
The University of North Carolina at Chapel Hill

Lecture 18: Concurrency
COMP 524 Programming Language Concepts
Stephen Olivier
April 14, 2009

Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Why Allow for Concurrency?

•Handle multiple events (web server request handling)

•Allow for more effective utilization of physical devices

•Allow for multiple processes to run on multiple
processors.

2

The University of North Carolina at Chapel Hill

Multiple Processor System

3

MultiprocessorMulticore

Cluster

Core

Chip

Shared Memory

The University of North Carolina at Chapel Hill

Multiple Processor System

4

MultiprocessorMulticore

Cluster

Core

Chip

Shared Memory

These are both called multiprocessor

The University of North Carolina at Chapel Hill

Race conditions

•A race condition occurs whenever there is a detrimental
way to interleave multiple segments of code.

•Race conditions are one of the hardest issues to do
correctly in a concurrent system.

• Languages and libraries offering guarantees of freedom from
race conditions have been the subject of much research

• Hard to do with good performance

5

The University of North Carolina at Chapel Hill 6

read head;
A->next:=head;
head:=A;

read head;
B->next:=head;
head:=B;

read head;
A->next:=head;
head:=A;
read head;
B->next:=head;
head:=B;

read head;
read head;
A->next:=head;
B->next:=head;
head:=A;
head:=B;

Possible interleaving of the routines above:

The University of North Carolina at Chapel Hill

Cache coherency

•Cache coherency is a problem when multiple
processors have their own local copies of data in their
cache and values change. (Usually solved in HW)

7

X=3 X=4 X=3

X=3

Bus

Memory

Cache

The University of North Carolina at Chapel Hill

Parallel Execution

•Heavyweight processes have their own memory space

•Lightweight processes share memory space.

•An execution context in a concurrent system is typically
called a thread

8

The University of North Carolina at Chapel Hill

Creating multiple threads

•Before Java and C#, parallel code consisted of an
annotated Fortran or C/C++ with library calls.

• e.g. OpenMP, MPI

• Still widely used, especially in scientific & industrial apps

•For Unix, the library for C/C++ is called POSIX
pthreads.

• Other frameworks built on top of pthreads

•Microsoft has a similar threading package for Windows

9

The University of North Carolina at Chapel Hill

Communication

•Reads and writes into shared memory space

• Available natively in shared memory systems

• Supported in some cluster interconnect technologies

•Messages between threads/processes

• Supported for both shared memory and clusters

10

The University of North Carolina at Chapel Hill

Synchronization

•Allows ordering of operations among threads

• Often needed for program correctness

•May be explicit (by the programmer) or implicit (by the
threading library to support higher level abstractions
such as loops)

•This is the primary subject of Section 12.3 (read)

11

The University of North Carolina at Chapel Hill

Remote Procedure Calls

•Remote Procedure Calls (RPC) are used to
communicate between a client and server

•The client calls a local stub, which packages the
parameters then sends them to the server and waits for
a response.

•Discussed in greater detail in Section 12.4.4 (read)

12

The University of North Carolina at Chapel Hill

Six ways to create threads

•co-begin

•parallel loops

•Launch-at elaboration

•fork

•implicit receipt

•Early Reply

13

The University of North Carolina at Chapel Hill

co-begin

•Multiple commands can be executed at the same time

14

par begin
 a:=3,
 begin
 c:=4;
 c:c+1
 end,
 b:=4
end

The University of North Carolina at Chapel Hill

parallel loops

•A loop in which iterations execute in parallel

15

co(i:=5 to 10)->
 p(a,b,i)
oc

The University of North Carolina at Chapel Hill

Launch-at-elaboration

•New threads are created when method is launched and
destroyed by end of method.

16

procedure P is
 task T is
 ...
 end T;
begin -- P
 ...
end P;

The University of North Carolina at Chapel Hill

Fork/Join

•Threads are created by a function call fork and
destroyed by the function call join

• Allows more general parallelism than some other models

•In Java 5 “forking” is supported by sending tasks to
functions that implement the Runnable or Callable
interface.

