
The University of North Carolina at Chapel Hill

Lecture 19: Shared Memory & Synchronization
COMP 524 Programming Language Concepts
Stephen Olivier
April 16, 2009

Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts

The University of North Carolina at Chapel Hill

Forking

2

 int pid;
 pid = fork();
 // Error occurred
 if (pid < 0) {
 cerr << "main: Fork failed!" << endl;
 exit(-1);
 } else if (pid == 0) {
 cout << "Main Thread" << endl;
 } else {
 cout << "Child start" << endl;
 cout << "Child complete" << endl;
 exit(0);
 }

The University of North Carolina at Chapel Hill

Synchronization

•One of the most fundamental issues in concurrent
systems is how to ensure that different threads do not
interfere with each other.

3

The University of North Carolina at Chapel Hill

Atomic instructions

•One of the most important tools for implementing
synchronizations protocols are atomic instructions.

•Atomic instructions are multiple instructions that are
treated as one.

•For example, Test-and-set sets a boolean variable to
true and returns the previous value.

4

The University of North Carolina at Chapel Hill

Busy Waiting

•Under Busy Waiting a process continually attempts to
access a “critical section” until it is free.

•Busy waiting is often implemented by a spin lock.

5

The University of North Carolina at Chapel Hill

Barriers

•Barriers stop all threads (or a set of threads) until they
reach a certain point.

•Busy waiting is one way implement these.

• There are some performance issues

•Tree-based barriers for O(log(n)) time

6

The University of North Carolina at Chapel Hill

Semaphores

•Semaphore is the first synchronization method.

•A Semaphore has one of two states, up or down.

•If the semaphore is up, then a process can acquire the
semaphore and change its state to down.

•If a semaphore is down, then no process can acquire
the semaphore.

•There can exist semaphores that have “multiple ups”

7

The University of North Carolina at Chapel Hill

Deadlock

•Deadlock occurs when two processes attempt to
acquire “nested” resources.

•e.g., Task one requests “A then B” and task two
requests “B then A”.

•Djikstra calls this “the deadly embrace.”

8

The University of North Carolina at Chapel Hill

Monitors

•Monitors are similar to semaphores, except that they are
directly associated with resources and a set of
procedures.

9

monitor account {
 int balance := 0
 function withdraw(int amount) {
 if amount < 0 then error "Amount may not be negative"
 else if balance < amount then error "Insufficient funds"
 else balance := balance - amount
 }
 function deposit(int amount) {
 if amount < 0 then error "Amount may not be negative"
 else balance := balance + amount
 }
}

The University of North Carolina at Chapel Hill

Conditional Critical Regions

•Conditional critical Regions are similar to monitors,
except that they specify regions of code over which only
one process may execute.

10

region protected_variable when Boolean_condition do
...
end region.

The University of North Carolina at Chapel Hill

Java Synchronization

•Before Java 5, only through use of the synchronized
construct

• Controls access to an object

•

11

class class_name {
 type method_name() {
 synchronized (object) {
 statement block
 }
 }
}

The University of North Carolina at Chapel Hill

Java Synchronization

•Syntactic sugar lets us specify an entire method as
synchronized at definition

• Implicit object is this

•

12

rclass class_name {
 synchronized type method_name() {
 statement block
 }
}

The University of North Carolina at Chapel Hill

Java 5 Synchronization

•Now Java has locks:

13

 Lock l = ...;
 l.lock();
 try {
 // access the resource protected by this lock
 } finally {
 l.unlock();
 }

The University of North Carolina at Chapel Hill

Java 5 Synchronization

•Condition variables also built in now:

14

Condition conditionVariable = l.newCondition();

...

boolean somecondition; //evaluate your wait criteria
while(somecondition){
 conditionVariable.await();
 //re-evaluate somecondition
}

The University of North Carolina at Chapel Hill

Pthreads

•POSIX threading library for unix-based systems

• Windows variants exist

•Used in conjunction with C/C++

•Relatively low level of abstraction

• Supports explicit thread creation, management,
synchronization, scheduling

15

The University of North Carolina at Chapel Hill

Forking

16

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print_message_function(void *ptr);

main()
{
 pthread_t thread1, thread2;
 char *message1 = "Thread 1";
 char *message2 = "Thread 2";
 int iret1, iret2;
 iret1 = pthread_create(&thread1, NULL, print_message_function, (void*) message1);
 iret2 = pthread_create(&thread2, NULL, print_message_function, (void*) message2);
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);
 printf("Thread 1 returns: %d\n",iret1);
 printf("Thread 2 returns: %d\n",iret2);
 exit(0);
}

void *print_message_function(void *ptr)
{
 char *message;
 message = (char *) ptr;
 printf("%s \n", message);
}

The University of North Carolina at Chapel Hill

• thread - returns the thread id. (unsigned long int defined in bits/pthreadtypes.h)
• attr - Set to NULL if default thread attributes are used. (else define members of the struct

pthread_attr_t defined in bits/pthreadtypes.h)
• Attributes include:

