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Goal of Lecture

•Understand concepts associated with logic 
programming

•Program in the Prolog language
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Axioms and Goals

•Logic Programming is based on a series of axioms.

• Axioms define the language

• After the axioms have been stated the user states a goal and 
the logic language attempts to find a series  of axioms to 
satisfy the goal.
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C←A,B
D←C
---------
D←A,B
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C←A,B
D←C
---------
D←A,B

This C←A,B should be read as “C, if A and B.”
C is the head and A and B define the body.

The statement is called a Horn Clause
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Prolog

•A prolog interpreter runs in the context of a database of 
clauses. 

•Each clause is composed of terms, which may be 
constants, variables, or structures. 

•An atom is Prolog is an identifier beginning with a 
lowercase letter, a sequence of “punctuation” 
characters, or a quoted character string:
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a b + ‘Hi, Mom’
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Numbers

•Numbers resemble integers and floating point constants 
of other languages
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Variables

•Variables look like identifier with an upper case letter

•Variables can be instantiated to take on arbitrary values 
at run time. 
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X Y Zebra
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Structures

•Structures consist of an atom called the functor and a 
list of arguments.

•The parentheses must come directly after the atom (no 
white space)
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apple(bar, qud).
bin_tree(foo, bin_tree(pear,larch))
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Clauses

•Clauses are classified as facts or rules each of which 
ends with a period. 

•A fact is a Horn clause without a right-hand side.

•A rule has a right hand side. 
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loser(dook).

lame(X) :- loser(X), expensive(X).
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Query

•It is possible to right a query or a goal, which are 
statements with no “left-hand side”

•Queries can return multiple answers
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?-loser(X).

X=dook;
X=state
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Closed World Assumption

•Suppose our database includes only the following:

•Now we query on Virginia Tech:

•Does that mean VT really isn’t a loser?

• Their mascot is a turkey!
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loser(dook).
loser(state).

-?loser(vt).
no
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Closed World Assumption

•The interpretation here is that Prolog does not have 
sufficient knowledge in the database to prove that VT is 
a loser.

•As far as Prolog is concerned, all that is true about the 
world can be proved from the database.

• So-called Closed World Assumption
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Resolution Principle

•Resolution Principle states that for two Horn clauses A 
and B. If the head of A matches one of the terms in B, 
then the body of A can replace the term in B. 
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takes(jane_doe,comp524).
takes(jane_doe,comp121).
takes(john_smith,comp524).
takes(john_smith,art101).
classmates(X,Y):-takes(X,Z),takes(Y,Z).

X= jane_doe. Z=comp524.
classmates(jane_doe,Y):-takes(Y,comp524).
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Unification 

•Unification is the process of pattern-matching process 
used to associate a variable with values. Variables that 
are given values as a result of unification are said to be 
instantiated.
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...
classmates(X,Y):-takes(X,Z),takes(Y,Z).
?-classmates(john_smith,jane_doe).
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Unification rules

•A constant unifies only with itself

•Two structures unify iff they have the same functor and 
the same number of arguments, and the corresponding 
arguments unify recursively 

•A variable unifies with anything. If the other thing has a 
value, then the variable is instantiated. If the other thing 
is an uninstantiated variable, then the two variables are 
associated in such a way that if either is given a value 
later, that the value will be shared by both. 
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Unification rules
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?-a=a.
yes
?-a=b.
no

•A constant unifies only with itself
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Unification rules

•Two structures unify iff they have the same functor and 
the same number of arguments, and the corresponding 
arguments unify recursively 
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?-foo(a,b)= foo(a,b).
yes
?-foo(a,b)=foo(X,b).
X = a;
no
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Unification rules

•A variable unifies with anything. If the other thing has a 
value, then the variable is instantiated. If the other thing 
sis an uninstantiated variable, then the two variables are 
associated in such a way that if either is given a value 
later, that the value will be shared by both. 
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?-foo(a,b)= foo(a,b).
yes
?-foo(a,b)=foo(X,b).
X = a;
no
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Arithmetic

•Can’t unify arithmetic 
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?-(2+3) = 5.
no
?-X is 1+2.
X=3
?-1+2 is 4-1
no
?-X is Y
<error>% Y isn’t instantiated 
?-Y is 1+2, X is Y.
X=3
Y=3
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Assert and retract

•assert() adds a statement

• To allow modification of existing facts later, use dynamic at the 
top of the knowledge base file

•retract() removes a statement
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assert(father(vader,luke)).
retract(raining(carrboro)).

:- dynamic father/2.
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Other functions

•write -- writes value to output

•nl -- writes newline

•read -- read from input

•get -- gets a character (from input)

•put -- puts a character (into output)

•consult -- Read database clauses from a file

• Shorthand: [file].

•listing -- show the contents of the database
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Search/Execution Order

•Two approaches

• Start with existing clauses and work forward (forward chaining)

• Okay if there are many rules and few facts

• Start with the goal and work backwards (backward chaining)

• Often the better way to go

• This is what Prolog uses
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Backtracking DFS Search

•Prolog uses depth-first search with backtracking.

•Try this example with trace turned on
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rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X):-rainy(X),cold(X).

?- trace.
[trace] ?- snowy(X).
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Infinite Recursion

•Since Prolog takes a depth first approach for search 
states, this can cause problems if not careful.

• Could encounter an infinite branch

• Order is important!

•Consider the example of a graph...
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Infinite recursion
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edge(a,b).edge(b,c).edge(c,d).
edge(d,e).edge(b,e).edge(d,f).
path(X,X).
path(X,Y):-edge(Z,Y),path(X,Z).

edge(a,b).edge(b,c).edge(c,d).
edge(d,e).edge(b,e).edge(d,f).
path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).

edge(a,b).edge(b,c).edge(c,d).
edge(d,e).edge(b,e).edge(d,f).
path(X,Y):-path(X,Z),edge(Z,Y).
path(X,X).
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The cut

•The cut commits the interpreter to whatever choices 
have been made since unifying the parent goal with the 
left-hand side of the current rule

• Written as ! in Prolog

•So, it “prunes” the tree
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The not

•Alternatively, we can use not to guarantee that only one 
statement is returned 
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not(x=y). %true
not(x=x). %false
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The not

•Alternatively, we can use not to guarantee that only one 
statement is returned 
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not(P):-call(P), !, fail.
not(P).



The University of North Carolina at Chapel Hill  

if...then...else

•We can use the cut to make if then else
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statement:-if_clause, !, then_part.
statement:-else_part.
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Lists

•We can write a list as [a,b,c] or

•[a | [b,c] ]
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member(X,[X|T]).
member(X,[H|T]):-member(X,T).
sorted([]).
sorted([X]).
sorted(A,B|T]):-A=<B,sorted([B|T]).
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Looping with fail
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append([],A,A).
append([H|T],A,[H|L]):-append(T,A,L).
print_part(L):-append(A,B,L),
	 	 	 	 write(A), write(' '), write(B), nl,
	 	 	 	 fail.

[] [a,b,c]
[a] [b,c]
[a,b] [c]
[a,b,c] []
no
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Looping with an unbounded generator
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my_loop(N):-natural(I), 
	 	 	 write(I), nl, 
	 	 	 I>=N, !, fail.	

natural(1).
natural(N):-natural(M), N is M+1.


