
History and Prospects for First-Order

Automated Deduction

David A. Plaisted

June 9, 2015

Introduction and General Comments

A Machine-Oriented Logic Based on the Resolution Principle
J.A.Robinson

J.ACM Volume 12 Number 1 January 1965

Abstract Theorem proving on the computer, using procedures based on
the fundamental theorems of Herbrand concerning the first-order predicate
calculus, is examined with a view towards improving the efficiency and widen-
ing the range of practical applicability of these procedures. A close analysis
of the process of substitution (of terms for variables), and the process of
truth-functional analysis of the results of such substitutions, reveals that
both processes can be combined into a single new process (called resolu-

tion), iterating which is vastly more efficient than the older cyclic procedures
consisting of substitution stages alternating with truth-functional analysis
stages.

The theory of the resolution process is presented in the form of a system
of first-order logic with just one inference principle (the resolution principle).
The completeness of the system is proved; the simplest proof-procedure based
on the system is then the direct implementation of the proof of completeness.
However, this procedure is quite inefficient, and the paper concludes with a
discussion of several principles (called search principles) which are applicable
to the design of efficient proof-procedures employing resolution as the basic
logical process.

Citation count: 758 (ACM Library), 4744 (Google Scholar?)

1



Significance

• The resolution rule

• Unification

• Refinements to resolution

Outline

• Fiftieth anniversary of the appearance of Robinsin’s resolution paper

• History of first-order theorem proving both before and after 1965

• Personal reflections

• Possible future developments

– Generalize model-based reasoning to first-order provers

– Goal sensitivity and its importance

– Analyze asymptotically the size of the search space of a first-order
prover in terms of the size of a minimal unsatisfiable set of ground
instances of a set of first-order clauses.

Importance of First-Order Logic

• Concentrate on first-order logic

• First-order logic is really central to the field

• There are probably significant advances yet to be made

• Methods that are good for first-order logic will also help to design
higher order logic provers.

Personal Experiences

• Emphasize my personal experiences.

• It is a pity that Bill McCune, Harald Ganzinger, Greg Nelson, and
Mark Stickel are not here to give their insights into the history of the
field.



Search Space Issues

• Do different methods just explore different portions of the search space?

• Can the search space be reduced?

• Resolution as an improvement of DPLL for first-order logic

• DPLL over resolution for propositional logic

• Normal forms in rewriting

• Efficiency of basic operations

Pre-Resolution

• Friedrich Ludwig Gottlob Frege (b. 1848, d. 1925) was a German math-
ematician, logician, and philosopher who worked at the University of
Jena. Frege essentially reconceived the discipline of logic by construct-
ing a formal system which, in effect, constituted the first predicate
calculus. In this formal system, Frege developed an analysis of quan-
tified statements and formalized the notion of a proof in terms that
are still accepted today. Frege then demonstrated that one could use
his system to resolve theoretical mathematical statements in terms of
simpler logical and mathematical notions.

• One of the axioms that Frege later added to his system, in the at-
tempt to derive significant parts of mathematics from logic, proved to
be inconsistent. Nevertheless, his definitions (e.g., of the predecessor
relation and of the concept of natural number) and methods (e.g., for
deriving the axioms of number theory) constituted a significant ad-
vance. To ground his views about the relationship of logic and math-
ematics, Frege conceived a comprehensive philosophy of language that
many philosophers still find insightful. However, his lifelong project, of
showing that mathematics was reducible to logic, was not successful.

[Stanford Encyclopedia of Philosophy]

• Frege was born in 1848 inWismar, in the state of Mecklenburg-Schwerin
(which is today part of the German federal state Mecklenburg-Vorpommern).



• His father, Alexander, a headmaster of a secondary school for girls, and
his mother, Auguste, brought him up in the Lutheran faith.

• In 1873, Frege attained his doctorate under Ernst Christian Julius
Schering, with a dissertation under the title of “Über eine geometrische
Darstellung der imaginären Gebilde in der Ebene” (“On a Geometrical
Representation of Imaginary Forms in a Plane”),

• in which he aimed to solve such fundamental problems in geometry
as the mathematical interpretation of projective geometry’s infinitely
distant (imaginary) points.

Predicate Calculus

• Originally developed by Frege

• Considered predicates like “is happy” as signifying a function H() of
one variable that maps its argument x to a truth value H(x), either
true or false.