• detached state (joinable? Default: PTHREAD_CREATE_JOINABLE. Other option:
PTHREAD_CREATE_DETACHED)

• scheduling policy (real-time? PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED,
SCHED_OTHER)

• scheduling parameter
• inherit sched attribute (Default: PTHREAD_EXPLICIT_SCHED Inherit from parent thread:

PTHREAD_INHERIT_SCHED)
• scope (Kernel threads: PTHREAD_SCOPE_SYSTEM User threads:

PTHREAD_SCOPE_PROCESS Pick one or the other not both.)
• guard size
• stack address (See unistd.h and bits/posix_opt.h _POSIX_THREAD_ATTR_STACKADDR)
• stack size (default minimum PTHREAD_STACK_SIZE set in pthread.h),

• void * (*start_routine) - pointer to the function to be threaded. Function has a single argument:
pointer to void.

• *arg - pointer to argument of function. To pass multiple arguments, send a pointer to a structure.

17

int pthread_create(pthread_t * thread,
 const pthread_attr_t * attr,
 void * (*start_routine)(void *),
 void *arg);

The University of North Carolina at Chapel Hill

•retval - “Return” value of thread.

•Pthreads don’t return values, but if the thread isn’t
detached, then the thread ID and return value may be
examined by another thread using “pthread_join.”

•*retval must not be local, otherwise it would cease to
exist one the thread terminates

18

void pthread_exit(void *retval);

The University of North Carolina at Chapel Hill

Forking

19

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
void *functionC();

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
int counter = 0;

main()
{
 int rc1, rc2;
 pthread_t thread1, thread2;
 if((rc1=pthread_create(&thread1, NULL, &functionC, NULL))){
 printf("Thread creation failed: %d\n", rc1); }
 if((rc2=pthread_create(&thread2, NULL, &functionC, NULL))){
 printf("Thread creation failed: %d\n", rc2);}
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);
 exit(0);
}
void *functionC()
{
 pthread_mutex_lock(&mutex1);
 counter++;
 printf("Counter value: %d\n",counter);
 pthread_mutex_unlock(&mutex1);
}

The University of North Carolina at Chapel Hill

Forking

20

#include <stdio.h>
#include <pthread.h>
#define NTHREADS 10
void *thread_function(void *);

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
int counter = 0;
main()
{
 pthread_t thread_id[NTHREADS]; int i, j;
 for(i=0; i < NTHREADS; i++) {
 pthread_create(&thread_id[i], NULL, thread_function, NULL); }
 for(j=0; j < NTHREADS; j++) {
 pthread_join(thread_id[j], NULL); }
 printf("Final counter value: %d\n", counter);
}

void *thread_function(void *dummyPtr)
{
 printf("Thread number %ld\n", pthread_self());
 pthread_mutex_lock(&mutex1);
 counter++;
 pthread_mutex_unlock(&mutex1);
}

The University of North Carolina at Chapel Hill

Forking

21

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t condition_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t condition_cond = PTHREAD_COND_INITIALIZER;
void *functionCount1();
void *functionCount2();
int count = 0;
#define COUNT_DONE 10
#define COUNT_HALT1 3
#define COUNT_HALT2 6

main()
{
 pthread_t thread1, thread2;
 pthread_create(&thread1, NULL, &functionCount1, NULL);
 pthread_create(&thread2, NULL, &functionCount2, NULL);
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);
 exit(0);
}

The University of North Carolina at Chapel Hill

Forking

22

void *functionCount1() {
 for(;;) {
 pthread_mutex_lock(&condition_mutex);
 while(count >= COUNT_HALT1 && count <= COUNT_HALT2){
 pthread_cond_wait(&condition_cond, &condition_mutex);}
 pthread_mutex_unlock(&condition_mutex);
 pthread_mutex_lock(&count_mutex);
 count++;
 printf("Counter value functionCount1: %d\n",count);
 pthread_mutex_unlock(&count_mutex);
 if(count >= COUNT_DONE) return(NULL);}
}

void *functionCount2(){
 for(;;) {
 pthread_mutex_lock(&condition_mutex);
 if(count < COUNT_HALT1 || count > COUNT_HALT2){
 pthread_cond_signal(&condition_cond);}
 pthread_mutex_unlock(&condition_mutex);
 pthread_mutex_lock(&count_mutex);
 count++;
 printf("Counter value functionCount2: %d\n",count);
 pthread_mutex_unlock(&count_mutex);
 if(count >= COUNT_DONE) return(NULL);}
}

The University of North Carolina at Chapel Hill

Remote Procedure Call (RPC)

•Message passing (rather than shared memory) approach
to communication

• Works across distributed systems

•Allows higher level of abstraction than network API’s like
sockets

• Leverage type checking and/or OO programming

•Main problem is packing, sending, and unpacking
parameters efficiently while preserving semantics

• This is called marshalling

23

The University of North Carolina at Chapel Hill

RPC Implementations

•CORBA is a language & OS independent solution

• Free & commercial implementations

•Microsoft DCOM and later .NET remoting

•Java Remote Method Invocation (RMI)

24

