Chapter 1
Selecting the median

Dorit Dor*

Abstract

Improving a long standing result of Schonhage, Paterson and
Pippenger we show that the median of a set containing n
elements can be found using at most 2.95n comparisons.

1 Introduction

The selection problem is defined as follows: given a
set X containing n distinct elements drawn from a
totally ordered domain, and given a number 1 <7 <n,
find the i-th order statistic of X, i.e., the element of X
larger than exactly ¢—1 elements of X and smaller than
the other n — ¢ elements of X. The median of X is the
[n/2]-th order statistic of X.

The selection problem is one of the most fundamen-
tal problems of computer science and it has been ex-
tensively studied. Selection is used as a building block
in the solution of other fundamental problems such as
sorting and finding convex hulls. It is somewhat surpris-
ing therefore that only in the early 70’s it was shown,
by Blum, Floyd, Pratt, Rivest and Tarjan [BFP+73],
that the selection problem can be solved in O(n) time.
As Q(n) time is clearly needed to solve the selection
problem, the work of Blum et al. completely solves the
problem. Or does it?

A very natural setting for the selection problem is
the comparison model. An algorithm in this model can
access the input elements only by performing pairwise
comparisons between them. The algorithm is only
charged for these comparisons. The comparison model
is one of the few models in which eract complexity
results may be obtained. What is then the exact
comparison complexity of finding the median?

The comparison complexity of many comparison
problems is exactly known. It is clear, for example,
that exactly n — 1 comparisons are needed, in the worst
case, to find the maximum or minimum of n elements.
Exactly n + [logn] — 2 comparisons are needed to
find the second largest (or second smallest) element

(Schreier [Sch32], Kislitsyn [Kis64]). Exactly [3n/2]—2

~ *Department of Computer Science, School of Mathematical
Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv 69978, ISRAEL. E-mail addresses
{ddorit,zwick } @math.tau.ac.il.

Urit Zwick *

comparisons are needed to find both the maximum and
the minimum of n elements (Pohl [Poh72]). Exactly
2n —1 comparisons are needed to merge two sorted lists
each of length n (Stockmeyer and Yao [SY80]). Finally,
nlog n+O(n) comparisons are needed to sort n elements
(e.g., Ford and Johnson [FJ59]).

A relatively large gap, considering the fundamental
nature of the problem, still remains however between
the known lower and upper bounds on the exact com-
plexity of finding the median. After presenting a basic
scheme by which an O(n) selection algorithm can be
obtained, Blum et al. [BFP*73] try to optimize their
algorithm and present a selection algorithm that per-
forms at most 5.43n comparisons. They also obtain
the first non-trivial lower bound and show that 1.5n
comparisons are required, in the worst case, to find the
median. The result of Blum et al. is subsequently im-
proved by Schénhage, Paterson and Pippenger [SPP76]
who present a beautiful algorithm for the selection of the
median, or any other element, using at most 3n + o(n)
comparisons. In this work we improve the long stand-
ing result of Schonhage et al. and present a selection
algorithm that uses at most 2.95n comparisons.

Bent and John [BJ85] (see also John [Joh88]), im-
proving previous results of Kirkpatrick [Kir81], Munro
and Poblete [MP82] and TFussenegger and Gabow
[FGT78], obtained a (1 + H(«))-n — o(n) lower bound on
the number of comparisons needed to select the an-th
element of a set of n elements, where H(a) = a’log L +
(1 —a)log ﬁ is the binary entropy function (all log-
arithms in this paper are taken to base 2). We have
shown recently [DZ95] (using somewhat different meth-
ods from the ones used here) that the an-th element can
be selected using at most (1+alog L +O(aloglog 2))n
comparisons. This for small values of « 1s almost opti-
mal. The bound of Bent and John gives in particular
a 2n — o(n) lower bound on the number of comparisons
needed to find the median.

Our work slightly narrows the gap between the best
known lower and upper bounds on the comparison com-
plexity of the median problem. Though our improve-
ment is quite modest, many new ideas were required to
obtain 1t. These new ideas shed some more light on the
intricacy of the median finding problem.