• Had universal quantification

• Existential quantification was expressed in terms of negation and uni-
versal quantification.

• The logic was originally second order.

Quantifiers

• William Ernest Johnson and Giuseppe Peano invented another nota-
tion, namely (x) for the universal quantification of x and (in 1897) ∃x
for the existential quantification of x.

• For decades the canonical notation in philosophy and mathematical
logic was (x)P to express “all individuals in the domain of discourse
have the property P,” and “(∃x)P” for “there exists at least one indi-
vidual in the domain of discourse having the property P.”

• In 1935, Gentzen introduced the ∀ symbol, by analogy with Peano’s ∃
symbol.

• ∀ did not become canonical until the 1960s.



Hilbert

Hilbert wanted to provide a secure foundation for mathematics including
a formalization of mathematics and an algorithm for deciding the truth or
falsity of any mathematical statement. This is known as Hilbert’s program.

Gödel

• Gödel showed that Hilbert’s program was impossible, in its obvious
interpretation.

• He showed that any sufficienty powerful consistent formal system is
incomplete.

• Or: For any sound and effective system F that can formalize Turing
computations, there will be some Turing machine M that fails to halt
on blank tape, but this fact cannot be shown in F .

• In fact, such a machine M can be constructed from F .

• These results apply to any consistent effective extension of Peano arith-
metic, for example.

• Thus it is not possible to formalize all of mathematics in a computable
way, and any attempt at such a formalism will omit some true mathe-
matical statements.

Mechanical Theorem Proving

• The ATP community has inherited Hilbert’s program to some extent,
in attempting to prove and decide what can be proved and decided.

• There can be no recursive time bound on proving theorems, because of
the undecidability of first-order logic.

• It is still possible to write theorem provers and attempt to improve
their efficiency, even if not all true statements are provable.

• Herbrand’s theorem gives a method to search for a proof of a formula
in first-order logic by successively testing propositional formulas for
validity.



• Herbrand’s theorem is of major importance in software developed for
theorem proving by computer.

Pre-Resolution Theorem Provers

• Gilmore’s method was an early attempt to implement Herbrand’s the-
orem.

• Another early approach was presented by Davis and Putnam.

• The linked conjunct method was still another early method that at-
tempted to guide the instantiation of clauses to prove unsatisfiability.

• An early Wos paper mentions Gilmore’s method but states that Davis
and Putnam’s method applied to sets of propositional clauses is much
more efficient.

• The Wos paper also states that resolution can reduce the combinatorial
explosion in Davis and Putnam’s method by a factor in excess of 1050.

• However, with faster propositional calculus implementations and by
enumerating ground terms in a different way, this figure can possibly
be reduced.

Resolution

• Unification and resolution in 1965 were the beginning of the modern
era of theorem proving.

• Theorems could be proved that were significantly harder than those
obtainable previously.

• Subsequent research was dramatically influenced by these ideas

• This influence continues even today even on non-resolution methods



Early Post-Resolution

During this period the provers were not much more powerful than the early
provers combining hyper-resolution, set-of-support resolution, or UR resolu-
tion with paramodulation and demodulation.

The Argonne Group

• The Argonne group was the first group to devote serious effort to im-
plementing Robinson’s resolution rule.

• Some of the earliest theorems that they proved:

In an associative system with left and right solutions, there is right
identity element.

In an associative system with an identity element, if the square of
every element is the identity, the system is commutative.

In a group, if the square of every element is the identity, the group is
commutative.

For these proofs, the associativity of multiplication was represented by
the following axioms.

¬P (x, y, u) ∨ ¬P (y, z, v) ∨ ¬P (u, z, w) ∨ P (x, v, w)

¬P (x, y, u) ∨ ¬P (y, z, v) ∨ ¬P (x, v, w) ∨ P (u, z, w)

• P (x, x, e) was used to mean that the square of every element is the
identity.

• Multiplication was represented in a relational manner. This reduces
the need for explicit equational reasoning.

• The terms paramodulation and demodulation and the associated con-
cepts were developed by the Argonne group.

• They also developed the set of support strategy.



• Hyper-resolution and P1 deduction, on the other hand, were developed
by Robinson.

• The Argonne prover was initially very slow.

• Finally McCune took the matter into his own hands and rewrote the
entire prover in C, producing Otter, which was much faster and very
easy to use.

