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Goal of Talk

•The goal of this talk is to talk about the flow of programs
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Control Flow

•Control flow is the order in which a program executes. 

•For imperative languages (e.g., Java), this is 
fundamental. 

•For other programing paradigms (e.g., functional), the 
compilers/interpreters take care of ordering.
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Control Flow Mechanisms  

•Sequencing

• Textual order, precedence in Expression

•Selection

•Iteration

•Procedural abstraction

•Recursion

•Concurrency

•Nondeterminacy 
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Sequencing 

•Sequencing is the order in which statements are to be 
executed.

•For imperative languages, typically things are executed 
in the order they appear! 
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This is not necessarily the case for functional 
languages!
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Selection

•Selection occurs whenever there is a choice between 
two or more courses of action.

• e.g. if/then/else & switch/case.
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If-Then-Else

•For complex conditionals two ways to evaluate

• Evaluate and put into register (works but slow)

• Use short-circuiting in assembly to have jump codes (fast and 
awesome) 
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If-Then-else
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if ((A>B) && (C>D))) or (E!=F)
then {then_clause}
else {else _clause}

r1:=A
r2:=B
r1:=r1>r2
r2:=C
r3:=D
r2:=r2>r3
r1:=r1&r2
r2:=E
r3:=F
r2:=r2!=r3
r1:=r1|r2
if r1=0 goto L2

L1: then_clause
goto L3

L2: else_clause
L3:

r1:=A
r2:=B
if r1<=r2 goto L4
r1:=C
r2:=D
if r1>r2 goto L1

L4: r1:=E
r2:=F
if r1 = r2 goto L2

L1:then_clause
goto L3

L2:else_clause
L3:

Regular

Short
Circuit
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Switch-Case

•Not only is it more convenient in certain circumstances 
but it is more efficient!

• Can implement a case-switch as an indexed table rather than a 
very long piece assembly code. 
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Unstructured Flow: The GOTO statement

•Assembly languages controls flow via conditional and 
unconditional jumps
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JMP 30
...
30:ADD r1, #3
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Unstructured Flow: The GOTO statement

•Some higher level languages have similar statement
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goto stop_point;
...
stop_point:
cout<<“stopping”;
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Unstructured Flow: The GOTO statement
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Unstructured Flow: The GOTO statement

•Using goto has long been considered bad practice

• See “Goto Considered Harmful” paper

• “Spaghetti code”

• Difficult to debug
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Structured Flow

•Structured flow (i.e., if-then-else, loops, etc...) provide 
the same expressive power

• Bohm & Jacopini in 1964 proved that sequencing, selection, 
and itteration can effectively emulate gotos

•However, sometimes gotos are more convenient.
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Special Cases--Perl, redo
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while ($d++){
#redo jumps to here
$r = random($d);
if($r>100) {redo};
$sum +=$r*$d;

}
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Special Cases--Perl, last
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while ($d++){
if($d>=37) {$res = “done”; last;}
$sum +=$d;

}
#last jumps to here

•Similar effect in C/C++/Java with break statement
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Special Cases--Perl, next

17

while ($d<37){
$d++;
if(($d%5)==1) {next};
$sum +=$d;
#next jumps to here

}

•Similar effect in C/C++/Java with continue statement
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Special Cases

•Early subroutine returns

•Exceptions and Errors
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void ncaaRound2(String team) {
if (team == “Dook”) {
cout << “Better luck next year”;
return;

} 
ncaaRegionals(team);

}
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Iteration and Recursion

•These two control flow mechanisms allow a computer to 
perform the same set of operations repeatedly

• Otherwise program code size is linear to the amount of 
computation to be done!

• Also, needed to be able to express any algorithm

• We call all language that can do this Turing complete

•Functional languages mainly rely on recursion.

• We discussed its use in ML

•Imperative languages mainly rely on iteration.
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Iteration 

•Iteration usually takes the form of loops

•Two principal varieties:

• Enumeration controlled loops: iterates through an 
enumerated set.

• Logically controlled loops: iterates while (or until) a logical 
statement is true. 
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Examples
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for (int i =0;i<=10;i++){
 ...
}

int i = 0;
while (i<=10){
 ...
i++;

}

Enumeration Logical
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Iteration: Enumeration-Controlled Loops

•Fortran enumeration-
controlled loops are 
comprised of several 
elements

• Label at end of loop

• Index variable

• Bounds and step size

• Body of the loop
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do 10 i=1, 100, 2
...

10:continue  ! no-op
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Problems with Fortran

•Loop boundaries must be integer

• Index variable can change within 
body of loop

•Goto statements may jump in 
and out of loop

•The value of i after termination 
of the loop is implementation 
dependent

•The test of the loop takes place 
at the end so body is executed 
at least once.
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do 10 i=1, 10,2
...