Algorithms for selecting the -th element for small
values of i were obtained by Hadian and Sobel [HS69],
Hyafil [Hya76], Yap [Yap76], Ramanan and Hyafil
[RHS84], Aigner [Aig82] and Eusterbrock [Eus93].

All the results mentioned so far deal with the
number of comparisons needed in the worst case. Floyd
and Rivest [FR75] showed that the ¢-th element can
be found using an ezpected number of n + i 4+ o(n)
comparisons. Cunto and Munro [CM89] had shown that
the bound of Floyd and Rivest is tight.

The central idea used by Schonhage et al. in their
3n + o(n) median algorithm is the idea of factories.
Schonhage et al. use factories for the mass production
of certain partial orders at a much reduced cost. To
obtain our results we extend the notion of factories.
We introduce green factories and perform an amortized
analysis of their production costs. We obtain improved
green factories using which we can improve the 3n+4o(n)
result of Schonhage, Paterson and Pippenger.

The performance of a green factory is mainly char-
acterized by two parameters Ag and A; (the upper and
lower element costs). Using a green factory with pa-
rameters Ag and A; we obtain an algorithm for the
selection of the an-th element using at most (Ager +
A1(1 = «))-n+o(n) comparisons. To select the median,
we use a factory with Ap, A1 &~ 2.95. Actually, there is a
tradeoff between the lower and upper costs of a factory.
For every 0 < o < 1/2 we may choose a factory that
minimizes Ager + A1 (1 — o). We can select the n/4-th
element, for example, using at most 2.69n comparisons,
by using a factory with Ay &~ 4 and A; ~ 2.25. In this
paper, we concentrate on factories for median selection.
It is easy to verify that the algorithm described here, as
the median finding algorithms of both Blum et al. and
Schonhage et al., can be implemented in linear time in
the RAM model.

In the next section we describe in more detail the
concept of factory production and introduce our notion
of green factories. We also state the properties of
the improved factories that we obtain. In Section 3
we explain the way in which green factories are used
to obtain efficient selection algorithms. The selection
algorithm we describe is a generalization of the median
algorithm of Schonhage et al. [SPP76] and is similar
to the selection algorithm we describe in [DZ95]. In
the subsequent sections we try to demonstrate the main
ideas used in the construction of our new green factories.
Due to lack of space, many of the details are omitted.

2 Factory production

Denote by Sj* a partial order composed of a centre
element, m elements larger than the centre and k&
elements smaller than the centre (see Fig. 1). An S

DOR AND ZWICK

ooo

—_————’

k
Figure 1: The partial order S}.

is sometimes referred to as a spider. Schonhage et
al. [SPP76] show that producing [disjoint copies of

o usually requires fewer comparisons than ! times the
number of comparisons required to produce a single S;*.
The best way, prior to this work, of producing a single
S,’j, for example, requires about 6k comparisons (find
the median of 2k+1 elements using the 3n+o(n) median
algorithm). The cost per copy can be cut by almost a
half if the S%’s are mass produced using factories.

A factory for a partial order P is a comparison
algorithm with continual input and output streams.
The input stream of a simple factory consists of single
elements. When enough elements are fed into the
factory, a new disjoint copy of P is produced. A factory
is characterized by the following quantities: the initial
cost I, which is the number of comparisons needed to
initialize the factory; the wnit cost U, which is the
number of comparisons needed to generate each copy
of P; and finally the production residue R, which is the
maximal number of elements that can remain in the
factory when lack of inputs stops production. For every
[> 0, the cost of generating ! disjoint copies of P is
at most I +[-U. Schoénhage et al. [SPP76] construct
factories with the following characteristics:

THEOREM 2.1. There is a factory Fy for S,’j with
wmatial cost Iy, unit cost Uy and production residue Ry

satisfying: Uy ~ 3.5k, I, = O(k?), Ry = O(k?).

