
The University of North Carolina at Chapel Hill

Lecture 12: Data Types (and Some Leftover ML)
COMP 524 Programming Language Concepts
Stephen Olivier
March 3, 2009

Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goals

•Introduce concepts pertaining to data types

•Examine the ML type system, polymorphism, and higher
order functions

• map, foldl, and foldr built-ins especially

2

The University of North Carolina at Chapel Hill

Data Types

•Computers manipulate sequences of bits

•We manipulate higher level data (numbers, strings, etc.)

•Data types transform bits into higher level data

3

The University of North Carolina at Chapel Hill

Data Types:

•Types provide implicit context

• Compilers can infer information, so programmers write less
code.

• e.g., The expression a+b in Java may be adding two integer,
two floats or two strings depending on context

•Types provide a set of semantically valid operations

• Compilers can detect semantic mistakes

• e.g., Python’s list type supports append() and pop(), but
complex numbers do not

4

The University of North Carolina at Chapel Hill

Type Systems

•A type system consists of

1.A mechanism to define types and associate them with
language constructs

2.A set of rules for “type equivalence,” “type compatibility,”
and “type inference.”

5

The University of North Carolina at Chapel Hill

Type Systems

•A type system consists of

1.A mechanism to define types and associate them with
language constructs

2.A set of rules for “type equivalence,” “type compatibility,”
and “type inference.”

6

Discuss these in detail

The University of North Carolina at Chapel Hill

Type Systems: Type Checking

•Type Checking is the process of ensuring that a
program obeys the language’s type compatibility
rules

• Strongly typed.

• Weakly typed.

7

The University of North Carolina at Chapel Hill

Strongly Typed

•Strongly typed languages always detect type errors

• All expressions and objects must have a type

• All operations must be applied in appropriate type contexts

•Statically typed languages are strongly typed
languages in which all type checking occurs at
compile time

8

The University of North Carolina at Chapel Hill

Strongly Typed

•Strongly typed languages always detect type errors

• All expressions and objects must have a type

• All operations must be applied in appropriate type contexts

•Statically typed languages are strongly typed
languages in which all type checking occurs at
compilee time

9

Even FUNCTIONS!

The University of North Carolina at Chapel Hill

Weakly Typed

•In weakly typed languages “anything can go”

• Characteristic of assembly language

• See also: Perl and earlier scripting languages

•On the other end of the spectrum, strongly typed
languages don’t allow implicit conversion

10

The University of North Carolina at Chapel Hill

What is a type?

•Three points of view

• Denotational: Set of values

• Constructive: A type is “built-in” or “composite”

• Abstraction-based: A type is an interface that defines a set of
consistent operations

11

The University of North Carolina at Chapel Hill

Denotation

•Under denotation, a value has a given type if it
belongs to a set.

•An object has a type, if its value is guaranteed to be in
a certain set.

•A set of values is called a domain (i.e., its type).

•Similar to enum in C

12

The University of North Carolina at Chapel Hill

Built-in Types

•Built-in/primitive/elementary types

• Mimic hardware units

• e.g., boolean, character, integer, real (float)

•Implementation varies across languages

•Characters are traditionally one-byte quantitates using
the ASCII character set

13

The University of North Carolina at Chapel Hill

Built-in Types: Unicode

•Newer languages have built-in characters that support
Unicode character sets

•Unicode is implemented using two-byte quantities.

14

The University of North Carolina at Chapel Hill

Built-in Types: Unicode

•Newer languages have built-in characters that support
Unicode character sets

•Unicode is implemented using two-byte quantities.

15

This is very important for moving legacy code.

The University of North Carolina at Chapel Hill

Built-in Types: Numeric Types

•Most languages support integers and floats

• (Their value range is implementation dependent)

•Some languages support other numeric types

• Complex Numbers (e.g., Fortran, Python)

• Rational Number (e.g., scheme, common Lisp)

• Signed and Unsigned integers (e.g., C, Modula-2)

• Fixed point Numbers (e.g., Ada, Cobol)

•Some languages distinguish numeric types depending
on their precision.

16

The University of North Carolina at Chapel Hill

Composite

•A composite type is created by applying type
constructors to simpler types

• Records

• Structs

• Arrays

• Sets

• Classes

17

The University of North Carolina at Chapel Hill

Classification of Types: Enumerations

•Enumerations improve program readability and error
checking.

•First introduced in Pascal (but also exist in C):

• type weekday = (sun, mon, tue, wed, thu, fri, sat);

• They are defined in order, so they can be used in enumeration
controlled loops

18

The University of North Carolina at Chapel Hill

Classification of Types: Subranges

•Subranges define a valid range of values for a
variable.

• e.g., Type test_score = 0..100;

•The improve readability and error checking

19

The University of North Carolina at Chapel Hill

Classification of Types: Orthogonality

•Recall, orthogonality means that all features behaves
consistently.

• e.g., a=b always denotes assignment.

•This makes life much easier when reasoning about
different types.

