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Goals

•Discuss Arrays, Pointers, Recursive Types, Strings, Sets, 
Lists, Equality, and Garbage Collection
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Arrays

•Arrays are usually stored in contiguous locations
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row-major 
order
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Arrays

•Arrays are usually stored in contiguous locations
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Multidimensional Arrays: Address Calculations
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A: array [L1..U1] of array [L2..U2] 
   of array [L3..U3] of element_type

L2
L1

L3

j

k

i
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Multidimensional Arrays: Address Calculations
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A: array [L1..U1] of array [L2..U2] 
   of array [L3..U3] of element_type

L2
L1

L3

j

k

i

S3 = size of element
S2 = (U3 - L3 + 1) x S3
S1 = (U2 - L2 + 1) x S2

Address of A[i,j,k] 
Address of A + (i-L1)xS1 + (j-L2)xS2 + (k-L3)xS3
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Multidimensional Arrays: Address Calculations
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A: array [L1..U1] of array [L2..U2] 
   of array [L3..U3] of element_type

L2
L1

L3

j

k

i

Optimized
(i x S1) + (j x S2) + (k x S3) + address A - 

[(L1 x S1) + (L2 x S2) + (L3 x S3)].
the phrase [(L1 x S1) + (L2 x S2) + (L3 x S3)] can be 

determined at compile-time
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Heap-based Allocation

•The heap is a region of storage in which sub-blocks can 
be allocated and deallocated.
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Issues with Heap Allocation

•Pointers

• Used in value model of variables

• Not necessary for reference model

•Dangling References

•Garbage Collection
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Pointers

•Pointers serve two purposes:

• Efficient (and sometimes intuitive) access to elaborated objets 
(as in C)

• Dynamic creation of linked data structures, in conjunction with 
a heap storage manger. 

•Several Languages (e.g., Pascal) restrict pointers to 
accessing things in the heap

•Pointers are used with a value model of variables

• They aren’t needed with a reference model (already implicit)
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C Pointers and Arrays

•C Pointers and arrays
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int *a == int a[]
int **a == int *a[]
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C Pointers and Arrays

•But equivalencies don’t always hold 

• Specifically, a declaration allocates an array if it specifies a size 
for the first dimension

• otherwise it allocates a pointer
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int **a, int *a[] // Pointer to pointer to int
int *a[n] //n-element array of row pointers
int a[n][m] // 2-D array
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Contiguous 2D Arrays vs. Row Pointers (C)
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U N C
D O O
B C

K

W A K
U V A
V T

E

F S U

char schools[][5] = {
“UNC”, “DOOK”, “BC”, 
“WAKE”, “UVA”, “VT”,
“FSU”

};      /* 35B data */

U N C D
O O K B
C W A K
E U V A

V T F
S U

char *schools[] = {
“UNC”, “DOOK”, “BC”, 
“WAKE”, “UVA”, “VT”,
“FSU”

}; /* 28B data+28B ptr */
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Recursive Types (now with Pointers!): Binary Tree
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struct chr_tree{
struct chr_tree *l, *r;
char var;

}

type chr_tree;
type chr_tree_ptr is access chr_tree;
type chr_tree is record
left,right:chr_tree_ptr;
val:character; 

end record;

C

Ada
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Binary Tree with Explicit Pointers
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W
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Binary Tree in Reference Model 

C C C

C C C

A R

A X

C C C

C C C

A Y

A Z

C C C

A W

Lisp

‘(#\R (#\X () ()) (#\Y (#\Z () ()) (#\W () ())))
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Problems with Explicit Reclamation

•Explicit reclamation of heap objects is problematic

• The programmer may forget to deallocate some objects

• Causing memory leaks

• For example, in the previous example, the programmer may forget 
to include the delete statement

• References to deallocated objets may not be reset

• Creating dangling references

17

ptr1 ptr2



The University of North Carolina at Chapel Hill  

Problems with Explicit Reclamation

•Explicit reclamation of heap objects is problematic

• The programmer may forget to deallocate some objects

• Causing memory leaks

• For example, in the previous example, the programmer may forget 
to include the delete statement

• References to deallocated objets may not be reset

• Creating dangling references
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ptr2
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Issues with Heap Allocation
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Dealing with Dangling References

•Tombstones: Use an intermediary device

• Pointers refer to the tombstone rather than the actual object

• Indirection costs

• Tombstones invalidated on deallocation

• Problem: when do we reclaim them

•Lock and Keys: Use a universal key to per-object lock

• Check key against lock each access (costly)

• Reset lock to zero on deallocation and it should get a different 
value upon reuse

20



The University of North Carolina at Chapel Hill  

Tombstones

21

ptr1new(ptr1);

ptr2 := ptr1;
ptr1

ptr2

delete(ptr1);

ptr2

ptr1
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Locks and Keys

ptr1:135942new(ptr1);

ptr2 := ptr1;

delete(ptr1);

135942

ptr1:135942

ptr2:135942

135942

0ptr1:135942

ptr2:135942
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Garbage Collection

•Automatic reclamation of the space used by objects 
that are no longer useful:

• Developed for functional languages

• Essential in this programming paradigm.

• More and more popular in imperative languages

• Java, C#, Python

•Generally slower than manual reclamation, but it 
eliminates a very frequent programming error
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Garbage Collection: Techniques 

•When is an object no longer useful?