The notation Up ~ 3.5k here means that U, =
3.5k + o(k). Schonhage et al. also show that if there ex-
ist factories Fj, for S,’j s, satisfying Uy ~ Ak, for some
A >0, and Iy, Ry = O(k?), then the median of n ele-
ments can be found using at most An + o(n) compar-
isons. The above theorem immediately implies therefore
the existence of a 3.5n 4+ o(n) median algorithm.

The way factories are used by selection algorithms
1s described in the next section. For now we just men-
tion that most S*’s generated by a factory employed
by a selection algorithm are eventually broken, with ei-
ther their upper elements eliminated and their lower
elements returned to the factory or vice versa. While
constructing an S*, a factory may have compared el-
ements that turned out to be on the same side of the
centre. If such elements are ever returned to the factory,
the known relations among them may save the factory

SELECTING THE MEDIAN

some of the comparisons it has to perform. To capture
this, we extend the definition of factories and define
green factories (factories that support the recycling of
known relations). This extension is implicit in the work
of Schénhage et al. [SPP76]. Making this notion explicit
simplifies the analysis of our factories. The 3n + o(n)
median algorithm of Schonhage et al. is in fact obtained
by replacing the factory Fjy of Theorem 2.1 by a simple
green factory.

A green factory for S*’s is mainly characterized by
the following two quantities: the lower element cost ug
and the upper element cost uy. Using these quantities,
the amortized production costs of the factory can be
calculated as follows: The amortized production cost of
an S7° whose upper m elements are eventually returned
(together) to the factory is k-ug. The amortized
production cost of an S3' whose lower k elements are
eventually returned (together) to the factory is m-u;.
The amortized production cost of an S7* such that none
of its elements is returned to the factory is k-ug + m-uy.
Note that in this accounting scheme we attribute all the
production cost to elements that are not returned to the
factory. The initial cost I and the production residue R
of a green factory are defined as before. A somewhat
different definition of green factories was given by us
in [DZ95]. The new definition uses amortized costs per
element whereas our old definition used amortized costs
per partial order. A green factory does not know in
advance whether the lower or upper part of a generated
Spt will be recycled. This is set by an adversary.
Though not stated explicitly, the following result is
implicit in [SPP76].

THEOREM 2.2. There is a green factory Gy for S,’j
with lower and upper element costs ug,uy ~ 3, wnitial
cost Iy = O(k?) and production residue Ry, = O(k?).

The notation wup, u; ~ 3 here means that ug, u; =
3+ o(1) where the o(1) is with respect to k.

We shall see in the next section that a green
factory for S with lower and upper element costs
ug and wy yields a (ug + w1)/2-n + o(1) median
algorithm. To improve the algorithm of Schonhage et
al. it is enough therefore to construct an S¥ factory
with (ug + u1)/2 < 3. Unfortunately, we are not able
to construct such a factory.

However, we are able to reduce the upper and lower
element costs if we allow variation among the partial
orders generated by the factory. Let S,f = {S,’j,” k<
kK <2k, k <k" <2k} We construct improved green
factories that generate partial orders that are members
of S,f These factories can be easily incorporated into
the selection algorithm described in the next section.
To obtain our 2.95n median algorithm we use green 3,’:
factories Gy with the following characteristics:

Eliminated A

Eliminated

Figure 2: The ordered list of S,f’s.

THEOREM 2.3. There is a green factory Gy for 3,’:
with ug, uy ~ 2.942, I, = O(k?), Rk = O(k?).

The main 1deas used to construct the factories Gy
are described in Section 5.

3 Selection algorithms

In this section we describe our selection algorithm. This
algorithm uses an 3,’: factory. The complexity of the al-
gorithm is completely determined by the characteristics
of the factory used. This algorithm is a generalization
of the median algorithm of Schonhage et al. and a vari-
ation of the selection algorithm we describe in [DZ95].