Other Early Work

• Maslov’s method

• Early refinements to resolution and other early strategies

– ancestry filter form

– model elimination

– semantic resolution

– locking resolution

– merging

• Non-resolution methods

– connection method of Bibel and Andrews’ matings method

– Now viewed as similar or identical to each other

At this time, the classic text of Chang and Lee appeared, which is still
helpful. The Pelletier problems were often used to test theorem provers.

AI and Theorem Proving

• Initial enthusiasm for resolution in the artificial intelligence community

• Resolution was the basis of Cordell Green’s QA3 system.

• Soon afterwards there was disenchantment with resolution and with
uniform methods in general

• There was an emphasis on expert systems instead, which could perform
at a human level in a narrow area.



• General systems were termed weak methods, and narrowly defined but
more capable systems were termed strong methods by the AI commu-
nity.

• Today ATP seems to be one tool in AI’s toolkit, though not a solution
to every problem.

Summary

We have considered various topics in the history of the field. Now for some
personal reflections.

Personal Experiences

Pre-theorem proving work

• The book Computers and Thought

• Potential of computers for augmenting and simulating human intelli-
gence.

• As an undergraduate I spent a summer working for MIT’s Project MAC

• Early exposure to artificial intelligence research

• Later Vaughan Pratt explained the concept of NP-completeness

• Early work on this topic

• Also work in algorithms, partially motivated by Ed Reingold.

Equational reasoning work

• Dave Luckham suggested that I study methods for equational theorem
proving.

• The seminal paper of Knuth and Bendix had only recently appeared.

• Published work appeared somewhat later



First-Order Theorem Proving

• When I started graduate school, it seemed that resolution and its refine-
ments, such as ancestry filter form and locking resolution, plus model
elimination, were the only games in town.

– I didn’t like resolution initially, but the concept is actually very
natural.

– If two clauses share a literal, then in some cases the shared literal
can be eliminated and the remaining portions of the clauses can
be joined together

– The eliminated literal is a “bridge concept” to relate two other
connected sets of concepts.

– Two concepts related to the same concept are also related to each
other, which is a natural idea.

• I was greatly influenced by Bledsoe’s work

– He showed that some reasonably simple set theory problems could
not be solved easily by resolution.

– He also did some early work on semantics

Problem sets

• In the early days, we tested our provers on common problems such as
Schubert’s Steamroller, the Zebra problem, and similar problems

Zebra problem:

There are five houses.
The Englishman lives in the red house.
The Spaniard owns the dog.
Coffee is drunk in the green house.
The Ukrainian drinks tea.
The green house is immediately to the right of the ivory house.
The Old Gold smoker owns snails.
Kools are smoked in the yellow house.
Milk is drunk in the middle house.



The Norwegian lives in the first house.
The man who smokes Chesterfields lives in the house next to the
man with the fox.
Kools are smoked in the house next to the house where the horse
is kept.
The Lucky Strike smoker drinks orange juice.
The Japanese smokes Parliaments.
The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra?

• Such problems seemed like personal friends.

• There was a sense of achievement when a proof was found.

• Today with the massive TPTP problem set the art of testing has greatly
advanced, but perhaps something has also been lost.

Sequence of Strategies

My work in theorem proving progressed through a number of strategies,
finding deficiencies in each one.

• In 1974 I had implemented a back chaining prover based on semantic
trees with variables.

– Vaughan Pratt gave me a problem to show that if in a group the
square of every element is the identity, then the group is commu-
tative.

– My prover had a lot of trouble with this problem.

– This example showed me that such a back chaining approach was
not the way to go

• During my sabbatical at SRI I implemented a forward chaining resolu-
tion prover



– It had trouble with Pelletier’s non-obviousness problem.

(1) ¬q(c, d)
(2) ¬p(a, b)
(3) p(x, y) ∨ q(x, y)
(4) q(x, y) ∨ ¬q(y, x)
(5) ¬p(x, y) ∨ ¬p(y, z) ∨ p(x, z)
(6) ¬q(x, y) ∨ ¬q(y, z) ∨ q(x, z)

– This convinced me that this also was not the right approach.

• At the University of Illinois, Steve Greenbaum implemented the Violet
prover.

– We put a lot of work into including abstraction, which did not
turn out to be helpful.

– The basic prover was fairly efficient compared with resolution
provers of that time.

