
Porting the GROMACS Molecular Dynamics Code to the Cell Processor

Stephen Olivier1, Jan Prins1, Jeff Derby2, Ken Vu2

1University of North Carolina at Chapel Hill 2IBM Systems and Technology Group
Dept. of Computer Science 3039 Cornwallis Rd.

Chapel Hill, NC 27599-3175 USA Research Triangle Park, NC 27709 USA
{olivier, prins}@cs.unc.edu {jhderby, kenvu}@us.ibm.com

Abstract

The Cell processor offers substantial computational
power which can be effectively utilized only if application
design and implementation are tuned to the Cell architec-
ture. In this paper, we examine application characteristics
which facilitate efficient use of the Cell processor, and those
which present obstacles to it. Moreover, we consider possi-
ble solutions designed to mitigate inefficiencies. The target
application in our study is the GROMACS molecular dy-
namics package. We have accelerated the most-often used
compute-intensive kernel while maintaining the constraints
imposed by the structure of the surrounding program. The
significant contribution of this paper is the consideration of
the kernel in the context of a complex end-to-end applica-
tion, with irregular data and code patterns, rather than an
isolated kernel code. For this challenging scenario, our re-
sults show a 2X speedup versus hand-tuned VMX/SSE code
running on high-end PowerPC and x86 uniprocessor ma-
chines.

1 Introduction

Sony, IBM, and Toshiba (STI) collaborated to develop
the Cell Architecture based on IBM’s PowerPC technol-
ogy. Parallelism and high-speed communication are key
features of this technology which can accelerate many ap-
plications to high levels of performance. Although it was
designed with gaming and multimedia processing in mind,
other uses have been considered, including scientific com-
puting. Williams et al. investigated the performance of Cell
on several benchmark kernels for dense matrix multiplica-
tion, sparse matrix vector multiplication, stencil computa-
tions, and Fast Fourier Transforms (FFT) [13].

1-4244-0910-1/07/$20.00 c©2007 IEEE.

Molecular Dynamics (MD) belongs to the class of n-
body scientific problems, which track the evolution of a
system of particles based on the interactions between them.
Classical MD is based on Newtonian mechanics of atoms
in a system of molecules and is accurate enough for many
uses of MD. In this study, we report on the porting to
the Cell processor of a widely-used classical MD program,
the GROningen MAchine for Chemical Simulation (GRO-
MACS) [12, 9, 1].

Like many scientific codes, the evolution of GROMACS
has been influenced by advances in both computing and the
application domain, computational chemistry. The func-
tionality enabled by its many lines of code is dependent
on a mathematical model and an underlying representation
that is used extensively throughout the software. Substantial
change is undesirable, both because it will require exten-
sive and complex modifications, and because it may inter-
fere with the subsequent integration of scientific improve-
ments into the code. In this study, we have maintained the
constraints that arise from the structure of the program and
its data. The integrity of the program is preserved, and in
this respect, we offer a more complete investigation of the
issues that arise when porting an entire real-world applica-
tion to the Cell processor.

2 The Cell Processor

In its first incarnation, the Cell processor [7] features
nine cores. One core, the Power Processor Element (PPE)
consists of a 64-bit Power Processing Unit (PPU) with L1
and L2 caches. The other eight cores are Synergistic Pro-
cessing Elements (SPE), each consisting of a Synergistic
Processing Unit (SPU) designed for high performance com-
puation on 128-bit vectors and a Local Store (LS). An SPU
has 128 128-bit registers and is capable of dual issue. The
LS is a high-speed 256KB memory for both code and data
used by an SPU; the SPU may execute loads and stores only
upon the contents of the LS. DMA is used to transfer data

 Generate neighbor lists (every N time steps)

Integrate to update positions

Calculate Forces

Bonded Nonbonded

Short-range Long-range

Water-water Others

Figure 1. Tasks performed in a single time step of a GROMACS simulation. The kernel we optimized
calculates forces due to short-range nonbonded interactions between water molecules.

between memory and the LS, between two SPEs, or be-
tween the PPE and an SPE. The Element Interconnect Bus
(EIB) provides fast on-chip communication among the PPE,
SPEs, and memory controller via four high speed rings.