THEOREM 3.1. Let 0 < a < 1/2. Let Fj be an
3,’: factory with lower element cost ug ~ Ag, upper
element cost uy ~ Ay, initial cost Iy = O(k?) and
production residue R, = O(k?). Then, the an-th
smallest element, among n elements, can be selected
using at most (a-Ag + (1 — &) Ay)n+o(n) comparisons.

Proof. We refer to the an-th smallest element
among the n input elements as the percentile element.
The algorithm uses the factory Fj where k = |[n'/*].
The n input elements are fed into this factory, as sin-
gletons, and the production of partial orders S &€ 3,’;
commences. The centres of the generated S’s are in-
serted, using binary insertion, into an ordered list L, as
shown in Fig. 2. When the list L is long enough we
either know, as we shall soon show, that the centre of
the upper (i.e., last) S in L and the elements above it
are too large to be the percentile element, or that the
centre of the lower (i.e., first) S and the elements below
it are too small to be the percentile element. Elements
too large or too small to be the percentile element are
eliminated. The lower elements of the upper S, and
the upper elements of the lower S are returned to the
factory for recycling.

Let ¢ be the current length of the list L and let »
be the number of elements currently in the factory. The
number of elements that have not yet been eliminated
is therefore N = ©(k)-t + r. Let i be the rank of the
percentile element among the non-eliminated elements.

Initially N = n and ¢ = [an].

The number of elements in the list known to be
smaller or equal to the centre of the upper S of the
list is Ny = ©(k)-t. The number of elements known
to be greater or equal to the centre of the lowest S
of the list is Ny = O(k)-t. Note that Ny + Ny =
N 4+t — r as the centres of all the S’s in the list satisfy
both these criteria, the r elements are currently in the
factory satisfy neither, and all the other non-eliminated
elements satisfy exactly one of these criteria.

The algorithm consists of the following intercon-
nected processes:

(i) Whenever sufficiently many elements are supplied
to the factory Fi, a new partial order S € S,f is
produced and its centre is inserted into the list L
using binary insertion.

(i1) Whenever Ny > ¢, the centre of the upper partial

order S € S,f in the list and the elements above

it are eliminated, as they are too big to be the
percentile element. The lower elements of S are
recycled.

Whenever N7 > N — i+ 1, the centre of the lowest

partial order S € 3,’: in the list and the elements

below it are eliminated, as they are too small to be

the percentile element. The upper elements of S

are recycled. The value of ¢ is updated accordingly,

1.e., ¢ 1s decremented by the number of elements in

the lower part of S (including the centre).

If (ii) and (iii) are not applicable then Ny < ¢ and
Ny <N—i41. Thus N+t—r=Nog+N; < N+1and
t—1 <. If (i) is not applicable then by the factory
definition we have » < Rj. When no one of (i),(ii) and
(iii) can be applied we get that t —1 < r < R, = O(k?).
At this stage N = O(k?), which is O(n?/%), and the i-th
element among the surviving elements is found using
any linear selection algorithm.

We now analyze the comparison complexity of the
algorithm. Whenever (ii) is performed, the upper
partial order S € 3,’: of the list is broken. Its centre and
upper elements are eliminated and its lower elements
are returned to the factory. The amortized production
cost of the partial order S is at most A; comparisons
per each element above the centre.

Whenever (iii) is performed, the lowest partial order
S € 3,’: of the list 1s broken. TIts centre and lower
elements are eliminated and its upper elements are
returned to the factory. The amortized production cost
of the partial order S is at most Ay comparisons per
each element below the centre.

The algorithm can eliminate at most (I — a)n
elements larger than the percentile element and at most
an elements smaller than the percentile element. The
total production cost of all partial orders S € 3,’; that

(i)

DOR AND ZWICK

are eventually broken is therefore at most (adg + (1 —
a)A1)n+o(n). At most O(k?) generated partial orders
S € 3,’: are not broken. Their total production cost
is O(k®). The initial production cost is O(k?). The
total number of comparisons performed by the factory
is therefore (Ao + (1 — @) A1) -n + o(n).