– Used a discrimination net approach similar to term indexing

– Linear time unification algorithm

– Resolve the pair of clauses whose sum of sizes was as small as
possible.

– Still merits additional work.

Instance-Based Methods

• Next idea was to extend Prolog’s back chaining strategy for Horn
clauses to full first-order logic.

– Led to the simplified problem reduction format and the modified
problem reduction format

– Still did not seem quite right

• Eventually I decided that what was needed was DPLL-style search in
first-order logic.

• Led to work on instance based methods

• Leading to a sequence of provers



– Clause linking

– Semantic hyper-linking

– Replacement rule theorem prover

– Ordered semantic hyper-linking

• None implemented with highly efficient data structures except for OSHL

• Implemented by Hao Xu for his Ph.D. thesis with an inference rate
often approaching 10,000 inferences per second.

Other instance-based methods

• Billon’s disconnection calculus

• DCTP theorem prover

• Equinox

• Inst-Gen

• Linked conjunct method (very early)

• SATCHMO

• Hyper-tableaux?

• Even in Vampire?

• Perform particularly well on function-free clause sets

• These clause sets have some important applications.

Summary

So these are some of my personal experiences, closing with a discussion of
instance-based methods. Now we return to the history of the field, and the
developments that took place after the early post-resolution period.



Late Post-Resolution

During this period provers became significantly more powerful than the early
resolution provers.

• Advances in refining resolution strategies

• Refining paramodulation and rewriting

• Basic paramodulation

• Instance-based methods

• Incorporating special axioms into first-order provers

• Decision procedures for specialized theories

• Efficient data structures

• Unification algorithms

• The CADE system competition has become an important event and a
significant test of various provers.

• Lean theorem provers

• Major provers including Vampire, E, and Spass have become increas-
ingly effective.

• The use of strategy selection has greatly helped major provers today,
including Vampire and E.

Summary

This concludes our review of the history of the field. Now we make some
general comments on resolution and a few other areas of automated deduc-
tion.



Comments on Resolution

Resolution initiated the modern era of theorem proving in 1965.

• The computation of most general unifiers avoids the necessity to enu-
merate all propositional instances of first-order formulas.

• Resolution not only uses most general unifiers, but with paramodula-
tion and demodulation is also easily extendible to equality and rewrit-
ing.

• This is a good combination and may explain the persistence of resolu-
tion in theorem proving despite its inefficiency on non-Horn proposi-
tional problems.

Is it possible to go beyond resolution?

• A resolution prover is like a prolific but not very well organized mathe-
matician filling notebooks with trivial deductions, with no overall sense
of where he is going. Once in a while he stumbles on something inter-
esting.

• What does a large set of clauses generated by resolution, mean? How
is it making progress towards a proof? It is difficult to make any sense
of tens of thousands of clauses in memory.

• Resolution is entirely syntactic; there is no semantics involved, though
semantics can be introduced in semantic variants of resolution.

• Human mathematicians use semantics such as groups for group theory
theorems. Perhaps our provers also should use more semantic informa-
tion.

Even the most efficient propositional provers are benefited by conflict-driven
clause learning (CDCL), which is essentially resolution. This shows that
resolution is not going to disappear.

Propositional Calculus and SMT

• Increasing efficiency of propositional provers



• Even used to solve problems in other domains by translating them
into propositional logic and then using a propositional satisfiability
procedure.

• This is from the announcement for the Fifth International SAT/SMT
Summer School, Stanford, CA, July 15-17, 2015:

Satisfiability (SAT) and Satisfiability Modulo Theories (SMT)
solvers have become the engines powering numerous applications
in computer science and beyond, including automated verification,
artificial intelligence, program synthesis, security, product configu-
ration, and many more. The summer school covers the foundational
and practical aspects of SAT and SMT technologies and their ap-
plications.

• Propositional provers are now often used for model checking applica-
tions, in the bounded model checking approach.

Complexity of Propositional Satisfiability

• An NP complete problem

• Assuming that P is not equal to NP, satisfiability is exponential in the
worst case.

• How is it then that propositional provers can be so efficient in practice?

– Part of the reason is the so-called satisfiability threshold.

– For problems with a large ratio of clauses to literals, DPLL is
likely to finish quickly because the search tree will be small.

– For clauses with a small ratio of clauses to literals, DPLL is likely
to find a model quickly.

