Lecture 14: Control Flow

COMP 524 Programming Language Concepts
Stephen Olivier
March 19, 2009

Based on slides/notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hil ||

Goal of Talk

* The goal of this talk is to talk about the flow of programs

The University of North Carolina at Chapel Hill

Control Flow

e Control flow is the order in which a program executes.

e For imperative languages (e.g., Java), this is
fundamental.

e For other programing paradigms (e.g., functional), the
compilers/interpreters take care of ordering.

The University of North Carolina at Chapel Hill

Control Flow Mechanisms

® Sequencing
e Textual order, precedence in Expression
* Selection

teration

Procedural abstraction

Recursion

e Concurrency

e Nondeterminacy

The University of North Carolina at Chapel Hill

Seqguencing

e Sequencing is the order in which statements are to be
executed.

e For imperative languages, typically things are executed
in the order they appear!

This is not necessarily the case for functional
languages!

The University of North Carolina at Chapel Hill

Selection

e Selection occurs whenever there is a choice between
two or more courses of action.

e e.g. if/then/else & switch/case.

The University of North Carolina at Chapel Hill

If-Then-Else

e For complex conditionals two ways to evaluate

e Evaluate and put into register (works but slow)

e Use short-circuiting in assembly to have jump codes (fast and
awesome)

The University of North Carolina at Chapel Hill

-

re:

r3:

re:

rl:

1f rl=0 goto L2
L1: then_clause

goto L3
LZ2: else_clause
L3:

Q[RegularJ

e

Short
Circuit -»

n Carolina at Chapel Hill

1f ((A>B) && (C>D))) or (E!'=F)
then {then_clause}
else {else _clause}

ri:=A

re:=B

1f rl<=r2 goto L4

s

re:=D

i1f rl>r2 goto L1
L4: rl:=E

re:=F

1f rl = r2 goto L2
L1:then_clause

goto L3
L2:else_clause
L3:

-

Switch-Case

e Not only is it more convenient in certain circumstances
but it is more efficient!

e Can implement a case-switch as an indexed table rather than a
very long piece assembly code.

The University of North Carolina at Chapel Hill

Unstructured Flow: The GOTO statement

e Assembly languages controls flow via conditional and
unconditional jumps

The University of North Carolina at Chapel Hill

Unstructured Flow: The GOTO statement

e Some higher level languages have similar statement

-

goto stop_point;

stop p01nt

The University of North Carolina at Chapel Hill

Unstructured Flow: The GOTO statement

T COULD RESTRUCTURE | | EH, SCREW GOOD PRACTICE.
THE PR‘OGRAWS FLOW | | HOW BAD CAN 1T BE?

OR USE ONE LITTLE goto main_sub3;
'GOTO‘\ INSTEAD. W’

: ; l? *COMPILE*

Unstructured Flow: The GOTO statement

e Using goto has long been considered bad practice

e See “Goto Considered Harmful” paper
e “Spaghetti code”
e Difficult to debug

The University of North Carolina at Chapel Hill

Structured Flow

e Structured flow (i.e., if-then-else, loops, etc...) provide
the same expressive power

e Bohm & Jacopini in 1964 proved that sequencing, selection,
and itteration can effectively emulate gotos

* However, sometimes gotos are more convenient.

The University of North Carolina at Chapel Hill

Special Cases--Perl, redo

p
while ($d++){

#redo jumps to here
$r = random($

1 F >100) {r

1T(dr

The University of North Carolina at Chapel Hill

Special Cases--Perl, last

p
while ($d++){

if($d>=37) {$res = “done”; last;}
$sum +=%$d;

e Similar effect in C/C++/Java with break statement

The University of North Carolina at Chapel Hill

Special Cases--Perl, next

;Vh'i.le ($d<37){
$d++;
1f(($d%5)==1) {next};

Special Cases

e Early subroutine returns

/;oid ncaaRound2(String team) {

1f (team == “Dook”) {
cout << “Better luck next year”;
return;

e Exceptions and Errors

The University of North Carolina at Chapel Hill

lteration and Recursion

* These two control flow mechanisms allow a computer to
perform the same set of operations repeatedly

e Otherwise program code size is linear to the amount of
computation to be done!

® Also, needed to be able to express any algorithm
e We call all language that can do this Turing complete
e Functional languages mainly rely on recursion.

e e discussed its use in ML

e Imperative languages mainly rely on iteration.

The University of North Carolina at Chapel Hill

lteration

e [teration usually takes the form of loops

e Two principal varieties:

e Enumeration controlled loops: iterates through an
enumerated set.

e Logically controlled loops: iterates while (or until) a logical
statement is true.

