
The University of North Carolina at Chapel Hill

Lecture 14: Control Flow

COMP 524 Programming Language Concepts
Stephen Olivier
March 19, 2009

Based on slides/notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goal of Talk

•The goal of this talk is to talk about the flow of programs

2

The University of North Carolina at Chapel Hill

Control Flow

•Control flow is the order in which a program executes.

•For imperative languages (e.g., Java), this is
fundamental.

•For other programing paradigms (e.g., functional), the
compilers/interpreters take care of ordering.

3

The University of North Carolina at Chapel Hill

Control Flow Mechanisms

•Sequencing

• Textual order, precedence in Expression

•Selection

•Iteration

•Procedural abstraction

•Recursion

•Concurrency

•Nondeterminacy

4

The University of North Carolina at Chapel Hill

Sequencing

•Sequencing is the order in which statements are to be
executed.

•For imperative languages, typically things are executed
in the order they appear!

5

This is not necessarily the case for functional
languages!

The University of North Carolina at Chapel Hill

Selection

•Selection occurs whenever there is a choice between
two or more courses of action.

• e.g. if/then/else & switch/case.

6

The University of North Carolina at Chapel Hill

If-Then-Else

•For complex conditionals two ways to evaluate

• Evaluate and put into register (works but slow)

• Use short-circuiting in assembly to have jump codes (fast and
awesome)

7

The University of North Carolina at Chapel Hill

If-Then-else

8

if ((A>B) && (C>D))) or (E!=F)
then {then_clause}
else {else _clause}

r1:=A
r2:=B
r1:=r1>r2
r2:=C
r3:=D
r2:=r2>r3
r1:=r1&r2
r2:=E
r3:=F
r2:=r2!=r3
r1:=r1|r2
if r1=0 goto L2

L1: then_clause
goto L3

L2: else_clause
L3:

r1:=A
r2:=B
if r1<=r2 goto L4
r1:=C
r2:=D
if r1>r2 goto L1

L4: r1:=E
r2:=F
if r1 = r2 goto L2

L1:then_clause
goto L3

L2:else_clause
L3:

Regular

Short
Circuit

The University of North Carolina at Chapel Hill

Switch-Case

•Not only is it more convenient in certain circumstances
but it is more efficient!

• Can implement a case-switch as an indexed table rather than a
very long piece assembly code.

9

The University of North Carolina at Chapel Hill

Unstructured Flow: The GOTO statement

•Assembly languages controls flow via conditional and
unconditional jumps

10

JMP 30
...
30:ADD r1, #3

The University of North Carolina at Chapel Hill

Unstructured Flow: The GOTO statement

•Some higher level languages have similar statement

11

goto stop_point;
...
stop_point:
cout<<“stopping”;

The University of North Carolina at Chapel Hill

Unstructured Flow: The GOTO statement

12

The University of North Carolina at Chapel Hill

Unstructured Flow: The GOTO statement

•Using goto has long been considered bad practice

• See “Goto Considered Harmful” paper

• “Spaghetti code”

• Difficult to debug

13

The University of North Carolina at Chapel Hill

Structured Flow

•Structured flow (i.e., if-then-else, loops, etc...) provide
the same expressive power

• Bohm & Jacopini in 1964 proved that sequencing, selection,
and itteration can effectively emulate gotos

•However, sometimes gotos are more convenient.

14

The University of North Carolina at Chapel Hill

Special Cases--Perl, redo

15

while ($d++){
#redo jumps to here
$r = random($d);
if($r>100) {redo};
$sum +=$r*$d;

}

The University of North Carolina at Chapel Hill

Special Cases--Perl, last

16

while ($d++){
if($d>=37) {$res = “done”; last;}
$sum +=$d;

}
#last jumps to here

•Similar effect in C/C++/Java with break statement

The University of North Carolina at Chapel Hill

Special Cases--Perl, next

17

while ($d<37){
$d++;
if(($d%5)==1) {next};
$sum +=$d;
#next jumps to here

}

•Similar effect in C/C++/Java with continue statement

The University of North Carolina at Chapel Hill

Special Cases

•Early subroutine returns

•Exceptions and Errors

18

void ncaaRound2(String team) {
if (team == “Dook”) {
cout << “Better luck next year”;
return;

}
ncaaRegionals(team);

}

The University of North Carolina at Chapel Hill

Iteration and Recursion

•These two control flow mechanisms allow a computer to
perform the same set of operations repeatedly

• Otherwise program code size is linear to the amount of
computation to be done!

• Also, needed to be able to express any algorithm

• We call all language that can do this Turing complete

•Functional languages mainly rely on recursion.

• We discussed its use in ML

•Imperative languages mainly rely on iteration.

19

The University of North Carolina at Chapel Hill

Iteration

•Iteration usually takes the form of loops

•Two principal varieties:

• Enumeration controlled loops: iterates through an
enumerated set.

• Logically controlled loops: iterates while (or until) a logical
statement is true.

20

The University of North Carolina at Chapel Hill

Examples

21

for (int i =0;i<=10;i++){
 ...
}

int i = 0;
while (i<=10){
 ...
i++;

}

Enumeration Logical

The University of North Carolina at Chapel Hill

Iteration: Enumeration-Controlled Loops

•Fortran enumeration-
controlled loops are
comprised of several
elements

• Label at end of loop

• Index variable

• Bounds and step size

• Body of the loop

22

do 10 i=1, 100, 2
...