– The hard problems tend to be those in the middle.

• The fastest propositional provers use not only DPLL but also CDCL,
which helps them avoid repetitive parts of the search by learning the
reason for various conflicts.



SMT

Another recent development is the increasing effectiveness of provers based
on satisfiability modulo theories (SMT) and their applications.

• What’s the next step beyond SMT to include more of first-order logic
and decision procedures while maintaining the propositional efficiency
of DPLL?

• Equinox achieved respectable performance in a possibly complete the-
orem proving method by combining an OSHL style prover and DPLL,
and dealt with equality by congruence closure.

• Is it possible to extend this approach to more specialized decision pro-
cedures, and thereby obtain a way to extend SMT to a complete first-
order strategy?

Equality and Term Rewriting Systems

• Musser’s inductionless induction.

• I was amazed at the way one could prove inductive theorems by term
rewriting system completion.

• Dallas Lankford had many pioneering papers in term-rewriting systems
that unfortunately did not get published.

• Early termination techniques by Iturriaga for term rewriting systems
were pioneering but largely superceded by the recursive path order-
ings, which were a tremendous advance in termination, though earlier
orderings are still significant.

• The survey of rewriting by Huet and Oppen impressed me with the
potential of term-rewriting techniques.

• Equational unification methods including AC unification have had a
tremendous impact as well.

• Termination techniques using the dependency pair ordering are another
significant development.



• Conditional term rewriting, higher order rewriting, rigid E-unification,
and the Waldmeister prover.

Summary

We have discussed a few of the areas of automated deduction, namely propo-
sitional calculus, SMT, and term rewriting. Now we turn to some possible
research directions in the field.

Discussion of Prover Features

Some desirable feaatures in a theorem prover:

• First-Order Logic

• Model Based Reasoning with Backtracking

• Goal Sensitive

First-Order

The first feature that is desired is that the logic should be first (or higher)
order.

Model-Based Reasoning with Backtracking

The second feature is that it is desirable to have DPLL style model-based
search and backtracking over partial interpretations in a first-order prover

• Model-based search with backtracking is what gives DPLL its efficiency.

• A survey paper by Bonacina, Furbach, and Sofronie-Stokkernmans con-
siders various model-based theorem proving strategies, and shows how
the term model-based reasoning can mean many different things.

• The following presentation is partly inspired by point set topology.

As motivation:



Any infinite set of points in [0,1] has a accumulation point, that is a
point in which every neighborhood (open set) has infinitely many points
in it.

Equivalently, any infinite sequence in [0,1] has an infinite subsequence
that converges to a limit, that is, every neighborhood of the limit contains
all but finitely many elements of the sequence.

This subsequence property is a consequence of compactness, namely,
every open cover of [0,1] has a finite subcover.

How is this a consequence of compactness?

• Suppose an infinite set A of points in [0,1] did not have an accumulation
point.

• Then about every x ∈ [0, 1] there would be a neighborhood N(x) that
contained only finitely many points of A.

• The set of such N(x) is then a cover of [0,1].

• It does not have a finite subcover because any finite subcover will have
only finitely many points from A.

• Thus [0,1] would not be compact (which it is).

With a suitable topology the set I of interpretations of an infinite set of
atoms, also is compact and therefore has the subsequence property.

Now let’s consider how to do theorem proving in first-order logic.

• Let S = {C1, . . . , Cn} be a set of clauses and let Ai be the set of I ∈ I
such that Ci contradicts I.

• Then S is unsatisfiable iff
⋃

i Ai = I.

• Thus for theorem proving, we want to know if
⋃

i Ai = I.

Here is one possible way to do theorem proving in this context:



Method A

Pick I1 ∈ I.
Pick A1 such that I1 ∈ A1 (find C1 that contradicts I1).
If such an A1 does not exist then stop, S is satisfiable
If A1 = I then stop, A1 hence S is unsatisfiable. *
Otherwise, pick I2 ∈ I, I2 6∈ A1 (I2 satisfies C1). *
Pick A2 such that I2 ∈ A2 (find C2 that contradicts I2).
If such an A2 does not exist then stop, S is satisfiable
If A1 ∪ A2 = I then stop, A1 ∪ A2 hence S is unsatisfiable. *
Otherwise pick I3 ∈ I, I3 6∈ A1 ∪ A2 (I3 satisfies C1 and C2). *
. . .

