
The University of North Carolina at Chapel Hill

Lecture 16: Logic Programming in Prolog
COMP 524 Programming Language Concepts
Stephen Olivier
March 26, 2009

Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Goal of Lecture

•Understand concepts associated with logic
programming

•Program in the Prolog language

2

The University of North Carolina at Chapel Hill

Axioms and Goals

•Logic Programming is based on a series of axioms.

• Axioms define the language

• After the axioms have been stated the user states a goal and
the logic language attempts to find a series of axioms to
satisfy the goal.

3

C←A,B
D←C

D←A,B

The University of North Carolina at Chapel Hill

Axioms and Goals

•Logical Programming is based on a series of axioms.

• Axioms define the language

• After the axioms have been stated the user states a goal and
the logical language attempts to find a series of axioms to
satisfy the goal.

4

C←A,B
D←C

D←A,B

This C←A,B should be read as “C, if A and B.”
C is the head and A and B define the body.

The statement is called a Horn Clause

The University of North Carolina at Chapel Hill

Prolog

•A prolog interpreter runs in the context of a database of
clauses.

•Each clause is composed of terms, which may be
constants, variables, or structures.

•An atom is Prolog is an identifier beginning with a
lowercase letter, a sequence of “punctuation”
characters, or a quoted character string:

5

a b + ‘Hi, Mom’

The University of North Carolina at Chapel Hill

Numbers

•Numbers resemble integers and floating point constants
of other languages

6

The University of North Carolina at Chapel Hill

Variables

•Variables look like identifier with an upper case letter

•Variables can be instantiated to take on arbitrary values
at run time.

7

X Y Zebra

The University of North Carolina at Chapel Hill

Structures

•Structures consist of an atom called the functor and a
list of arguments.

•The parentheses must come directly after the atom (no
white space)

8

apple(bar, qud).
bin_tree(foo, bin_tree(pear,larch))

The University of North Carolina at Chapel Hill

Clauses

•Clauses are classified as facts or rules each of which
ends with a period.

•A fact is a Horn clause without a right-hand side.

•A rule has a right hand side.

9

loser(dook).

lame(X) :- loser(X), expensive(X).

The University of North Carolina at Chapel Hill

Query

•It is possible to right a query or a goal, which are
statements with no “left-hand side”

•Queries can return multiple answers

10

?-loser(X).

X=dook;
X=state

The University of North Carolina at Chapel Hill

Closed World Assumption

•Suppose our database includes only the following:

•Now we query on Virginia Tech:

•Does that mean VT really isn’t a loser?

• Their mascot is a turkey!

11

loser(dook).
loser(state).

-?loser(vt).
no

The University of North Carolina at Chapel Hill

Closed World Assumption

•The interpretation here is that Prolog does not have
sufficient knowledge in the database to prove that VT is
a loser.

•As far as Prolog is concerned, all that is true about the
world can be proved from the database.

• So-called Closed World Assumption

12

The University of North Carolina at Chapel Hill

Resolution Principle

•Resolution Principle states that for two Horn clauses A
and B. If the head of A matches one of the terms in B,
then the body of A can replace the term in B.

13

takes(jane_doe,comp524).
takes(jane_doe,comp121).
takes(john_smith,comp524).
takes(john_smith,art101).
classmates(X,Y):-takes(X,Z),takes(Y,Z).

X= jane_doe. Z=comp524.
classmates(jane_doe,Y):-takes(Y,comp524).

The University of North Carolina at Chapel Hill

Unification

•Unification is the process of pattern-matching process
used to associate a variable with values. Variables that
are given values as a result of unification are said to be
instantiated.

14

...
classmates(X,Y):-takes(X,Z),takes(Y,Z).
?-classmates(john_smith,jane_doe).

The University of North Carolina at Chapel Hill

Unification rules

•A constant unifies only with itself

•Two structures unify iff they have the same functor and
the same number of arguments, and the corresponding
arguments unify recursively

•A variable unifies with anything. If the other thing has a
value, then the variable is instantiated. If the other thing
is an uninstantiated variable, then the two variables are
associated in such a way that if either is given a value
later, that the value will be shared by both.