10:continue ! no-op

The University of North Carolina at Chapel Hill

Problems with Fortran

•Loop boundaries must be integer

• Index variable can change within
body of loop

•Goto statements may jump in
and out of loop

•The value of i after termination
of the loop is implementation
dependent

•The test of the loop takes place
at the end so body is executed
at least once.

23

do 10 i=1, 10,2
...

10:continue

The University of North Carolina at Chapel Hill

Iteration: Empty conditions

24

FOR i:= first TO last BY step DO
...

END

r1:=first
r2:=step
r3:=last

L1: if r1>r2 goto L2
...
r1:=r1+r2
goto L1

L2:

r1:=first
r2:=step
r3:=last
goto L2

L1: ...
r1:=r1+r2

L2: if r1<=r3 goto L1

The University of North Carolina at Chapel Hill

Iteration: Empty conditions

25

FOR i:= first TO last BY step DO
...

END

r1:=first
r2:=step
r3:=last

L1: if r1>r2 goto L2
...
r1:=r1+r2
goto L1

L2:

r1:=first
r2:=step
r3:=last
goto L2

L1: ...
r1:=r1+r2

L2: if r1<=r3 goto L1

Slow

The University of North Carolina at Chapel Hill

Iteration: Empty conditions

26

FOR i:= first TO last BY step DO
...

END

r1:=first
r2:=step
r3:=last

L1: if r1>r2 goto L2
...
r1:=r1+r2
goto L1

L2:

r1:=first
r2:=step
r3:=last
goto L2

L1: ...
r1:=r1+r2

L2: if r1<=r3 goto L1

Only works if
first+(⎣(last-first)/step⎦+1)step

is at most the largest integer.

•Decrement rather than increment the index variable

•Some languages have an explicit notation:

The University of North Carolina at Chapel Hill

Backwards loop

27

FOR i:= last DOWNTO first BY step DO

The University of North Carolina at Chapel Hill

Access to Index Outside the Loop

28

r1:= ‘a’
r2:= ‘z’
if r1>r2 goto L3

L1: ...
if r1=r2 goto L2
r1:=r1 +1
goto L1

L2: c:=r1
L3:

var c: ‘a’ .. ‘z’;
FOR c:= ‘a’ to TO ‘z’ DO
BEGIN

END;

The University of North Carolina at Chapel Hill

Access to Index Outside the Loop

29

r1:= ‘a’
r2:= ‘z’
if r1>r2 goto L3

L1: ...
if r1=r2 goto L2
r1:=r1 +1
goto L1

L2: c:=r1
L3:

var c: ‘a’ .. ‘z’;
FOR c:= ‘a’ to TO ‘z’ DO
BEGIN

END;

Preserves c after loop

The University of North Carolina at Chapel Hill

Iteration: Iterators

•Iterators are used to enumerate the elements of any
well-defined set.

• Moreover, they generalize arithmetic sequences.

•In previous examples, iteration was always over the
elements of an arithmetic sequences

30

for i in int$from_to_by(first,last,step) do
...

end

Clu

The University of North Carolina at Chapel Hill

foreach in Perl

31

@colors = (“red”, “green”, “blue”)
foreach $elt (@colors){
print $elt, “, ”;

}
print “are the colors we have\n”;

@colors = (“red”, “green”, “blue”)
foreach (@colors){ #use $_
print $_, “, ”;

}
print “are the colors we have\n”;

The University of North Carolina at Chapel Hill

Iterators as objects

•Java allows for iterators as objects

32

hasNext(); // return true if next element

next(); // Returns next element

remove(); // Gets rid of the last element (optional)

The University of North Carolina at Chapel Hill

Iteration: Logically-controlled Loops

•Three types:

• Post-test: Test at end

• Midtest: Test in middle

• Pre-test: Test at beginning

33

The University of North Carolina at Chapel Hill

Examples

34

repeat
...

until i==true;

for(;;){
...
if i==true break;
...

}

while (i==false)
{
...

}

MidtestPost-test Pre-test

The University of North Carolina at Chapel Hill

Parallel Loops

35

for(i = 0; i < 100; i++)
{
C[i] = A[i] + B[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
C[i] = A[i] + B[i];

}

for(i = 50; i < 100; i++)
{
C[i] = A[i] + B[i];

}

The University of North Carolina at Chapel Hill

Parallel Loops

36

for(i = 0; i < 100; i++)
{
C[i] = A[i] + B[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
C[i] = A[i] + B[i];

}

for(i = 50; i < 100; i++)
{
C[i] = A[i] + B[i];

}

First 50
iterations

The University of North Carolina at Chapel Hill

Parallel Loops

37

for(i = 0; i < 100; i++)
{
C[i] = A[i] + B[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
C[i] = A[i] + B[i];

}

for(i = 50; i < 100; i++)
{
C[i] = A[i] + B[i];

}

First 50
iterations

Second 50
iterations

The University of North Carolina at Chapel Hill

Parallel Loops

38

for(i = 0; i < 100; i++)
{
grandtotal += A[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
grandtotal += A[i];

}

for(i = 50; i < 100; i++)
{
grandtotal += A[i];

}

The University of North Carolina at Chapel Hill

Parallel Loops

39

for(i = 0; i < 100; i++)
{
grandtotal += A[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
grandtotal += A[i];

}

for(i = 50; i < 100; i++)
{
grandtotal += A[i];

}

Concurrent update
problem!

We will discuss options
to fix this in lectures on

concurrency.