This approach has the advantage of finiteness. However, the starred lines
are not computable. In particular,

• the test for unsatisfiability is not decidable, and

• the search for Ij is not even partially decidable.

Instead, we do this:

Method B

Pick I1 ∈ I.
Pick Ak1 such that I1 ∈ Ak1 (Ck1 contradicts I1)
If such an Ak1 does not exist then stop, S is satisfiable
Pick N(I1) such that I1 ∈ N(I1) ⊆ Ak1 (Ck1 contradicts all interpreta-
tions in N(I1)).
If N(I1) = I then stop, N(I1) hence S is unsatisfiable. *
Otherwise, pick I2 ∈ I, I2 6∈ N(I1) (I2 is not in the neighborhood N(I1)).
*
Pick Ak2 such that I2 ∈ Ak2 (Ck2 contradicts I2).
If such an Ak2 does not exist then stop, S is satisfiable



Pick N(I2) such that I2 ∈ N(I2) ⊆ Ak2 (Ck2 contradicts all interpreta-
tions in N(I2)).
If N(I1)∪N(I2) = I then stop, N(I1)∪N(I2) hence S is unsatisfiable. *
Otherwise, pick I3 ∈ I, I3 6∈ N(I1) ∪ N(I2) (I3 is not in the neighbor-
hoods N(I1) and N(I2)). *
. . .

Here the sets N(Ij) are neighborhoods of Ij that are chosen to make the
starred lines computable; in particular, the test

⋃
j N(Ij) = I decidable, and

also the choice of Ij+1 6∈
⋃

j N(Ij) is computable. The N(Ij) are partial
interpretations and represent the set of total interpretations having N(Ij) as
a subset.

Now Method B is computable but not necessarily terminating.

• To show termination we use the fact that I1, I2, I3, . . . is an infinite
sequence which therefore has an infinite subsequence converging to a
limit I ′ because the set of interpretations is compact.

• Then every neighborhood of I ′ is also a neighborhood of all but finitely
many Ij because I ′ is an accumulation point.

• Then we can use fairness of the choice of N(Ij) to show that eventually
some N(Ij) will also be a neighborhood of I ′, hence of all but finitely
many Ik, hence method B must stop if S is unsatisfiable.

This is the topological motivation for the method presented in the pro-
ceedings paper; there, a conflict triple for S is defined to be to be a triple
(I, J,W ) such that J ∈ P(I) (the set of neighborhoods of I), W ∈ LC(S)
(W is one of the Cj), and W contradicts I and all interpretations in J . The
method given in the proceedings paper constructs a sequence (Ii, Ji,Wi) of
such conflict triples.

• For DPLL, Wi is a clause that contradicts some prefix (subset) of Ii,
and Ji would be some such prefix corresponding to the trail of DPLL.
This means that Ji is always a finite partial interpretation for DPLL.
Ji represents the set of all total interpretations having Ji as a subset.



• However, for first-order logic Ji could be a partial interpretation defined
on infinitely many atoms, and might be defined for example on all
ground instances of a finite set of possibly non-ground literals.

• The property that Ii is not an element of any previous N(Ij) (does
not have any previous Jj as a subset) is guaranteed in DPLL by the
backtracking mechanism for DPLL.

By a model-based method we mean either something that fits into this
formalism, or something that is in the same style even if it doesn’t exactly
fit the formalism.

• Model Evolution is one of the few strategies that is first-order and
appears to be model-based in this sense.

• OSHL is model-based, but the clauses Wj are always ground clauses.

• Other instance-based methods including SATCHMOmay also be model-
based in this sense. SATCHMO also only generates ground clauses.

Goal Sensitivity

The third feature that is desired in a theorem prover is that inferences should
be restricted to those that are related to the particular theorem and not just
to general axioms.

• For clause form provers, if one wants to prove a theorem R from a set A
of axioms, then one typically converts A∧¬R to clause form, obtaining
a set S of clauses that is the union of clauses T from A and U from
¬R.

• In a goal sensitive method, clauses U from the negation of the theorem
are typically considered to be relevant initially.

• Then the proof search is restricted so that clauses from T , and resol-
vents of input clauses, are only used if they are in some sense closely
related to clauses from U .

• Generally A will be satisfiable, so that T will also be satisfiable. Let I
be a model of T .