15

The University of North Carolina at Chapel Hill

Unification rules

16

?-a=a.
yes
?-a=b.
no

•A constant unifies only with itself

The University of North Carolina at Chapel Hill

Unification rules

•Two structures unify iff they have the same functor and
the same number of arguments, and the corresponding
arguments unify recursively

17

?-foo(a,b)= foo(a,b).
yes
?-foo(a,b)=foo(X,b).
X = a;
no

The University of North Carolina at Chapel Hill

Unification rules

•A variable unifies with anything. If the other thing has a
value, then the variable is instantiated. If the other thing
sis an uninstantiated variable, then the two variables are
associated in such a way that if either is given a value
later, that the value will be shared by both.

18

?-foo(a,b)= foo(a,b).
yes
?-foo(a,b)=foo(X,b).
X = a;
no

The University of North Carolina at Chapel Hill

Arithmetic

•Can’t unify arithmetic

19

?-(2+3) = 5.
no
?-X is 1+2.
X=3
?-1+2 is 4-1
no
?-X is Y
<error>% Y isn’t instantiated
?-Y is 1+2, X is Y.
X=3
Y=3

The University of North Carolina at Chapel Hill

Assert and retract

•assert() adds a statement

• To allow modification of existing facts later, use dynamic at the
top of the knowledge base file

•retract() removes a statement

20

assert(father(vader,luke)).
retract(raining(carrboro)).

:- dynamic father/2.

The University of North Carolina at Chapel Hill

Other functions

•write -- writes value to output

•nl -- writes newline

•read -- read from input

•get -- gets a character (from input)

•put -- puts a character (into output)

•consult -- Read database clauses from a file

• Shorthand: [file].

•listing -- show the contents of the database

21

The University of North Carolina at Chapel Hill

Search/Execution Order

•Two approaches

• Start with existing clauses and work forward (forward chaining)

• Okay if there are many rules and few facts

• Start with the goal and work backwards (backward chaining)

• Often the better way to go

• This is what Prolog uses

22

The University of North Carolina at Chapel Hill

Backtracking DFS Search

•Prolog uses depth-first search with backtracking.

•Try this example with trace turned on

23

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X):-rainy(X),cold(X).

?- trace.
[trace] ?- snowy(X).

The University of North Carolina at Chapel Hill

Infinite Recursion

•Since Prolog takes a depth first approach for search
states, this can cause problems if not careful.

• Could encounter an infinite branch

• Order is important!

•Consider the example of a graph...

24

The University of North Carolina at Chapel Hill

Infinite recursion

25

edge(a,b).edge(b,c).edge(c,d).
edge(d,e).edge(b,e).edge(d,f).
path(X,X).
path(X,Y):-edge(Z,Y),path(X,Z).

edge(a,b).edge(b,c).edge(c,d).
edge(d,e).edge(b,e).edge(d,f).
path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).

edge(a,b).edge(b,c).edge(c,d).
edge(d,e).edge(b,e).edge(d,f).
path(X,Y):-path(X,Z),edge(Z,Y).
path(X,X).

The University of North Carolina at Chapel Hill

The cut

•The cut commits the interpreter to whatever choices
have been made since unifying the parent goal with the
left-hand side of the current rule

• Written as ! in Prolog

•So, it “prunes” the tree

26

The University of North Carolina at Chapel Hill

The not

•Alternatively, we can use not to guarantee that only one
statement is returned

27

not(x=y). %true
not(x=x). %false

The University of North Carolina at Chapel Hill

The not

•Alternatively, we can use not to guarantee that only one
statement is returned

28

not(P):-call(P), !, fail.
not(P).

The University of North Carolina at Chapel Hill

if...then...else

•We can use the cut to make if then else

29

statement:-if_clause, !, then_part.
statement:-else_part.

The University of North Carolina at Chapel Hill

Lists

•We can write a list as [a,b,c] or

•[a | [b,c]]

30

member(X,[X|T]).
member(X,[H|T]):-member(X,T).
sorted([]).
sorted([X]).
sorted(A,B|T]):-A=<B,sorted([B|T]).

The University of North Carolina at Chapel Hill

Looping with fail

31

append([],A,A).
append([H|T],A,[H|L]):-append(T,A,L).
print_part(L):-append(A,B,L),
	 	 	 	 write(A), write(' '), write(B), nl,
	 	 	 	 fail.

[] [a,b,c]
[a] [b,c]
[a,b] [c]
[a,b,c] []
no

The University of North Carolina at Chapel Hill

Looping with an unbounded generator

32

my_loop(N):-natural(I),
	 	 	 write(I), nl,
	 	 	 I>=N, !, fail.	

natural(1).
natural(N):-natural(M), N is M+1.