There are some features of the chip which are of particu-
lar importance to programmers. The SPUs are quite adept at
single-precision (SP) floating point, but significantly slower
at double-precision (DP). The SPUs lack hardware branch
prediction, so branches should be avoided or hinted well.
Since the SPU operates on vectors, they should be used
wherever possible. Since an SPE’s DMA unit operates in-
dependent of the SPU, data transfers can occur simultane-
ously with computation. Signal notification and mailbox
registers, and their accompanying access commands allow
for passing of short messages among the PPE and SPEs;
these are especially useful for synchronization.

The Cell processor offers significant potential speedup
compared to a conventional scalar single-core processor
running at the same clock speed. SPE vector operations
offer a 4X speedup for single precision floating point oper-
ations. Using all eight SPEs yields an 8X speedup on top
of that, for a total of 32X speedup versus a typical scalar
single-core processor. Additional time may be saved by
overlapping computation and data tranfers, using the EIB
for SPE-to-SPE data transfer, and making good use of the
low latency LS. However, contention for memory and other
resources, thread coordination overheads, and load imbal-

ance are just a few reasons peak performance may not be
reached.

3 GROMACS

GROMACS is highly optimized for uniprocessor exe-
cution, with hand-tuned code, assembly loops, and man-
ual loop unrolling. Commonly used and compute-intensive
portions of the program have been optimized for SSE on
Intel PCs and Altivec/VMX on PowerPCs. While it sup-
ports a DP floating point mode, it is often used in SP mode.
The program reads in the initial configuration of the system
from disk, then calculates the interactions between atoms
and updates their coordinates over a series of time steps,
periodically recording the results to disk.

Within each simulation step, several computational tasks
must be completed. Bond forces must be calculated be-
tween bonded atoms. Electrostatic and van der Waals forces
between nonbonded atoms must be calculated based on
their positions and charges. Atom velocities and positions,
as well as the enegry, pressure, and temperature of the sys-
tem, must be updated based on the forces. Figure 1 repre-
sents a simplified view of the tasks performed in each sim-
ulation step, including a break-down of the different force
calculations.

Nonbonded force calculations often dominate the run-
ning time, since each atom is only bonded to at most a few

2

others. Calculating pair-wise forces between all nonbonded
pairs of atoms in the system would take O(n2) time. In-
stead, GROMACS computes forces upon each atom from
other atoms within a certain cut-off radius. Long-range
forces are calculated using particle-mesh methods.

3.1 Code Targeted for Optimization

GROMACS employs several dozen kernels for the short-
range nonbonded interactions, each offering a different
combination of methods for electrostatic and van der Waals
forces. Many are optimized for interactions between wa-
ter molecules. A common technique of MD is to simulate
a protein in a box of water, resulting in many nonbonded
interactions between water molecules. In the benchmark
simulation configuration for the Villin headpiece [6], over
90% of the system is water. Eighty-three percent of the
time in that simulation is spent in nonbonded kernel 112,
which is optimized for calculating interactions between wa-
ter molecules. Other simulations also spend the majority of
their run time in that kernel. We chose it as the target of our
enhancements for execution on the Cell processor.

We use the Villin headpiece benchmark as a the primary
sample input for development and testing, including the
tests for performance results presented in Section 5. This
simulation spans 5000 time steps. The system consists of
the Villin protein and 3,000 water molecules (9000 atoms),
for a total of about 10,000 atoms.

3.2 Constraints Imposed by the Code

As explained in Section 1, we leave in place the con-
straints imposed by the code and data structures of the
GROMACS program as a whole. A key constraint is the
neighbor list generation. The composition of the neighbor
lists determines which groups of atoms will interact in
the simulation, in which kernels, and in which order. We
refrain from redistributing or reordering the neighbor lists
for several reasons: to avoid disturbing the kernels which
we are not accelerating, to keep program complexity to a
minimum, and to avoid the added cost of reorganizing the
data in memory. The following segment of pseudocode
demonstrates how the contents of the neighbor lists drive
the inner loops at the heart of our computational kernel:

outerlist = i0, i1, i2, ...
innerlist[0] = j00, j01, j02
innerlist[1] = j10, j11, j12, j13, j14, j15, j16
innerlist[2] = j20, j21, j22, j23, j24
...
For each molecule i in outerlist
For each molecule j in innerlist[i]
Calculate forces

Note that the trip count of the inner loop is variable,
and dependent on the number of j molecules with which
each i molecule interacts. This irregularity presents
difficulties for code vectorization.