• Then if S is unsatisfiable, only clauses from U will contradict I. Thus
one may consider that only clauses that contradict such an I are be
relevant initially.

• Such an I will typically be a nontrivial model, that is, not obtained
simply by choosing truth values of predicate symbols in a certain way.

• The Gelernter prover is an example of a prover using nontrivial seman-
tics essentially for Horn clauses.

There are various ways to decide which derived formulas are relevant for
a proof.

• One approach is to assign each formula a relevance attribute. The
attribute can be true, indicating that the formula is relevant, or false,
indicating that the formula is not relevant.

• These attributes are assigned initially so that only formulas related to
the particular theorem are relevant.

• An inference is considered to be relevant if at least one of the hypotheses
used in the inference is relevant.

• After each inference, the relevance attributes of formulas involved in the
inference are updated. The conclusion of a relevant inference is always
relevant, and the relevance attributes of the non-relevant hypotheses
are changed from false to true.

• Some relevance strategies may also assign a numerical relevance dis-
tance attribute to formulas, indicating how relevant they are. Smaller
distances indicate greater relevance.

• A method is goal sensitive if it is a relevance strategy, that is, it only
performs relevant inferences. Such a strategy only generates relevant
formulas.

Thus the result of an inference rule such as resolution, applied to a rel-
evant clause and another clause, is also relevant. Operations other than
resolution, such as instantiation, can also create a relevant instance CΘ of
a clause C if they unify a literal of C with the complement of a literal of a
relevant clause D.



Relevance in Equational Proofs

• For equational proofs of an equation s = t from a set E of equations, if
one can complete E then applying rewriting and narrowing (paramod-
ulation) to s and t using the completed E suffices for completeness;
s = t is a logical consequence of E iff s and t rewrite to the same term.

• Thus such rewriting proofs are automatically goal sensitive, assuming
that the theorem s = t is selected to be relevant initially. Such goal-
sensitivity is a tremendous advantage.

• If unfailing completion is used, the completion steps may not be rel-
evant, but steps involving rewriting and narrowing of s and t will be
relevant.

Relevance Distances

• There are also methods that compute at the start which clauses and
even which instances of clauses are closely related to the particular
theorem, so that proof strategies can concentrate on such clauses.

• These methods typically compute a relevance distance d of each clause
from the particular theorem, with smaller distances indicating clauses
that are more closely related to the particular theorem.

• Then these methods compute a set Rd(S) of clauses and instances of
clauses of S such that all clauses in Rd(S) are at relevance distance d

or less.

• This set Rd(S) is computed so that it is unsatisfiable if there is an
unsatisfiable set of ground instances of S of cardinality d or less.

• Typically Rd(S) is computable from S in polynomial time, or at worst
in exponential time, and Rd(S) ⊆ Rd+1(S) for all d ≥ 0.

Importance of Goal-Sensitivity

• For very large axiom sets, or axiom sets with many consequences, rel-
evance methods are especially important.



• If there is no particular theorem, and one simply wants to test an axiom
set A for satisfiability, then one can still apply relevance methods by
choosing a known satisfiable subset B of A as the general axioms, and
one can then consider A−B as the particular theorem.

• This approach will at least avoid combining axioms of A in the search
for a contradiction.

• Perhaps the concepts of goal relevance and semantics could even help
propositional provers.

Summary

We have presented three properties that would be desirable in a theorem
proving method. We would like a strategy that has all three properties,
namely, first-order, model-based, and goal-sensitive. It seems that not many
strategies have all three properties. Perhaps it would be worthwhile to de-
velop such strategies.

Now we turn to a quantitative approach to analyzing the search space of
theorem proving methods.

More Search Space Discussion

How can we give a rigorous complexity theoretic answer to the question
whether one theorem proving strategy is better than another?

• For example, is resolution for first-order logic better than enumerating
propositional instances and applying DPLL, and if so, by how much?

• We can test provers on specific examples to see which one is faster, but
it would be better to have a more general method of evaluation.

• Theoreticians are highly interested in the complexity of resolution on
propositional calculus problems.

• Is there some way to interest them in its complexity for first-order logic?

Even though first-order validity is only partially decidable, so that one
cannot recursively bound the running time of a prover in terms of the length
of the input, one can still discuss the asymptotic complexity of various the-
orem proving methods in terms of the size of a minimal Herbrand set.