20

The University of North Carolina at Chapel Hill

Type Checking

•Type Equivalence

•Type Compatibility

•Type Inference

21

Now that we’ve discussed the basics of types, lets
go back to equivalence, compatibility and

inference.

The University of North Carolina at Chapel Hill

Type Checking

•Type Equivalence: When are the types of two values
are the same?

•Type Compatibility: Can a value of A be used when
type B is expected?

•Type Inference: What is the type of an expression,
given the type of the operands?

22

The University of North Carolina at Chapel Hill

Type Checking

•Type Equivalence: When are the types of two values
are the same?

•Type Compatibility: Can a value of A be used when
type B is expected?

•Type Inference: What is the type of an expression,
given the type of the operands?

23

The University of North Carolina at Chapel Hill

Type Equivalence

•Type Equivalence is defined in terms of structural and
name equivalence.

24

The University of North Carolina at Chapel Hill

Structural Equivalence

•Two types are structurally equivalent if they have the
same components put together in the same way

25

typedef struct{int a,b;} foo1

typedef struct{
int a,b;

}foo2

Equivalent!

The University of North Carolina at Chapel Hill

Structural Equivalence

•Two types are structurally equivalent if they have the
same components put together in the same way

26

typedef struct{int a,b;} foo1

typedef struct{
int b;
int a;

}foo2

Equivalent? Yes, in most languages.

The University of North Carolina at Chapel Hill

Structural Equivalence

27

typedef struct{
char *name;
char *addre;
int age;

} student;

Equivalent...

typedef struct{
char *name;
char *addre;
int age;

} school;

... but probably not intentional.

The University of North Carolina at Chapel Hill

Name Equivalence.

•Name equivalence assumes that two definitions with
different names are not the same.

•Solves the “student-school” problem

28

The University of North Carolina at Chapel Hill

Name Equivalence: Aliases

•Under name equivalence it is possible to define a new
type via

•Such a construction is called an alias.

29

TYPE new_type = old_type;

The University of North Carolina at Chapel Hill

Name Equivalence: Aliases

•Two ways to interpret an alias:

• Strict name equivalence

• New_type is a different type than old_type.

• Loose name equivalence

• New_type is the same type as old_type.

30

TYPE new_type = old_type;

The University of North Carolina at Chapel Hill

Problem with Loose

31

TYPE celsius_temp = REAL;
 farhen_temp = REAL;
VAR c: celsius_temp;
 f: farhen_temp;
...
f:=c;(* probably should be an error*)

The University of North Carolina at Chapel Hill

Type Conversion

•A value of one type can be used in a context of
another type using type conversion or type cast

32

The University of North Carolina at Chapel Hill

Converting Type Cast

•Under a converting type cast, the underlying bits are
changed

33

int i;
float f= 3.4;
i = (int) f;
/* runtime */

C

The University of North Carolina at Chapel Hill

Non-Converting Type Cast

•Under a Non-converting type cast, the underlying bits
are not altered.

34

int i;
float f= 3.4;
i = *((int*) & f);
/* Compile time*/

C

The University of North Carolina at Chapel Hill

Type Checking

•Type Equivalence: When are the types of two values
are the same?

•Type Compatibility: Can a value of A be used when
type B is expected?

•Type Inference: What is the type of an expression,
given the type of the operands?

35

The University of North Carolina at Chapel Hill

Type Compatibility

•Most languages do not require type equivalence in
every context

•Two types T and S are compatible in Ada if any of the
following conditions are true:

• T and S are equivalent

• T is a subtype of S

• S is a subtype of T

• T and S are arrays with the same number elements and same
type of elements

36

The University of North Carolina at Chapel Hill

Type Compatibility

•Type coercion allows a value of one type to be used in
a context that expects another.

37

short int s;
unsigned long int l;
...
s=l;

C

The University of North Carolina at Chapel Hill

Type Compatibility

•Type coercion allows a value of one type to be used in
a context that expects another.

38

short int s;
unsigned long int l;
...
s=l;

C

This makes the system
type weaker.

The University of North Carolina at Chapel Hill

Generic Reference Types

•It is often useful to have a generic reference type that
can hold any type of object

• in Java this is Object

• In C and C++ this is void *

39

void* v;
int* i;
...
v=i;

C

The University of North Carolina at Chapel Hill

Type Checking

•Type Equivalence: When are the types of two values
are the same?

•Type Compatibility: Can a value of A be used when
type B is expected?

•Type Inference: What is the type of an expression,
given the type of the operands?

40

The University of North Carolina at Chapel Hill

Type Inference

•Usually the type of the overall expression is easy.

•However, for subranges and composite objects is not
so simple.

41

The University of North Carolina at Chapel Hill

Subranges

42

type Atype = 0..20;
 Btype = 10..20;
var a: Atype;
 b: Btype;
...
a+b;

Pascal

What is the type of a+b?

