Lecture 18: Concurrency

COMP 524 Programming Language Concepts
Stephen Olivier
April 14, 2009

Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hil ”

Why Allow for Concurrency”?

e Handle multiple events (web server request handling)
e Allow for more effective utilization of physical devices

e Allow for multiple processes to run on multiple
Processors.

)

Il The University of North Carolina at Chapel Hill

Core
Multiple Processor System Chip

Q Shared Memory

)

Il The University of North Carolina at Chapel Hill

p
These are both called multiprocessor l

Q Shared Memory

)

lIIl The University of North Carolina at Chapel Hill

Race conditions

e A race condition occurs whenever there is a detrimental
way to interleave multiple segments of code.

e Race conditions are one of the hardest issues to do
correctly in a concurrent system.

¢ | anguages and libraries offering guarantees of freedom from
race conditions have been the subject of much research

e Hard to do with good performance

)

Il The University of North Carolina at Chapel Hill

)

read head; read head;

Possible interleaving of the routines above:

a -

read head, read head;
A->next:=head; read head;
head:=A; A->next:=head;

Il The University of North Carolina at Chapel Hill

Cache coherency

e Cache coherency is a problem when multiple
processors have their own local copies of data in their
cache and values change. (Usually solved in HW)

Parallel Execution

* Heavyweight processes have their own memory space
e | ightweight processes share memory space.

* An execution context in a concurrent system is typically
called a thread

)

Il The University of North Carolina at Chapel Hill

Creating multiple threads

e Before Java and C#, parallel code consisted of an
annotated Fortran or C/C++ with library calls.

¢ e.g. OpenMP, MPI
e Still widely used, especially in scientific & industrial apps

e For Unix, the library for C/C++ is called POSIX
pthreads.

e Other frameworks built on top of pthreads

e Microsoft has a similar threading package for Windows

)

Il The University of North Carolina at Chapel Hill

Communication

e Reads and writes into shared memory space
e Available natively in shared memory systems

e Supported in some cluster interconnect technologies

e Messages between threads/processes

e Supported for both shared memory and clusters

)

Il The University of North Carolina at Chapel Hill

10

Synchronization

* Allows ordering of operations among threads

e Often needed for program correctness

e May be explicit (by the programmer) or implicit (by the
threading library to support higher level abstractions
such as loops)

e This is the primary subject of Section 12.3 (read)

)

lIl The University of North Carolina at Chapel Hill y

Remote Procedure Calls

e Remote Procedure Calls (RPC) are used to
communicate between a client and server

* The client calls a local stub, which packages the
parameters then sends them to the server and waits for
a response.

e Discussed in greater detail in Section 12.4.4 (read)

)

Il The University of North Carolina at Chapel Hill

12

Six ways to create threads

® co-begin

e parallel loops

e | aunch-at elaboration
o fork

e implicit receipt

e Early Reply

)

Il The University of North Carolina at Chapel Hill

13

co-begin

e Multiple commands can be executed at the same time

/par begin

a:=3,

begin
c:=4;
c:c+1

)

Il The University of North Carolina at Chapel Hill

14

parallel loops

* A loop in which iterations execute in parallel

)

co(i1:=5 to 10)->
p(a,b,1)

Il The University of North Carolina at Chapel Hill

15

Launch-at-elaboration

e New threads are created when method is launched and
destroyed by end of method.

4 :
procedure P 1s

task T 1is

end T;

)

Il The University of North Carolina at Chapel Hill

16

Fork/Join

* Threads are created by a function call fork and
destroyed by the function call join

e Allows more general parallelism than some other models

e|n Java 5 “forking” is supported by sending tasks to
functions that implement the Runnable or Callable
interface.

)

Il The University of North Carolina at Chapel Hill

17

Fork-join example: Fibonacci in Cilk

e Cilk entends C to support fork-join with spawn & sync

p
cilk int fib(int n)
{

1f (n < 2) return n;
else {

)

Il The University of North Carolina at Chapel Hill

20

Implicit receipt

e Implicit receipt is similar to a fork except that it causes a
new thread to be created in another memory space.

e Typical model for RPC

)

Il The University of North Carolina at Chapel Hill

21

Early reply

e Early reply allows for a thread to return a value but
continue executing.

* e.g. Do some work and return result to parent thread, then
update some logs

)

Il The University of North Carolina at Chapel Hill

22

Blocked and runnable

¢ At any given time a thread is either blocked or runnable.
e A thread is blocked if it is “waiting” for a resource

e Threads that are runnable but not running are enqueued
on the ready list.

)

Il The University of North Carolina at Chapel Hill

23

Preemption

e |t is possible for a thread to be “preempted” by another
thread

® e.g., interrupt scheduling

)

Il The University of North Carolina at Chapel Hill

24

Yielding

e |ts possible for a thread to yield
e Suspends execution and allows another thread to execute

* Thread state changes from runnable to blocked

e This can cause race conditions

e Particularly in combination with preemption

)

Il The University of North Carolina at Chapel Hill

25

Throughput-Oriented Systems

¢ \Want to process events as quickly as possible

¢ e.g. Requests to a web server

e | imited communication and synchronization required
between threads

e Concurrent data access issues handled by database system

e Swap threads out while they wait for memory accesses
and remote communication

e Sun Niagara built to support many lightweight threads

e Cloud computing

)

Il The University of North Carolina at Chapel Hill 26

Compute-Oriented Systems

e One large program runs on many processors (shared
memory and/or a cluster)

e Typically one thread per processor
e Scientific apps such as climate simulation

e Sometimes require significant communication and
synchronization between threads

e Minimizing communication is typically key to performance

)

Il The University of North Carolina at Chapel Hill 27

Data Parallel Programming

¢ SIMD (Single Instruction Multiple Data)
e Same instructions performed on multiple data simultaneously
e Developed in the early Cray supercomputers
e Now built into mainstream processors

¢ e.g. 128-bit vector operations in MMX, SSE, Altivec, 3D Now
e SPMD (Single Program Multiple Data)

e Same program replicated onto multiple threads, each operates
on different data (usually based on its thread ID number)

e e.g. Parallel loops and regions in OpenMP

)

Il The University of North Carolina at Chapel Hill

28

Task Parallel Programming

e Divide work into a hierarchy of tasks
e Newly spawned tasks may be moved to idle threads

e Particularly useful for divide-and-conquer algorithms

* Cilk example given earlier uses this model

e New programming frameworks designed to promote
parallel programming for multicore

e Intel Thread Building Blocks and Ct
e Microsoft Thread Parallel Library

)

Il The University of North Carolina at Chapel Hill

29

Programming Language Issues

e Concurrency support in the language or in libraries?

e Do programmers use threads explicitly (e.g. pthreads) or
implicitly (e.g. simple forall loop, cilk spawn-sync)?

e Can the compiler provide auto-parallelization (i.e. Intel
compiler auto-vectorization for SSE)?

e Can the programmer specify data that is global vs. local
or where specific data resides?

e How is synchronization supported?

)

Il The University of North Carolina at Chapel Hill

30

Performance Issues

e Amdahl’s Law

e Speedup of a parallel program is limited by the time needed for
the sequential fraction of the program.

*| oad imbalance
e Uneven distribution of work among processors
e Communication and Memory Operations
e | atency: time delay to access resource
e Bandwidth: amount of data transferable per unit time

e Contention: many threads want to access same resource

)

Il The University of North Carolina at Chapel Hill

31