The neighbor lists also reflect the fact that GROMACS
employs the Newton’s Third Law of Motion, calculating the
force between two atoms only once. While this cuts the
running time in half, it also limits the possibility of spatial
decomposition and introduces the possibility of concurrent
writes. The latter is the subject of Section 4.2, considering a
multi-SPE version in which forces are evaluated in parallel.

Also complicating the vectorization of the code is the in-
herent three-dimensional nature of the MD problem, which
must be mapped to four-element vector registers in the Cell
SPU. This issue is addressed in Section 4.1.2.

4 Porting GROMACS to Cell

We chose an iterative approach to port the code to the
Cell processor. We first compiled GROMACS for the PPE,
which required no changes to the code, and confirmed that
it runs successfully. After that, we extracted the portion of
the code targeted for enhancement, kernel 112. GROMACS
provides optimized VMX, SSE, and scalar versions of this
kernel. We created a test environment for the kernel based
on its interface to the rest of the GROMACS program and
the data structures it uses. We ported the kernel to the SPE,
made some improvements, and then parallelized across the
SPEs. We made improvements on the code through testing
on the Cell system simulator and a 2.4 Ghz Cell blade.

4.1 PPE to Single SPE

When moving code from the PPE to the SPE, some key
distinctions between them must be kept in mind. One is that
the instruction sets, and low-level intrisics in code which
depend upon them, are not the same. The VMX vector per-
mute intrinsic, for example, does not map directly to an SPU
intrinsic. Another is that all data and code needed for pro-
cessing on the SPE must reside in the SPE LS, and DMA
calls must be used to move data into and out of the LS.
These issues must be addressed for code to run at all on the
SPE.

We had two kernel implementations from which to
choose as a starting point for our SPE port. The VMX
code, hand tuned for exactly 32 registers, uses conditionals
within the loops and VMX intrinsics for vector permutes
and shifted loads. It calculates interactions for four pairs of
water molecules at a time. The SPE does not support the
VMX permute load instruction, lacks hardware branch pre-
diction to efficiently execute conditionals in code, and has
128 registers rather than 32. For these reasons, the VMX

3

Cache Line n (128 B) Cache Line n +1 (128 B)

Qword Qword Qword

Figure 2. Unused data from DMA transfers: the worst case scenario. Of the 16 quadwords transfered
in the two cache lines, 13 quadwords are fetched but not used. Among the remaining three quad-
words (48B) fetched, only 36B are actually used while the other 12B are not. This problem does not
occur in the later versions where data for all atoms is transfered in at once.

code is not well suited for the SPE. The scalar code is much
simpler and shorter, only calculating interactions for two
water molecules at a time and using no VMX-specific in-
trinsics. We decided to start from the scalar code, vector-
izing “from scratch” and adding the needed DMA calls be-
tween LS and memory.

4.1.1 Dealing with Data Layout

The main data elements are the positions and forces of the
atoms in the water molecules, which are stored separately
in two large arrays. A rectangular 3D coordinate system is
used, and the components x, y, and z for each position or
force are stored contiguously in the array. Recall that our
kernel handles interactions between water molecules. Data
for the three atoms which comprise each water molecule are
also contigous. A complete set of forces or positions for a
water molecule appears as OxOyOzHxHyHzHxHyHz in
the appropriate array. In SP floating point, that constitutes
12B per atom and 36B per molecule in each of the two ar-
rays (the force and position arrays). On most machines, this
is of little consequence, but on Cell it is quite significant.

Addresses for data to be transferred by DMA into the
SPE LS must be aligned to quadword (16B) boundaries, and
data is fetched from memory one cache line (128B) at a
time. Thus, to get the 36B of data in the atom or force array,
we will have to bring in 12B of extra data just to avoid a bus
error on the DMA request, and 92B or 220B of extra data
are actually transferred, as illustrated in Figure 2. There
would be no problem if the data were used sequentially, but
that is not the nature of the kernel. Data accesses may occur
in any order.

