructs

2.A set of rules for “type equivalence,” “type compatibility,” 
and “type inference.”

5
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Type Systems

•A type system consists of

1.A mechanism to define types and associate them with 
language constructs

2.A set of rules for “type equivalence,” “type compatibility,” 
and “type inference.”
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Discuss these in detail 
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Type Systems: Type Checking

•Type Checking is the process of ensuring that a 
program obeys the language’s type compatibility 
rules

• Strongly typed. 

• Weakly typed. 
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Strongly Typed

•Strongly typed languages always detect type errors

• All expressions and objects must have a type

• All operations must be applied in appropriate type contexts

•Statically typed languages are strongly typed 
languages in which all type checking occurs at 
compile time

8
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Strongly Typed

•Strongly typed languages always detect type errors

• All expressions and objects must have a type

• All operations must be applied in appropriate type contexts

•Statically typed languages are strongly typed 
languages in which all type checking occurs at 
compilee time
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Even FUNCTIONS!
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Weakly Typed

•In weakly typed languages “anything can go”

• Characteristic of assembly language

• See also: Perl and earlier scripting languages

•On the other end of the spectrum, strongly typed 
languages don’t allow implicit conversion
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What is a type?

•Three points of view

• Denotational: Set of values

• Constructive: A type is “built-in” or “composite”

• Abstraction-based: A type is an interface that defines a set of 
consistent operations

11
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Denotation 

•Under denotation, a value has a given type if it 
belongs to a set. 

•An object has a type, if its value is guaranteed to be in 
a certain set.

•A set of values is called a domain (i.e., its type).

•Similar to enum in C

12
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Built-in Types

•Built-in/primitive/elementary types

• Mimic hardware units

• e.g., boolean, character, integer, real (float)

•Implementation varies across languages

•Characters are traditionally one-byte quantitates using 
the ASCII character set

13
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Built-in Types: Unicode

•Newer languages have built-in characters that support 
Unicode character sets

•Unicode is implemented using two-byte quantities. 

14
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Built-in Types: Unicode

•Newer languages have built-in characters that support 
Unicode character sets

•Unicode is implemented using two-byte quantities. 
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This is very important for moving legacy code.
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Built-in Types: Numeric Types

•Most languages support integers and floats 

• (Their value range is implementation dependent)

•Some languages support other numeric types

• Complex Numbers (e.g., Fortran, Python)

• Rational Number (e.g., scheme, common Lisp)

• Signed and Unsigned integers (e.g., C, Modula-2)

• Fixed point Numbers (e.g., Ada, Cobol)

•Some languages distinguish numeric types depending 
on their precision. 
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Composite 

•A composite type is created by applying type 
constructors to simpler types

• Records

• Structs

• Arrays

• Sets

• Classes

17
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Classification of Types: Enumerations

•Enumerations improve program readability and error 
checking.

•First introduced in Pascal (but also exist in C):

• type weekday = (sun, mon, tue, wed, thu, fri, sat);

• They are defined in order, so they can be used in enumeration 
controlled loops

18
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Classification of Types: Subranges

•Subranges define a valid range of values for a 
variable.

• e.g., Type test_score = 0..100;

•The improve readability and error checking
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Classification of Types: Orthogonality

•Recall, orthogonality means that all features behaves 
consistently.

• e.g., a=b always denotes assignment.

•This makes life much easier when reasoning about 
different types. 

20
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Type Checking 

•Type Equivalence

•Type Compatibility

•Type Inference

21

Now that we’ve discussed the basics of types, lets 
go back to equivalence, compatibility and 

inference. 
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Type Checking 

•Type Equivalence: When are the types of two values 
are the same?

•Type Compatibility: Can a value of A be used when 
type B is expected?

•Type Inference: What is the type of an expression, 
given the type of the operands?

22
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Type Checking 

•Type Equivalence: When are the types of two values 
are the same?

•Type Compatibility: Can a value of A be used when 
type B is expected?

•Type Inference: What is the type of an expression, 
given the type of the operands?
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Type Equivalence

•Type Equivalence is defined in terms of structural and 
name equivalence.