•There are several garbage collection techniques that 
answer this question in a different manner

• Reference counting

• Mark-and-sweep collection

• store-and-copy

• generational collection

24
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Reference Counting

•Each object has an associated reference counter

•Keeps reference counter up to date, and deallocates 
objects when the counter is zero

25

2 “foo”ptr1

HeapStack

ptr2
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Reference Counting

•Each object has an associated reference counter

•Keeps reference counter up to date, and deallocates 
objects when the counter is zero
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1 “foo”ptr1

HeapStack

ptr2
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Reference Counting

•Each object has an associated reference counter

•Keeps reference counter up to date, and deallocates 
objects when the counter is zero
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0 “foo”ptr1

HeapStack

ptr2
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Reference Counting: Problems

•Extra overhead of storing and updating reference 
counts

•Strong Typing required

• Impossible in language like C

• It cannot be used for variant records

• It doesn’t work with circular data structures

• This is a problem with this definition of useful object as an 
object with one or more references

28
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Reference Counting: Circular Data Structures
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2 “larry” 1 “moe”

1 “curly”

stooges

HeapStack

1 “larry” 1 “moe”

1 “curly”HeapStack

stooges
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Mark-and-Sweep Collection

• A better definition of useless is one that cannot be reached by 
following a chain of valid pointers starting from outside the 
heap.

• Mark-and-Sweep GC applies this definition
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Mark-and-Sweep

• Algorithm:

• Mark every block in the heap as useless

• Starting with all pointers outside the heap, recursively explore 
all linked data structures

• Add every block that remain marked to the free list.

• Run whenever free space is low
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Mark-and-Sweep Collection: Problems

•Block must begin with an indication of its size

•A stack of depth proportional to the longest 
reference chain is required

• AND! We are usually running low when running the GC

•Must “stop the world” to run

• Much work in parallel garbage collection to address this

• Also can use periodically in combination with reference 
counting

32
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Mark-and-Sweep Collection: Problems

•Block must begin with an indication of its size

•A stack of depth proportional to the longest 
reference chain is required

• AND! We are usually running low when running the GC 

•Must “stop the world” to run

• Much work in parallel garbage collection to address this

• Also can use periodically in combination with reference 
counting
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If we use type descriptors, that indicate their 
size, then we don’t need to do this. 
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Mark-and-Sweep Collection: Problems

•Block must begin with an indication of its size

•A stack of depth proportional to the longest 
reference chain is required

• AND! We are usually running low when running the GC

•Must “stop the world” to run

• Much work in parallel garbage collection to address this

• Also can use periodically in combination with reference 
counting
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Possible to implement without a stack!
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Mark-and-Sweep Collection: Pointer Reversal
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Mark-and-Sweep Collection: Pointer Reversal
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Mark-and-Sweep Collection: Pointer Reversal
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Mark-and-Sweep Collection: Pointer Reversal
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Mark-and-Sweep Collection: Pointer Reversal
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Mark-and-Sweep Collection: Pointer Reversal
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Mark-and-Sweep Collection: Pointer Reversal
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Store-and-Copy

•Use to reduce external fragmentation

•S-C divides the available space in half and allocates 
everything in that half until its full

•When that happens, copy each useful block to the 
other half, clean up the remaining block, and switch 
the roles of each half.

•Drawback: only get to use half of heap at a time

42
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Generational Collection

•Based on the idea that objects are often short-lived

•Heap space divided into regions based on how many 
times objects have been seen by the garbage collector

•Region of objects allocated since last GC (called 
“nursery”) explored for reclamation before the regions 
containing older objects
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Lists

•We’ve seen lists in ML

•In LISP, homogeneity is not required

• A list is technically defined recursively as either the empty list 
or a pair consisting of an object (which may be either a list or 
an atom) and another (shorter) list

• In Lisp, in fact, a program is a list, and can extend itself at run 
time by constructing a list and executing it. 

•Lists are also supported in some imperative programs 
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List Comprehensions

•Specify expression, enumerator, and filter(s)

•Example: squares of odd numbers less than 100:

•Provided in Haskell, Miranda, Python

45

 [i*i | i <- [1..100], i ‘mod’ 2 == 1]



The University of North Carolina at Chapel Hill  

Strings

•A string may be regarded as merely an array of 
characters or as a distinct data type

•Some languages that consider them character arrays 
nonetheless provide some syntactic sugar for them

• For example, C:     char str[ ] = “hello world”;

• Orthogonality problem: can’t assign string literal after declaration

•Support for variable-length strings

• Built-in type in functional languages (Lisp, Scheme, ML)

• String class in object-oriented languages (C++, Java, C#)
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Sets

•A Set is an unordered collection of an arbitrary number 
of distinct values of a common type.

•The universe comprises all the possible values that 
could be in the set

• e.g. The 256 ASCII characters

•Often represented as a bit vector for fast set operations

• Each bit represents one possible member of the set

• This is not feasable for a large universe, i.e. the integers

• Use a hash table or tree instead
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Equality and Assignment

•What does equality mean for complex types?

• Shallow comparison: refer to the same object

• Deep comparison: identical structure with identical values 
throughout all data members

•Can also have shallow or deep assignment

• Tricky with pointers: In a deep copy, pointers in both copies 
point to the same objects
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