Within each simulation step, the force calculations are
done by a set of two nested loops. The outer loop iterates
though index arrays that point to the position and force data
for a molecule i and a group j1..jn of molecules with which
i interacts. Another index array points to position and force
data for the j atoms. The index arrays are constructed by
the rest of the GROMACS program, based on other condi-

Qword n Qword n + 1 Qword n + 2

Hy Hz Ox Oy Oz Hx Hy Hz Hx Hy Hz Ox

Vector 0 Vector 1 Vector 2

Ox Oy Oz ---- Hx Hy Hz ---- Hx Hy Hz ----

Figure 3. Shuffling data from the Local Store
into the SPE’s vector registers.

tions in the system, and updated periodically. Therefore, it
is typical that data for two consecutive i or j atoms may
be far from each other in memory. Thus, for now, we initi-
ate separate DMAs for each new i or j atom force set and
position set.

Once the data is transferred, it is extracted from the sur-
rounding data and moved into vectors. These also are 16B
long, another mismatch with our data and a source of extra
work. Unless we change the memory layout of the com-
plete GROMACS program to pad the arrays, we must per-
form this extra work. The SPU’s shuffle operation is used to
correctly position the 36B needed into the vector registers
of the SPE. An example shuffle is shown in Figure 3.

4.1.2 Vectorization

There are two options to vectorize the data and the code
that processes it. The first is to vectorize using the Structure
of Arrays (SoA) form. A basic SoA arrangement is illus-
trated in Figure 4. This arrangement is a poor match with
the SPU vector intrinsics, which operate between two vec-
tors (rows in the diagram) rather than across elements of a
single vector. One way to exploit the vector operations in
an SoA solution would be to interact four molecules at a
time. However, code structure irregularities make this dif-
ficult to do efficiently. In particular, the inner loop in the
original scalar code has a variable trip count. If we set

4

22 The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Exploiting Vector Processing

• Option 1: “Structure of Arrays”

• Advantage
! Uses all vector slots

• Disadvantages
! Data must be reshuffled, as data is stored x0, y0, z0, x1, y1, z1, …

in memory

! Boundary cases where # of particles in a list is not multiple of four

Atom 3Atom 2Atom 1Atom 0

z3z2z1z0

y3y2y1y0

x3x2x1x0

Figure 4. Vectors in Structure of Arrays (SoA)
form.

23 The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Exploiting Vector Processing

• Option 2: “Array of Structures”

• Advantages
! Matches data storage in memory: x0, y0, z0, x1, y1, z1, …

! Don’t have to worry about boundary cases (3 slots always used)

• Disadvantage
! Leaves one vector slot unused, imposing a performance limit of

75% of optimal

Atom 3

Atom 2

Atom 1

Atom 0

unusedz3y3x3

unusedz2y2x2

unusedz1y1x1

unusedz0y0x0

Figure 5. Vectors in Array of Structures (AoS)
form.

up four i molecules in the outer loop, each i may interact
with a different number of j molecules. To get the full ben-
efit of the four SIMD elements available, we would have
to change some i molecules while leaving others in place.
We would in general be operating on four (i, j) pairs, of
which some may have the same i atoms and while others do
not. This scheme would require flattening the loops, then
summing the forces on a single i using a segmented sum,
a technique developed for programming large vector ma-
chines [2]. Also, such a scheme would require additional
shuffles to carry out the computation.

The other option is to vectorize using the Array of Struc-
tures (AoS) form, shown in Figure 5. We always interact
two molecules at a time, using vector operations to calculate
x, y, and z components simultaneously. The code would
also be simpler, as it would not need to be concerned with
how many trips the inner loop makes. Each inner loop iter-
ation will always see a roughly 3X speedup over the scalar
code. However, the last vector slot in each four-element
vector would go unused. Thus, at most 75% of the ideal per-
formance boost from vectorization will be realized. How-
ever, considering the time spent shuffling extra data in the
first method, it also may not achieve the full 4X speedup.
Due to that cost and the complexity required for the flat-
tening and segmented sum, we chose the second method,
vectorizing across spatial dimensions x, y, and z.