24
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Structural Equivalence

•Two types are structurally equivalent if they have the 
same components put together in the same way

25

typedef struct{int a,b;} foo1

typedef struct{
int a,b;

}foo2

Equivalent!
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Structural Equivalence

•Two types are structurally equivalent if they have the 
same components put together in the same way

26

typedef struct{int a,b;} foo1

typedef struct{
int b;
int a;

}foo2

Equivalent? Yes, in most languages.
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Structural Equivalence

27

typedef struct{
char *name;
char *addre;
int age;

} student;

Equivalent...

typedef struct{
char *name;
char *addre;
int age;

} school;

... but probably not intentional. 
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Name Equivalence. 

•Name equivalence assumes that two definitions with 
different names are not the same.

•Solves the “student-school” problem

28
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Name Equivalence: Aliases 

•Under name equivalence it is possible to define a new 
type via

•Such a construction is called an alias. 

29

TYPE new_type = old_type;
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Name Equivalence: Aliases 

•Two ways to interpret an alias:

• Strict name equivalence

• New_type is a different type than old_type.

•  Loose name equivalence 

• New_type is the same type as old_type.

30

TYPE new_type = old_type;
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Problem with Loose

31

TYPE celsius_temp = REAL;
     farhen_temp = REAL;
VAR  c: celsius_temp;
     f: farhen_temp;
...
f:=c;(* probably should be an error*)
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Type Conversion

•A value of one type can be used in a context of 
another type using type conversion or type cast

32
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Converting Type Cast

•Under a converting type cast, the underlying bits are 
changed

33

int i; 
float f= 3.4;
i = (int) f;
/* runtime */

C
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Non-Converting Type Cast

•Under a Non-converting type cast, the underlying bits 
are not altered.

34

int i; 
float f= 3.4;
i = *((int*) & f);
/* Compile time*/

C
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Type Checking 

•Type Equivalence: When are the types of two values 
are the same?

•Type Compatibility: Can a value of A be used when 
type B is expected?

•Type Inference: What is the type of an expression, 
given the type of the operands?
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Type Compatibility

•Most languages do not require type equivalence in 
every context

•Two types T and S are compatible in Ada if any of the 
following conditions are true:

• T and S are equivalent

• T is a subtype of S

• S is a subtype of T

• T and S are arrays with the same number elements and same 
type of elements

36
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Type Compatibility

•Type coercion allows a value of one type to be used in 
a context that expects another.

37

short int s; 
unsigned long int l;
...
s=l;

C



The University of North Carolina at Chapel Hill  

Type Compatibility

•Type coercion allows a value of one type to be used in 
a context that expects another.

38

short int s; 
unsigned long int l;
...
s=l;

C

This makes the system 
type weaker.
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Generic Reference Types

•It is often useful to have a generic reference type that 
can hold any type of object

• in Java this is Object

• In C and C++ this is void *

39

void* v; 
int* i;
...
v=i;

C
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Type Checking 

•Type Equivalence: When are the types of two values 
are the same?

•Type Compatibility: Can a value of A be used when 
type B is expected?

•Type Inference: What is the type of an expression, 
given the type of the operands?

40
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Type Inference

•Usually the type of the overall expression is easy.

•However, for subranges and composite objects is not 
so simple. 

41
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Subranges

42

type Atype = 0..20;
     Btype = 10..20;
var a: Atype;
    b: Btype;
...
a+b;

Pascal

What is the type of a+b?
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Types in ML: Type Inference Extreme

• Full-blown type inference 

• The “feel” of untyped declarations without losing the checks provided 
by strong typing 

• Accommodates polymorphism:

• ML figures out that fib is a function that takes an integer and retains an 
integer through a series of deductions, usually starting with any literals

43

fun fib n = 
    let fun fib_helper f1 f2 i = 
        if i = n then f2 else fib_helper f2 (f1 + f2) (i + 1) 
    in 
        fib_helper 0 1 0 
    end;
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ML Type Correctness = Type Consistency

• The key to ML’s type inference is the absence of inconsistency or 
ambiguity.