Let ¢* be the final length of the list L (when none
of (i),(ii) and (iii) is applicable). The total number of
partial orders generated by Fj is at most n/k + t*, as
at least k elements are eliminated whenever a partial
order 1s removed from L. The total cost of the binary
insertions into the list L is at most O((n/k+t*)logn) =
O((n/k + k*)log n) which is o(n). The total number of
comparisons performed by the algorithm is therefore at
most (adg + (1 — a)A1)-n 4+ o(n), as required. a

Using the factories of Theorem 2.3, we obtain our
main result:

THEOREM 3.2. Any element, among n elements,
can be selected using at most 2.942n+o(n) comparisons.

4 Basic principles of factory design

In this section we give some of the basic principles
used to construct efficient factories. The section is
divided into three subsections. In the first subsection we
remind the reader what hyperpairs are and what their
pruning cost 1s. In the second subsection we describe
the notion of grafting. In the third subsection we sketch
the construction of the S¥ factories of Schénhage et al.
[SPP76]. These factories are described as an example
for a simple factory design.

Before going into details, we describe a clever
accounting principle introduced by Schonhage et al. to
simplify the complexity analysis. The information we
care to remember on the elements that pass through the
factory can always be described using a Hasse diagram.
Each comparison made by the algorithm adds an edge
to the diagram and possibly deletes some edges. At
some stages we may decide to ‘forget’ the result of some
comparisons and the edges that correspond to them are
removed from the diagram. Schonhage el al. noticed
that instead of counting the number of comparisons
made, we can count the number of edges cut! To this
we should add the number of edges in the eliminated
parts of the partial orders as well as the edges that
remain in the factory when the production stops. The
second number, in our factories, is at most a constant
times the production residue of the factory and it can
be attributed to the initial cost.

4.1 Hyperpairs A factory usually starts the pro-
duction of a partial order from 3,’: by producing a large
partial order, a hyperpair, that contains a partial order
from S,f .

SELECTING THE MEDIAN

@g&%

Figure 3: Some small H,’s (Hs = Py1, Hy = Pp110 and
Hs = Poi1010)-

DEFINITION 4.1. An hyperpair P, where w is a bi-
nary string, s a finite partial order with a distinguished
element, the centre, defined recursively by (i) Py is a
single element (A here stands for the empty string). (ii)
Py 1s obtained from two disjoint P,’s by comparing
their centres and taking the higher as the new centre.
Pyo s obtained in the same way but taking the lower of
the two centres as the new centre.

The Hasse diagrams of some small hyperpairs are
shown in Fig. 3. Some basic properties of hyperpairs
are given in the following Lemma.

LEMMA 4.1. Let ¢ be the centre of a hyperpair P, .
Let w; be the prefiv of w of length j. Let hy be
the number of 0’s in w and hy be the number of 1’s
inw. Then: (i) The centre ¢ together with the elements
greater than it form a Pyn, with centre c. The elements
greater than ¢ form a disjoint set of hyperpairs Py, Py,
, Pyro-1. The centre ¢ logether with the elements
smaller than it form a Py, with centre c. The elements
smaller than ¢ form a disjoint set of hyperpairs Py, Py,
. Piny—1. (ii) The hyperpair Py can be parsed into
its centre ¢ and a disjoint set {Py; 0 <j<|ul}
of smaller hyperpairs. Moreover, the centre of Py, 1s
above ¢ if wjy1 ends with 0, and below ¢ if wjy1 ends
with 1.

The Lemma can be easily proved by induction.
Note, in particular, that if m < 2" and & < 2
then P, contains an S}'. No edges are cut during the
construction of hyperpairs. But, before outputting an

o' contained in a hyperpair, all the edges connecting
the elements of this 57" with elements not contained in
this SI* have to be cut. This rather costly operation is
referred to as pruning.

The downward pruning cost PRy(w) of a hyperpair
P, with centre ¢ is the number of edges that connect
elements of P, that are below the centre ¢ with the other
elements of P, (excluding ¢). The upward pruning cost
PR;i(w) of a hyperpair P, is defined analogously.

