
The University of North Carolina at Chapel Hill

Lecture 17: Objects Continued
COMP 524 Programming Language Concepts
Stephen Olivier
April 7, 2009

Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Binding

2

class person {...}
class student : public person { ... }
class professor : public person { ... }

student s;
professor p;
...
person *x = &s;
person *y = &p;

x->print_label();
y->print_label();

The University of North Carolina at Chapel Hill

Binding

3

class person {...}
class student : public person { ... }
class professor : public person { ... }

student s;
professor p;
...
person *x = &s;
person *y = &p;

Static binding sets the type based on the
declared type of the reference

x->print_label();
y->print_label();

The University of North Carolina at Chapel Hill

Binding

4

class person {...}
class student : public person { ... }
class professor : public person { ... }

student s;
professor p;
...
person *x = &s;
person *y = &p;

Dynamic binding sets the type based on
the type of the object referenced

x->print_label();
y->print_label();

The University of North Carolina at Chapel Hill

Dynamic

•Java uses dynamic binding for all methods

•C++ uses static by default by allows a function to be
dynamically linked as necessary.

• virtual keyword specifies dynamic binding

5

class foo {
 ...
 virtual print_label ()
}

The University of North Carolina at Chapel Hill

Abstract

•Abstract classes have at least one function not defined

6

abstract class person {... };

class person {
 ...
public:
 virtual void print_mailing_label() = 0;
}

The University of North Carolina at Chapel Hill

Abstract methods and classes

•Abstract classes have at least one function not defined

7

abstract class person {... };

class person {
 ...
public:
 virtual void print_mailing_label() = 0;
}

This is called a purely virtual method

The University of North Carolina at Chapel Hill

Abstract Classes and Methods

•Java specifies an abstract method (not surprisingly)
using the abstract keyword

• abstract classes may or may not have abstract methods

•A class derived from abstract class must provide a body
for abstract / pure virtual functions

• Unless the derived class is also abstract...

8

The University of North Carolina at Chapel Hill

Generics

•Generics allow abstracting over unrelated types

9

template<class V>
class list {
 list_note<V> header;
public:
...
}

The University of North Carolina at Chapel Hill

Generics

•Generics allow abstracting over unrelated types

•Different flavors of polymorphism

• Dynamic method binding provides subtype polymorphism

• Create hierarchy by extending types

• Generics provide explicit parametric polymorphism

• Abstract over types

•Can be used together

10

The University of North Carolina at Chapel Hill

Multiple Inheritance

•C++ allows a class to be derived from more than one
parent class:

•What happens if teacher and researcher both have a
print() method?

• Could use scope resolution operator: teacher::print()

• Ambiguous call to print() disallowed by compiler

11

class professor : public teacher,
 public researcher {
 ... }

The University of North Carolina at Chapel Hill

Mix-in Inheritance

•This is a restricted form of multiple inheritance

•Consider the variant used in Java

•One “real” parent class from which data members and non-
virtual methods may be inherited

•Arbitrary number of interfaces specifying only pure virtual
methods and (possibly) static data members

•Much easier to implement that full-blown multiple
inheritance

12

The University of North Carolina at Chapel Hill

Smalltalk Basics

•Everything is an object (even numbers)

•Get things done by sending messages to objects

•To add 3 + 4, send the object 3 the message + with the
argument 4. The result is a reference to the object 7.

•Can provide multiple arguments with “mix-fix”:

•Here the message is displayOn: at: and the two arguments are
myScreen and location

13

myBox displayOn: myScreen at: location

The University of North Carolina at Chapel Hill

Smalltalk Conditionals

•Even selection is done by sending message to objects

•“< 0” message sent to n

•Resulting reference is sent arguments that are blocks

•Special value message sent back to selected block

14

n < 0
ifTrue: [abs <- n negated]
ifFalse: [abs <- n]

The University of North Carolina at Chapel Hill

Smalltalk Iteration

•Yep, also by sending messages to objects

•Code above sums up odd-indexed elements of an array

15

sum <- 0.
1 to: 100 by: 2 do:
[:i | sum <- sum + (a at: i)]

The University of North Carolina at Chapel Hill

Smalltalk Closures

•Since code blocks are objects, we can have references
to them:

•This reference represents the Smalltalk version of a
closure

16

b <- [n <- n + 1].