17

The University of North Carolina at Chapel Hill 18

A possible
execution using

co-begin, parallel
loops, or lauch-
at-elaboration

The University of North Carolina at Chapel Hill 19

A possible
execution using
explicit fork-join

The University of North Carolina at Chapel Hill

Fork-join example: Fibonacci in Cilk

•Cilk entends C to support fork-join with spawn & sync

20

cilk int fib(int n)
{
 if (n < 2) return n;
 else {
 int x, y;
 x = spawn fib(n - 1);
 y = spawn fib(n - 2);
 sync;
 return x + y;
 }
}

The University of North Carolina at Chapel Hill

Implicit receipt

•Implicit receipt is similar to a fork except that it causes a
new thread to be created in another memory space.

• Typical model for RPC

21

The University of North Carolina at Chapel Hill

Early reply

•Early reply allows for a thread to return a value but
continue executing.

• e.g. Do some work and return result to parent thread, then
update some logs

22

The University of North Carolina at Chapel Hill

Blocked and runnable

•At any given time a thread is either blocked or runnable.

•A thread is blocked if it is “waiting” for a resource

•Threads that are runnable but not running are enqueued
on the ready list.

23

The University of North Carolina at Chapel Hill

Preemption

•It is possible for a thread to be “preempted” by another
thread

• e.g., interrupt scheduling

24

The University of North Carolina at Chapel Hill

Yielding

•Its possible for a thread to yield

• Suspends execution and allows another thread to execute

• Thread state changes from runnable to blocked

•This can cause race conditions

• Particularly in combination with preemption

25

The University of North Carolina at Chapel Hill

Throughput-Oriented Systems

•Want to process events as quickly as possible

• e.g. Requests to a web server

•Limited communication and synchronization required
between threads

• Concurrent data access issues handled by database system

•Swap threads out while they wait for memory accesses
and remote communication

• Sun Niagara built to support many lightweight threads

• Cloud computing

26

The University of North Carolina at Chapel Hill

Compute-Oriented Systems

•One large program runs on many processors (shared
memory and/or a cluster)

• Typically one thread per processor

•Scientific apps such as climate simulation

•Sometimes require significant communication and
synchronization between threads

• Minimizing communication is typically key to performance

27

The University of North Carolina at Chapel Hill

Data Parallel Programming

•SIMD (Single Instruction Multiple Data)

• Same instructions performed on multiple data simultaneously

• Developed in the early Cray supercomputers

• Now built into mainstream processors

• e.g. 128-bit vector operations in MMX, SSE, Altivec, 3D Now

•SPMD (Single Program Multiple Data)

• Same program replicated onto multiple threads, each operates
on different data (usually based on its thread ID number)

• e.g. Parallel loops and regions in OpenMP

28

The University of North Carolina at Chapel Hill

Task Parallel Programming

•Divide work into a hierarchy of tasks

• Newly spawned tasks may be moved to idle threads

• Particularly useful for divide-and-conquer algorithms

•Cilk example given earlier uses this model

•New programming frameworks designed to promote
parallel programming for multicore

• Intel Thread Building Blocks and Ct

• Microsoft Thread Parallel Library

29

The University of North Carolina at Chapel Hill

Programming Language Issues

•Concurrency support in the language or in libraries?

•Do programmers use threads explicitly (e.g. pthreads) or
implicitly (e.g. simple forall loop, cilk spawn-sync)?

•Can the compiler provide auto-parallelization (i.e. Intel
compiler auto-vectorization for SSE)?

•Can the programmer specify data that is global vs. local
or where specific data resides?

•How is synchronization supported?

30

The University of North Carolina at Chapel Hill

Performance Issues

•Amdahl’s Law

• Speedup of a parallel program is limited by the time needed for
the sequential fraction of the program.

•Load imbalance

• Uneven distribution of work among processors

•Communication and Memory Operations

• Latency: time delay to access resource

• Bandwidth: amount of data transferable per unit time

• Contention: many threads want to access same resource

31