Usually, especially if a grafting process 1s applied,
we do not want to prune all the elements above or
below the centre ¢ of a hyperpair P,. It is then
more convenient to consider the amortized per element
pruning costs. Let hy and hy be the number of 0’s and

1’s in w and let h = hg + hy. We define pro(w) =
PRo(w) /2" and pri(w) = PRy(w)/2" to be the lower
element pruning cost and the upper element pruning
cost of w. It can be easily shown that the cost of
pruning kg elements below ¢ is at most ko-pro(w) + h
and the cost of pruning k; elements above ¢ is at most
k1 -pri(w) + h. The h terms are usually negligible.
Note that & is the number of edges connected to the
centre ¢ of P,. When an edge connected to ¢ is cut, a
hyperpair P, where w' is a prefix of w, is obtained.
This hyperpair can then be used in the construction of
the next P, . The following Lemma is easily proved.

LEMMA 4.2.

(1) pro(A)=0 , pri(A) =0
(i8) pro(0w) =pro(w)+ 1, pro(lw) = %pro(w)
(#5d) pri(Ow) = %prl(w) , pri(lw) = pri(w) + 1

To produce partial orders from 3,’: for larger and
larger values of k, we have to construct larger and larger
hyperpairs. When we design a family {Fj, }52; of facto-
ries, we usually choose an infinite binary string W. In
each member Fj, of this family we construct a hyperpair
whose sequence is a long enough prefix of W. Let w;
be the finite prefix of W of length 7. The lower and
upper element pruning costs of an infinite sequence W
are defined as the limits pro(W) = lim;_, o pro(w;) and
pr1 (W) = lim; o pri(w;). These limits do exist for the
chosen infinite strings.

Schonhage et al. base their factories on the infinite
string W = 01(10)* for which, as can be easily verified,
pro(W) = pri (W) = 1.5. In our factories, we also need
hyperpairs with cheaper lower element pruning cost and,
alas, more expensive upper element pruning cost, or
vice versa. The following Theorem presents a tradeoff
between the upper and lower element pruning costs. Its
proof is omitted due to lack of space.

THEOREM 4.1. For any two numbers 1 < a,b < 2
such that a + b = 3, there exists a binary sequence
W e {01, 10} for which pro(W) = a and pri(W) = b.

We are already in a position to describe a simple
but complete S,’j factory. Select a string W. Construct
a hyperpair P, that contains the partial order S,’j,
where w is a long enough prefix of W. Prune k elements
above and k elements below the centre of this P,,. These
2k+1 elements form a copy of S¥. By Lemma4.1(ii), the
remaining elements of P, form a disjoint collection of
partial orders of the form P, where w; is a prefix of w.
These partial orders are used to construct a new copy
of P, that will be used to construct the next S,’j. Before
we output an S,’j, we cut the 2k edges 1t contains. When
some part of an S,’j generated by the factory is recycled,
the elements returned to the factory (as singletons) are
used again for the construction of hyperpairs. It is easy
to check that the lower and upper element costs of this

simple factory are both wug, uy ~ pro(W) + pri(W) + 2.
For any W € {01, 10}* we get that the lower and upper
element costs are ug, u; ~ 5.

4.2 Grafting The costs of the simple factories de-
scribed above can be significantly improved using graft-
ing. We can cheaply find elements that are smaller than
the centre, or elements that are larger than the centre
(but not both usually). The process of finding such ele-
ments is called grafting. Pruning is then used to obtain
elements on the opposite side.

We demonstrate this notion using a simple example,
the grafting of singletons. Take an element #, not con-
tained in the hyperpair, and compare it to the centre ¢
of the hyperpair. Continue is this way, comparing new
elements to the centre, until either £ elements above the
centre, or k elements below the centre are found. Note
that no edges are cut in this process. All the grafted
elements are put in the output partial order. The prun-
ing process 1s then used to complete the partial order
into an S,’j. Adding this process to our simple factory
for S¥, the upper and lower element costs are reduced
to: uy, ug ~ max{pro(W), pri(W)} + 2 (note that now
we have to prune elements from at most one side). Thus
ug, 1 ~ 3.5 if we take W = 01(10)¥ or W = 10(01)“.
This supplies a proof to Theorem 2.1. Note that at
least one side of each generated S¥ is composed of sin-
gletons, and if this side is recycled, no comparisons can
be reused.