Through an iterative development cycle, we improved
our single-SPE code before adapting it for use on multiple
SPE’s. In our second version of the single-SPE code, we
moved the outer loop index arrays and other meta-data into
the LS. In the third version, we double-buffered the position
data and accumulated the forces for all atoms in the LS, up-
dating the forces in memory after the outer loop is finished.
This version served as a starting point for a multi-SPE ver-
sion.

4.2 Single SPE to Multiple SPEs

Parallelizing across SPEs not only speeds up the execu-
tion through concurrent computation, but also increases to-
tal available LS space for the problem’s data. However, it
also introduces the possibility of contention for resources
such as the DMA controller and the potential for concurrent
writes to the same memory location. The former impacts
only performance; the latter may result in incorrect pro-
gram output. In our kernel, a molecule may be referenced
as a j molecule in two neighbor list groups simultaneously,
and thus have its force total updated simultaneously by two
SPEs! Additionally, there is a need for synchronization be-
tween SPEs.

In our multi-SPU kernel, we partition the work of the
outer loop (the list of i-groups) across the SPEs. We address
the issue of concurrent writes by having each SPE accumu-
late local force totals for all atoms. These per-SPU totals
are then gathered up, summed, and written back to mem-
ory. The overall program structure resembles the Bulk Syn-
chronous Processing (BSP) [11] paradigm, where each it-
eration in the simulation loop consists of successive rounds
of computation, communication, and barrier synchroniza-
tion. Once all of the SPEs have started, a signal from the
PPE tells them to begin calculating forces. As each SPE
finishes the force calculations, it signals back to the PPE.
When all have finished, the PPE signals them to begin gath-
ering up the forces in a sum-reduction pattern, to be de-
scribed shortly. Finally, each SPE signals back once more
to the PPE. When all have reported back, the PPE signals
either to begin another simulation step or quit.

The gathering of forces is accomplished in parallel by
assigning each SPE a block of atoms for which it is respon-
sible, using a similar partitioning process to that used for
the loop partitioning. The last SPE is responsible for some
additional data items, the per-shift force totals, in addition
to its atoms. We use the high speed EIB rings to pass the
force totals from each SPE to the SPEs responsible for each
of the blocks, in a series of N − 1 rounds, where N is the
number of SPEs. In each round R, SPE S retrieves force
totals from SPE (S + R)%N for the atoms which it has
been assigned. Once all the rounds are complete, S updates
memory with the sum of force totals for its assigned atoms.
The potential totals from each SPE are sent in the signals to
the PPE, making use of the 32-bit mailbox message lengths,
and the PPE sums and updates those in memory.

In our second version of the multi-SPE kernel, we re-
moved some apparent branches from the inner loop, result-
ing in significantly better performance. This illustrates the
point that inefficiencies in single-SPE code are no less im-
portant than multi-SPE parallelization issues.

In the third multi-SPE version, we moved all the atom
positions into the local stores. Spreading the index arrays

5

0 5 10 15

7

6

5

4

3

2

1

0

Millions of Cycles

Get Positions

Manipulate Data

Compute Forces

Gather and Write Back

Figure 6. Time spent by SPEs in the differ-
ent phases of each kernel execution: 1) Get-
ting the atom positions, 2) Manipulating data,
3) Computing the forces, 4) Gathering up the
forces and writing them back to memory.

across the SPEs freed the space needed to do this. With
both the forces and the positions now in quickly accessible
LS space, many cycles spent reloading previously-used data
are saved. Figure 6 shows that at most 10% of the time in
each outer loop iteration is spent transferring data into and
out of the SPE LS. The figure reveals that there is some load
imbalance among the SPEs, which is due to the coarseness
of our work partitioning. We partitioned solely based on
the outer loop, dividing it such that each partition’s data set
would begin on a 128B cache-line boundary.