• Functions whose type cannot be inferred by the operators or literals 
used will require explicit type declarations: 

• But polymorphism is used where possible...

44

fun isquare x = x * x; (* Defaults to int -> int *)

fun rsquare x:real = x * x; (* real -> real *)
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Polymorphism in ML

• Functions that do not use literals or type-specific operations in their 
definitions are recognized by the interpreter as polymorphic:

45

- fun twice f x = f (f x);
val twice = fn : ('a -> 'a) -> 'a -> 'a

- twice (fn x => x / 2.0) 1.0;
val it = 0.25 : real

- twice (fn x => x ^ "ee") "whoop";
val it = "whoopeeee" : string
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Type Unification

• Part of ML’s type inference is unification — composing or combining 
multiple types in a consistent manner 

• Example:  E1 has type ‘a * int and E2 has type string * ’b 

• if true then E1 else E2 is inferred as having type string * int 

• Application for polymorphic operations on data structures

• List manipulation orthogonal to type of list

• Operations on user-defined data types

• e.g. binary tree insertion, deletion, search

• Higher order functions

46
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Built-in Higher Order Functions: map

• map applies a given function to every element in the list

Is actually a curried function of type ('a -> 'b) -> 'a list -> 'b list

• Format:     map function list

• Can also use anonymous function:

47

- fun times2 x = x * 2.0;
val times2 = fn : real -> real
- map times2 [2.5,5.0,7.5];
val it = [5.0,10.0,15.0] : real list

- map (fn x => 2 * x) [1,2,3];
val it = [2,4,6] : int list
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Built-in Higher Order Functions: foldr and foldl

• foldr combines elements of of a list using a given operation

• Known in functional programming circles as reduce

• Again, a curried function 

• Type is ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

• Format:     foldr binary_function start_value list

• op keyword before an operator gives the underlying function

• e.g., can pass  (op <)  as an argument of type int * int -> bool

48

- foldr (op +) 0 [1,2,3,4];
val it = 10 : int
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Built-in Higher Order Functions: foldr and foldl

• More examples:

• foldl is a left-to-right version of foldr

• Different results for operations like subtraction:

49

- foldr op* 1.0 [2.0, 4.0];
val it = 8.0 : real 

- foldr (op ^) "" ["abc","def","ghi"]; 
val it = "abcdefghi" : string

- foldl (op -) 0 [1,2,3,4]; (* 4-(3-(2-(1-0))) = 2 *)
val it = 2 : int

- foldr (op -) 0 [1,2,3,4]; (* 1-(2-(3-(4-0))) = ~2 *)
val it = ~2 : int
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Records

•Records (structs in C and C++) allow for a collection 
of related data to be manipulated together.

50

struct foo{
int a;
int b;

}
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Record: Memory Layout

•There may be holes in the allocation of memory

51

type ore = record
   name : two_char;
   atom_num: integer;
   atom_weight: real;
   met: Boolean;
end;

name

atom_num

met

atom_weight

4 bytes
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Record: Memory Layout

•There may be holes in the allocation of memory

52

type ore = record
   name : two_char;
   atom_num: integer;
   atom_weight: real;
   met: Boolean;
end;

name

atom_num

met

atom_weight

4 bytes

Holes waste space and 
complicate comparisons.
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Other arrangements

53

name atom_nu

met

atom_weight

4 bytes

name

atom_num

met

atom_weight

4 bytes

mber

Packed Rearranged
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Other arrangements

54

name atom_nu

met

atom_weight

4 bytes

name

atom_num

met

atom_weight

4 bytes

mber

Packed Rearranged

Packed layouts require multiple instructions for 
accessing elements and assignments. 
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Variant Records

•A variant record (union) provides two or more 
alternative fields or collections of field but only one bit 
is valid at any given time
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struct element{
  char* Full_name;
  union{
    int atom_num;
    char atom_sym[2];
  }
}

element can 
contain atom_num 
or atom_sym, but 

not both.
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Variant Records

56

struct element{
  char* Full_name;
  union{
    int atom_num;
    char atom_sym[2];
  }
}

full_name

atom_num

4 bytes

full_name

atom_sym

4 bytes