4.3 The factories of Schonhage, Paterson and
Pippenger We now sketch the operation of the green
factories G obtained by Schonhage et al. [SPPT76].
These factories improve upon the simple factories de-
scribed above by grafting and recycling pairs. The
factory (g starts by producing hyperpairs correspond-
ing to prefixes of the string W = 01(10)* (the string
W = 10(01)¥ could be used instead). Let w; be the
prefix of W of length 7. For brevity we let H; = P,,.
Some small H;’s were shown in Fig. 3. By Lemma 4.1,
an Ha,, where r = [log(k + 1)] contains an S,’j. After
constructing an Hs,, the factory initiates the following
pair grafting process:

Let # < y be a pair of elements and let p; and pq
be two counters initially set to zero. Let ¢ denote the
centre of the hyperpair. If pg > p; compare y and c¢. If
y > ¢ then compare also ¥ and ¢. If y > @ > ¢ then
increase p; by one. On the other hand, if pg < p; then
compare x and c¢. If # < ¢ then compare also y and c.
Finally, if # < y < ¢ then increase pg by one.

As in the simple factory described in the previous
subsection, the grafting continues until & elements are
found above or below the centre and then a pruning

DOR AND ZWICK

process 1s used to complete the generation of an S,’j.
The elements above the centre of the generated S¥
form a collection of disjoint FPy:’s and the elements
below the centre form a collection of disjoint Pj:’s.
When the lower or upper part of an S,’j is returned to
the factory, some of the existing relations among the
elements returned are utilized. The amortized analysis
of the green factory G, encompasses a trade-off between
the cost of generating an S§ and the utility obtained
from its lower or upper parts when these parts are
recycled. Although the SF’s generated by the factory
of Schonhage et al. may contain FPy:’s and P;:’s, where
¢ > 1, their factory is only capable of utilizing pairwise
disjoint relations among the elements returned to it (as
the grafting process uses pairs). If a Py or a Ppi, with
1 > 1, 1sreturned to the factory, it is immediately broken
into 22~ Py’s or P;’s. Note that both Py and P; simply
stand for a pair of elements. It can be checked, see
[SPP76], that the upper and lower element costs of this
factory are ui,ug ~ 3. This is Schonhage et al.’s best
result.

5 Advanced principles of factory design

In this section, we outline the principles used to con-
struct our improved factories that yield the 2.95n me-
dian algorithm. The first of these principles was already
mentioned.

e Allowing variations in the produced partial orders.

Our factories construct partial orders from 3,’: The
exact proportion between the number of elements
below and above the centre of a generated partial
order is not fixed in advance.

e Recycling larger relations.

The factories of Schonhage et al. are only capable
of recycling pairs (i.e., Py’s and P;’s). Our factories
recycle larger constructs such as quartets (Pgo’s
and Pi1’s), octets (Ppoo’s and Pi11’s), 16-tuples
(Poooo’s and Py111’s) as well as pairs, singletons
and other structures which are not hyperpairs. The
non-hyperpair constructs are obtained by the more
sophisticated grafting processes used.

e Constructing hyper-products.

As mentioned, our factories may receive partial
orders that could not be used for the construction of
hyperpairs. These partial orders are used instead
for the construction of hyper-products. A hyper-
product P, o I, where I is some partial order with
a distinguished element which is again called a
centre, is a hyperpair P, that each of its elements
1s also the centre of a disjoint I. Hyperpairs are of
course special cases of hyper-products as P, 0 Py =
POw and Pw o P1 = le.

SELECTING THE MEDIAN

e Grafting larger relations and mass-grafting.