5 Results and Analysis

We tested our code using the system simulator and a 2.4
Ghz Cell blade prototype throughout the porting and en-
hancement process, and compared the final version to other
leading platforms. Table 1 shows the performance of the
successive versions of the kernel compared to the original
VMX version on the PPE. The single SPE versions were

Kernel Time Speedup vs.
Version (sec) PPE w/VMX

PPE with VMX 137 1.00
Single-SPE v. 1 918 0.15
Single-SPE v. 2 804 0.17
Single-SPE v. 3 158 0.87
Multi-SPE v. 1 28 4.89
Multi-SPE v. 2 20 6.85
Multi-SPE v. 3 16 8.56

Table 1. Run time comparison for the three
single-SPE and the three multi-SPE versions
of the kernel, with speedup measured against
the original VMX version on the PPE. Multi-
SPE versions use eight SPEs of a 2.4 Ghz Cell
Blade.

Platform Speed Time Speedup
(Ghz) (sec) vs. Xeon

Intel Xeon 3.4 186 1.0
PowerPC 970 2.0 135 1.38
Intel Itanium2 1.6 64 2.91

Intel Xeon SSE 3.4 39 4.77
PPC 970 VMX 2.0 31 6.00
Cell (8 SPEs) 2.4 16 11.6
Cell (8 SPEs) 3.2 12 15.5

Table 2. Run time comparison for the kernel
on Cell versus other platforms. Kernel code
SSE and VMX was hand-optimized, including
manual loop unrolling. The SSE version is
assembly code. Run time for the 3.2 Cell BE
is estimated.

slower than the original PPE version, largely due to the
time required to DMA the atom data and shuffle it into the
correct vector positions. The third single SPE version saw
a great improvement by double-buffering the position data
and keeping the force data in the LS. Even the first multi-
SPE version outperforms the PPE version, and further en-
hancements result in a final multi-SPE run time of 16 sec-
onds. This is more than 8X faster than the third single SPE
version due to the cost savings from bringing all position
data into the SPE LS at once at the beginning of the kernel.

Of course, we must also consider the improvement over
other PowerPC and x86 machines. Table 2 compares the
performance of our last multi-SPE version to versions of
the original code on other machines. The last multi-SPE
version on Cell is nearly twice as fast as the next-best per-
former, the PPC 970 running hand-tuned VMX code. If
we (optimistically) estimate that a 3.2 Ghz Cell will offer a

6

proportial speedup over the 2.4 Ghz Cell used in these tests,
the run time would decrease to only 12 seconds, over three
times as fast as the Xeon running hand-tuned SSE assembly
code.

We are encouraged by the results, although the gains are
more modest over other machines with vector units, most
notably the PowerPC 970. There is no competitive advan-
tage from vector processing in the SPU in those compar-
isons, so all speedups must be accomplished by paralleliz-
ing across SPEs and using the LS and communication fea-
tures of Cell effectively. Also, the need for PPE processing
for other tasks in GROMACS necessitates the reloading and
write-back of atom data to and from LS each step, whereas
machines with large L2 caches may see all or most data ac-
cesses hit in L2 cache. The cost of dealing with misaligned
vector loading is a major contributor to less-than-optimal
Cell performance: Of the 326 cycles per inner loop itera-
tion in the last multi-SPE version, only 157 cycles are spent
on floating point operations. As shown in Figure 6, the re-
mainder of the cycles are spent manipulating data, including
shuffling vector elements and reading the inner lists for the
neighbor groups.

6 Related Work

Ab-initio (first principles) simulations study MD at
quantum-level precision. Car-Parrinello Molecular Dynam-
ics (CPMD), a high performance ab initio MD program, has
been experimentally ported to Cell [3].

Folding@Home is a large-scale distributed computing
project devoted to protein folding, a major application of
molecular dynamics [8]. A modified version of GROMACS
is at the core of the x86 and PowerPC software client imple-
mentations. In partnership with Sony, Folding@Home will
be offering a client for the PlayStation 3, although it is un-
clear whether that client is based on GROMACS code [10].

There is also an ongoing effort toward compiler opti-
mizations and tools to simplify programming on Cell. Re-
searchers at IBM are refining compiler techniques for auto-
matic workload partitioning and local store buffer allocation
and management on the Cell BE [5, 4].