The University of North Carolina at Chapel Hill

Examples

p
int 1 = 0;
for (int 1 =0;1<=10;1++){| [while (1<=10){

The University of North Carolina at Chapel Hill

lteration: Enumeration-Controlled Loops

e Fortran enumeration-
controlled loops are
comprised of several do 10 i=1, 100, 2
elements

e Label at end of loop 10:continue ! no-op

¢ Index variable
e Bounds and step size

e Body of the loop

The University of North Carolina at Chapel Hill

Problems with Fortran

e | oop boundaries must be integer

* Index variable can change within
body of loop

e Goto statements may jump in
and out of loop

e The value of i after termination
of the loop is implementation
dependent

* The test of the loop takes place
at the end so body is executed
at least once.

The University of North Carolina at Chapel Hill

do 10 1=1, 10,2

10:continue

lteration: Empty conditions

FOR i:= first TO last

END

p
rl:=first

ré:.=step
r3:=last
L1: 1f rl>r2 goto L2

:=f1rst
.=step
r3:=last
goto LZ
I
rl:=rl+r2
L2: 1f rl<=r3 goto L1

rl:=rl+r2
goto L1

The University of North Carolina at Chapel Hill

litions

TO last BY

rl:=first
ré:.=step
r3:=last

L1: 1f rl>r2 goto L2

rl:=first
re:.=step
r3:=last
goto L2

L1:

rl:=rl+r2
goto L1

rl:=rl+r?2
L2: 1f rl<=r3 goto L1

grolina at Chapel Hill

Only works if
first+(L(last-first)/step] +1)step

IS at most the largest integer.

p
rl:=first

ré:.=step
r3:=last
L1: 1f rl>r2 goto L2

rl:=first
re:.=step
r3:=last
goto L2

L1:

rl:=rl+r2
goto L1

rl:=rl+r?2
L2: 1f rl<=r3 goto LJ |

R

The University of North Carolina at Chapel Hill 26

Backwards loop

e Decrement rather than increment the index variable

e Some languages have an explicit notation:

|FOR 1:= last DOWNTO first BY step DO '

The University of North Carolina at Chapel Hill

Access to Index Outside the Loop

-

var c: ‘a’ .. ‘z’; Lf rl>r2 goto L3
FOR c:= ‘a’ to TO ‘z’ DO :
BEGIN if

rl=r2 goto L2

The University of North Carolina at Chapel Hill

Access to Index Outside the Loop

Preserves c after loop

-

¢)

var Cc:. °'d

SRR Lf rl>r2 goto L3
FOR c:= ‘a’ to TO “z’ DO .

BEGIN

rl=r2 goto L2
rl:=rl +1
goto L1
L2: c:=rl
L3:

The University of North Carolina at Chapel Hill

lteration: lterators

e l[terators are used to enumerate the elements of any
well-defined set.

e Moreover, they generalize arithmetic sequences.

*|n previous examples, iteration was always over the

elements of an arithmetic sequences
4

for i in int$from_to_by(first,last,step) do

end

The University of North

foreach In Perl

-
@colors = (“I"Ed”, “gr'een”, “blue”)
foreach $elt (@colors){

print $elt, “, ”;

)

¥

print “are the colors we have\n”;
-

p
@colors = (“red”, “green”, “blue”)
foreach (@colors){ #use $_

pr'int $_, cc, ”» .

)

¥

print “are the colors we have\n”;

lterators as objects

e Java allows for iterators as objects

p
hasNext(); // return true if next element '
p-

next(); // Returns next element '

|remove(); // Gets rid of the last element (optional) '

The University of North Carolina at Chapel Hill

lteration: Logically-controlled Loops

* Three types:
e Post-test: Test at end
e Midtest: Test in middle

* Pre-test: Test at beginning

The University of North Carolina at Chapel Hill

Examples

-~

repeat for(; ;)4 while (1==false)

unt11 1==true 1f 1==true break —

The University of North Carolina at Chapel Hill

Parallel Loops

g
for(i = 0; i < 100; i++)
{

}

C[1] = A[1] + B[1];

Processor 1 Processor 2

/%or(i =0; 1 <50; 1++) /;or(i =50; 1 < 100; i++)
{ {

C[i] = A[1] + B[1]; C[i] = A[1] + B[1];
¥

The University of North Carolina at Chapel Hill

Parallel Loops

=z
for(i = 0; 1 < 100; 1++)
{

C[i] = A[i] + B[1i];

First 50
iterations

Processor 2

p
for(i = 50; 1 < 100; i++)
{

¥

C[i] = A[1] + B[1];

Parallel Loops

z
for(1 = 0; 1 < 100; 1++)]
{

([1] = A[1] + B

Second 50

First 50 . .
lterations

iterations

Parallel Loops

g
for(i = 0; i < 100; i++)
{

}

grandtotal += A[1];

Processor 1 Processor 2

- 4
for(L = 0; 1 < 50; 1++) for(i = 50; 1 < 100; 1++)
{ {

grandtotal += A[1]; grandtotal += A[1];
¥

The University of North Carolina at Chapel Hill

Parallel Loops

o~

(

Concurrent update
problem!

We will discuss options

| Proq¢ 1O fix this In lectures on
CcOoNncurrency.

L < 100; 1i++)

(g randtotal +="