10:continue
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Iteration: Empty conditions
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FOR i:= first TO last BY step DO
...

END

r1:=first
r2:=step
r3:=last

L1: if r1>r2 goto L2
...
r1:=r1+r2
goto L1

L2:

r1:=first
r2:=step
r3:=last
goto L2

L1: ...
r1:=r1+r2

L2: if r1<=r3 goto L1
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Iteration: Empty conditions
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FOR i:= first TO last BY step DO
...

END

r1:=first
r2:=step
r3:=last

L1: if r1>r2 goto L2
...
r1:=r1+r2
goto L1

L2:

r1:=first
r2:=step
r3:=last
goto L2

L1: ...
r1:=r1+r2

L2: if r1<=r3 goto L1

Slow
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Iteration: Empty conditions
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FOR i:= first TO last BY step DO
...

END

r1:=first
r2:=step
r3:=last

L1: if r1>r2 goto L2
...
r1:=r1+r2
goto L1

L2:

r1:=first
r2:=step
r3:=last
goto L2

L1: ...
r1:=r1+r2

L2: if r1<=r3 goto L1

Only works if 
first+(⎣(last-first)/step⎦+1)step

is at most the largest integer.



•Decrement rather than increment the index variable

•Some languages have an explicit notation:
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Backwards loop
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FOR i:= last DOWNTO first BY step DO
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Access to Index Outside the Loop
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r1:= ‘a’
r2:= ‘z’
if r1>r2 goto L3

L1: ...
if r1=r2 goto L2
r1:=r1 +1
goto L1

L2: c:=r1
L3:

var c: ‘a’ .. ‘z’;
FOR c:= ‘a’ to TO ‘z’ DO
BEGIN
 ....
END;
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Access to Index Outside the Loop
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r1:= ‘a’
r2:= ‘z’
if r1>r2 goto L3

L1: ...
if r1=r2 goto L2
r1:=r1 +1
goto L1

L2: c:=r1
L3:

var c: ‘a’ .. ‘z’;
FOR c:= ‘a’ to TO ‘z’ DO
BEGIN
 ....
END;

Preserves c after loop
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Iteration: Iterators

•Iterators are used to enumerate the elements of any 
well-defined set.

• Moreover, they generalize arithmetic sequences.

•In previous examples, iteration was always over the 
elements of an arithmetic sequences
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for i in int$from_to_by(first,last,step) do
...

end

Clu
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foreach in Perl
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@colors = (“red”, “green”, “blue”)
foreach $elt (@colors){
print $elt, “, ”;

}
print “are the colors we have\n”;

@colors = (“red”, “green”, “blue”)
foreach (@colors){ #use $_
print $_, “, ”;

}
print “are the colors we have\n”;
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Iterators as objects

•Java allows for iterators as objects
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hasNext(); // return true if next element

next(); // Returns next element

remove(); // Gets rid of the last element (optional)
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Iteration: Logically-controlled Loops

•Three types: 

• Post-test: Test at end

• Midtest: Test in middle

• Pre-test: Test at beginning 
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Examples
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repeat
...

until i==true;

for(;;){
...
if i==true break;
...

}

while (i==false)
{
...

}

MidtestPost-test Pre-test
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Parallel Loops
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for(i = 0; i < 100; i++)
{
C[i] = A[i] + B[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
C[i] = A[i] + B[i];

}

for(i = 50; i < 100; i++)
{
C[i] = A[i] + B[i];

}
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Parallel Loops
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for(i = 0; i < 100; i++)
{
C[i] = A[i] + B[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
C[i] = A[i] + B[i];

}

for(i = 50; i < 100; i++)
{
C[i] = A[i] + B[i];

}

First 50 
iterations
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Parallel Loops
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for(i = 0; i < 100; i++)
{
C[i] = A[i] + B[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
C[i] = A[i] + B[i];

}

for(i = 50; i < 100; i++)
{
C[i] = A[i] + B[i];

}

First 50 
iterations

Second 50 
iterations
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Parallel Loops

38

for(i = 0; i < 100; i++)
{
grandtotal += A[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
grandtotal += A[i];

}

for(i = 50; i < 100; i++)
{
grandtotal += A[i];

}
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Parallel Loops
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for(i = 0; i < 100; i++)
{
grandtotal += A[i];

}

Processor 1 Processor 2

for(i = 0; i < 50; i++)
{
grandtotal += A[i];

}

for(i = 50; i < 100; i++)
{
grandtotal += A[i];

}

Concurrent update 
problem!

We will discuss options 
to fix this in lectures on 

concurrency.