7 Conclusions and Future Work

GROMACS is representative of many scientific applica-
tions in that it has been highly optimized for sequential ex-
ecution and exhibits irregular data access patterns and code
structure. This makes it difficult to implement efficiently on
Cell. We have achieved speedup on the water interaction
kernel 112, the most-often used in GROMACS using vec-
torization, parallelization across SPEs, the quick access LS,
and the high speed EIB rings. There is a significant poten-
tial for improvement by more efficiently handling the data

manipulation (particularly shuffle operations) in the LS. We
are investigating better use of shuffle patterns and code or-
dering for software pipelining, especially since the SPU is
a dual-issue processor.

In terms of Cell developer enablement, several tools
would be helpful for carrying out a similar porting task in
future. Ensure that all code and libraries are branchless
if possible. Provide library functions for double buffering
and for efficient collective operations across SPEs such as
gather, scatter, and sum reduction. Difficulty handling mis-
aligned data and irregular data accesses could be helped
by utilities for efficient index array usage and indirection.
Writing back to memory and reloading LS is costly but in-
evitable if the parts of the application run in the PPE or co-
herency is needed between SPEs. This should be considered
when examining an application’s suitablility for Cell.

GROMACS as a whole consists of dozens of kernels and
several thousand lines of code. Optimizing the entire pro-
gram for the SPEs could potentially take several man-years.
Since we have optimized only one kernel, the application as
a whole would not see as large a speedup. Overhauling the
whole application could also help to create code and data
layout better suited to the Cell processor, but we feel that the
effort required would be prohibitive. Optimizing a handful
of the frequently used kernels would be reasonable. Opti-
mization for Cell can be time-consuming, but incremental
improvements do lead to better and better performance and
are well positioned to take advantage of future increases in
the number of SPEs.

References

[1] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen.
GROMACS: a message-passing parallel molecular dynam-
ics implementation. Computational Physics Communica-
tions, 91(1-3):43–56, Sept. 1995.

[2] G. E. Blelloch and G. W. Sabot. Compiling collection-
oriented languages onto massively parallel computers. Jour-
nal of Parallel and Distributed Computing, 8(2):119–134,
1990.

[3] A. Curioni. Ab-initio molecular dynamics on cell proces-
sor: Early experiences. In First Workshop on Real Time and
Interactive Digital Media Supercomputing (RIDMS-1)/12th
International Symposium on High-Performance Computer
Architecture (HPCA-12), Feb. 2006.

[4] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu,
T. Chen, P. H. Oden, D. A. Prener, J. C. Shepherd, B. So,
Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K. Gschwind,
R. Archambault, Y. Gao, and R. Koo. Using advanced com-
piler technology to exploit the performance of the cell broad-
band engine architecture. IBM Syst. J., 45(1):59–84, 2006.

[5] A. E. Eichenberger, K. M. O’Brien, K. O’Brien, P. Wu,
T. Chen, P. H. Oden, D. A. Prener, J. C. Shepherd, B. So,
Z. Sura, A. Wang, T. Zhang, P. Zhao, and M. Gschwind.

7

Optimizing compiler for the cell processor. In IEEE PACT,
pages 161–172, 2005.

[6] GROMACS. GROMACS benchmarks for MD, 2005. [On-
line] http://www.gromacs.org/gromacs/benchmark/
benchmarks.html.

[7] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the cell multipro-
cessor. IBM Systems Journal, 49(4), 2005.

[8] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande. Fold-
ing@home and genome@home: Using distributed comput-
ing to tackle previously intractable problems in computa-
tional biology. Modern Methods in Computational Biology,
Horizon Press, 2003.

[9] E. Lindahl, B. Hess, and D. van der Spoel. GROMACS 3.0:
A package for molecular simulation and trajectory analysis.
Journal of Molecular Modelling, 7:306–317, 2001.

[10] V. S. Pande. Folding@Home on the PS3 FAQ, 2006. [On-
line] http://folding.stanford.edu/FAQ-PS3.html.

[11] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[12] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E.
Mark, and H. J. Berendsen. Gromacs: fast, flexible, and
free. Journal of Computational Chemistry, 26(16):1701–
1718, Dec. 2005.

[13] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. Yelick. The potential of the cell processor for scientific
computing. In ACM International Conference on Computing
Frontiers, May 2006.

8