The University of North Carolina at Chapel Hill

Types in ML: Type Inference Extreme

• Full-blown type inference

• The “feel” of untyped declarations without losing the checks provided
by strong typing

• Accommodates polymorphism:

• ML figures out that fib is a function that takes an integer and retains an
integer through a series of deductions, usually starting with any literals

43

fun fib n =
 let fun fib_helper f1 f2 i =
 if i = n then f2 else fib_helper f2 (f1 + f2) (i + 1)
 in
 fib_helper 0 1 0
 end;

The University of North Carolina at Chapel Hill

ML Type Correctness = Type Consistency

• The key to ML’s type inference is the absence of inconsistency or
ambiguity.

• Functions whose type cannot be inferred by the operators or literals
used will require explicit type declarations:

• But polymorphism is used where possible...

44

fun isquare x = x * x; (* Defaults to int -> int *)

fun rsquare x:real = x * x; (* real -> real *)

The University of North Carolina at Chapel Hill

Polymorphism in ML

• Functions that do not use literals or type-specific operations in their
definitions are recognized by the interpreter as polymorphic:

45

- fun twice f x = f (f x);
val twice = fn : ('a -> 'a) -> 'a -> 'a

- twice (fn x => x / 2.0) 1.0;
val it = 0.25 : real

- twice (fn x => x ^ "ee") "whoop";
val it = "whoopeeee" : string

The University of North Carolina at Chapel Hill

Type Unification

• Part of ML’s type inference is unification — composing or combining
multiple types in a consistent manner

• Example: E1 has type ‘a * int and E2 has type string * ’b

• if true then E1 else E2 is inferred as having type string * int

• Application for polymorphic operations on data structures

• List manipulation orthogonal to type of list

• Operations on user-defined data types

• e.g. binary tree insertion, deletion, search

• Higher order functions

46

The University of North Carolina at Chapel Hill

Built-in Higher Order Functions: map

• map applies a given function to every element in the list

Is actually a curried function of type ('a -> 'b) -> 'a list -> 'b list

• Format: map function list

• Can also use anonymous function:

47

- fun times2 x = x * 2.0;
val times2 = fn : real -> real
- map times2 [2.5,5.0,7.5];
val it = [5.0,10.0,15.0] : real list

- map (fn x => 2 * x) [1,2,3];
val it = [2,4,6] : int list

The University of North Carolina at Chapel Hill

Built-in Higher Order Functions: foldr and foldl

• foldr combines elements of of a list using a given operation

• Known in functional programming circles as reduce

• Again, a curried function

• Type is ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

• Format: foldr binary_function start_value list

• op keyword before an operator gives the underlying function

• e.g., can pass (op <) as an argument of type int * int -> bool

48

- foldr (op +) 0 [1,2,3,4];
val it = 10 : int

The University of North Carolina at Chapel Hill

Built-in Higher Order Functions: foldr and foldl

• More examples:

• foldl is a left-to-right version of foldr

• Different results for operations like subtraction:

49

- foldr op* 1.0 [2.0, 4.0];
val it = 8.0 : real

- foldr (op ^) "" ["abc","def","ghi"];
val it = "abcdefghi" : string

- foldl (op -) 0 [1,2,3,4]; (* 4-(3-(2-(1-0))) = 2 *)
val it = 2 : int

- foldr (op -) 0 [1,2,3,4]; (* 1-(2-(3-(4-0))) = ~2 *)
val it = ~2 : int

The University of North Carolina at Chapel Hill

Records

•Records (structs in C and C++) allow for a collection
of related data to be manipulated together.

50

struct foo{
int a;
int b;

}

The University of North Carolina at Chapel Hill

Record: Memory Layout

•There may be holes in the allocation of memory

51

type ore = record
 name : two_char;
 atom_num: integer;
 atom_weight: real;
 met: Boolean;
end;

name

atom_num

met

atom_weight

4 bytes

The University of North Carolina at Chapel Hill

Record: Memory Layout

•There may be holes in the allocation of memory

52

type ore = record
 name : two_char;
 atom_num: integer;
 atom_weight: real;
 met: Boolean;
end;

name

atom_num

met

atom_weight

4 bytes

Holes waste space and
complicate comparisons.

The University of North Carolina at Chapel Hill

Other arrangements

53

name atom_nu

met

atom_weight

4 bytes

name

atom_num

met

atom_weight

4 bytes

mber

Packed Rearranged

The University of North Carolina at Chapel Hill

Other arrangements

54

name atom_nu

met

atom_weight

4 bytes

name

atom_num

met

atom_weight

4 bytes

mber

Packed Rearranged

Packed layouts require multiple instructions for
accessing elements and assignments.

The University of North Carolina at Chapel Hill

Variant Records

•A variant record (union) provides two or more
alternative fields or collections of field but only one bit
is valid at any given time

55

struct element{
 char* Full_name;
 union{
 int atom_num;
 char atom_sym[2];
 }
}

element can
contain atom_num
or atom_sym, but

not both.

The University of North Carolina at Chapel Hill

Variant Records

56

struct element{
 char* Full_name;
 union{
 int atom_num;
 char atom_sym[2];
 }
}

full_name

atom_num

4 bytes

full_name

atom_sym

4 bytes