Terminology

• Define a Herbrand set for a set S of clauses to be a set T of ground
instances of clauses in S such that T is unsatisfiable.

• Let H(S) be the minimal size of a Herbrand set for clause set S in
some reasonable size measure.

• We define a complexity bound for a theorem proving method M to be
a function F such that for all unsatisfiable clause sets S, the time taken
by M on S is bounded by F (H(S)).

• Because the size of H(S) is not recursively bounded in terms of S, it
is possible to give recursive bounds on the running time of M in terms
of H(S) without implying that validity is decidable.

Now, the complexity of M can be highly dependent on details of the
implementation, so to abstract this away,

• we define a function TM which is closely related to the running time of
M ,

• say, within a small polynomial of the running time of M ,

• and such that TM has a simple mathematical definition.

Then we define a complexity bound for a theorem proving method M as
follows:

If M is a theorem proving method then a function F is a complexity
bound for M if for all unsatisfiable clause sets S, TM(S) ≤ F (H(S)).

The minimal such F can be considered to be the complexity of M . This
is the approach taken in the proceedings paper. This approach can also
be applied to incomplete methods such as UR resolution, where one only
requires the inequality TM(S) ≤ F (H(S)) to hold for clause sets S whose
unsatisfiability can be proved by M .

DPLL can be applied to first-order clause sets by enumerating ground
instances of the clauses and periodically applying DPLL to test for satifiabil-
ity. The proceedings paper applies the above search space analysis approach
to resolution, UR-resolution, and a couple of versions of DPLL to attempt
to draw some conclusions about their relative efficiency.



Summary

Here is a summary of our results:

• If one bounds the maximum literal size in a Herbrand set, DPLL seems
to have an advantage over resolution.

• If one bounds the size of the Herbrand set as a whole, DPLL still seems
to have an advantage but not as much.

• For resolution refutations having a small depth (which corresponds to
a small number of literals in a Herbrand set T ), resolution looks better.

• For sets S having unit refutations, resolution looks much better.

• We did not analyze methods besides resolution and DPLL.

As additional evidence that DPLL can sometimes be faster than resolu-
tion,

• SATCHMO has much the flavor of DPLL applied to an enumeration of
ground instances, and in its day it frequently beat the best resolution
provers.

• Another evidence is the good performance of instance-based methods
on the function-free fragment in the annual TPTP competitions, and
of DPLL for hardware verification applications.

• Some tests of mine showed DPLL to be superior to resolution on the
pigeonhole problems.

As evidence for the superiority of resolution, one has the increasing per-
formance of provers like Vampire, E, and Spass, among others.

Our analysis suggests to look for methods that are asymptotically efficient

• for small Herbrand sets,

• for sets having shallow resolution refutations,

• for sets having unit refutations, and

• for sets of clauses in which the maximum literal size in a Herbrand set
is bounded.



This analysis does not include equality, however, which is easy to include
in a resolution prover but possibly more difficult for an instance-based strat-
egy. It also does not consider strategies other than resolution and DPLL.

Summary

So we have presented an approach to give an asymptotic analysis of the time
complexity of theorem proving methods. Now we make some final comments
about the state of the field.

Additional Comments

• Generating conjectures is also a fruitful area of research. This area is
related to interpolation and automatic program verification, as well as
being important for mathematical discovery in general.

• Model finding is another important area, which can be used to show
that a formula is satisfiable. However, model finding is especially diffi-
cult, and for first-order logic is not even partially decidable.

• Another area of interest is using resolution provers as decision proce-
dures for subsets of first-order logic. Maslov’s method can also be used
in this way.

• As another issue, what can we do to improve the status of theorem
proving in the general computer science community, as well as the
funding situation?

• It appears from personal experience that more and more people outside
of computer science are becoming interested in automated deduction.

• Should we be thinking about the social consequences of theorem prov-
ing work and of artificial intelligence work in general?

• If computers learn to prove hard theorems, will they replace humans?

• What needs to happen for computer theorem provers to be able to
prove hard theorems often, without human interaction?



Summary

We have considered the following topics related to the history and prospects
for first-order theorem proving.

• History of theorem proving before and after resolution

• Significance of resolution

• Personal reflections

• Instance-based methods

• Term rewriting methods

• Model based methods

• Goal sensitivity

• Analysis of search space size

• A few final thoughts

These notes may be available on the internet soon.