The factories of Schonhage el al. use a simple
pair grafting process. We use more complicated
grafting processes; even if only pairs are involved.
For each input construct we have different grafting
processes. Some of our grafting processes use the
technique of mass production.

e Using sub-factories.

The factories of Schonhage et al. generate only
a single family of hyperpairs (corresponding to
W = 01(10)*). Our factories generate several types
of hyperpairs and hyper-products, as mentioned
above. The construction of each one of these hyper-
products 1s carried out in a separate sub-production
unit that we refer to as a sub-factory. Different sub-
factories also differ in the ‘raw-materials’ that they
can process.

e Using credits in the amortized complexity analysis.

The last principle is an accounting principle. The
different constructs recycled by our factories are
of different ‘quality’. Some of them can be used
very efficiently for the construction of partial or-
ders from S,f Others are not so appropriate for
this process and using them as raw materials for
the construction of partial orders from 3,’: results in
a much higher production cost. To equalize these
costs, each construct used by our factories is as-
signed a credit (or debit if negative).

Unfortunately, we do not have enough space in this
extended abstract for a full description of our factories.
In the next section, we describe a factory that can be
used to obtain a 2.97n median algorithm. This is a
greatly simplified version of our best factory that yields
the 2.95n median algorithm.

6 Factories for median selection

The construction of the factory Gy satisfying the con-
ditions of Theorem 2.3 is extremely involved. To keep
this section relatively short, we describe here a simpli-
fied version Gr of the factory Gi. This factory yields
the following result which is only slightly weaker then
Theorem 2.3:

THEOREM 6.1. There is a green factory Gi for S,f
with ug, u; < 2.9677.

As was the case with all the other factories we
considered, the unit cost of this factory is O(1) and the
initial cost and production residues are O(k?).

The main differences between Gk and G, are the
following: Gy, utilizes only singletons, pairs and quartets
for grafting. Therefore, Gr does not use credits or
unbalanced hyperpairs. Moreover, G is able to recycle

only a fraction of at most v ~ 0.638 of the elements in
quartets. If the proportion of elements in quartets in
the recycled side 1s larger than 5, then some of these
quartets have to be broken into pairs.

This section is divided into four subsections. In
the first subsection we give a preliminary description
of the factory. In the second and the third subsections
we describe the pairs and quartets grafting processes.
Finally, in the last subsection we give a full description
of the factory.

6.1 Preliminaries The factory Gy recycles, and
therefore receives as inputs, singletons, pairs (Pp’s and
P1’s) and quartets (Ppy’s and Pig’s). Singletons are
immediately joined into pairs.

The factory G employs four processes: hyperpair
generation, pair grafting, quartet grafting, and pruning.
The factory Gi employs two sub-factories that generate
balanced hyperpairs. The first constructs hyperpairs
according to the sequence W = 01(10)“. The second
constructs hyperpairs according to the sequence W =
10(01)¢. Input Pyi’s are passed to the first sub-factory
(as Pp1’s can be used for the construction of hyperpairs
that correspond to W = 01(10)%) while input Pig’s
are passed to the second factory (as Pip’s can be used
for the construction of hyperpairs that correspond to
W = 10(01)¥). Input pairs are spread between the two
sub-factories according to demand.

We use the accounting scheme described in Sec-
tion 4 to simplify the complexity analysis. Hence, the
cost of an operation is the number of edges it cuts.
When no ambiguity occurs, we let the upper cost (lower
cost) of an operation be the cost of the operation when
the upper part (or lower part) of its result is eliminated.
Note that upper and lower costs are calculated for whole
structures, whereas the upper and lower element costs
are calculated per eliminated element.

The factory G is not capable of recycling elements
in structures larger than quartets. Any Py (or Ppi),
where 7 > 2, has to be cut therefore into a collection of
disjoint Pyg’s (P11’s). The price of this operation is 1/4
edge per element.

The factory G requires some of the elements it
receives to be organized in pairs (to be used for pair
grafting). Therefore, some of the quartets that are to
be recycled may have to be cut. The exact proportion
of quartets that would have to be cut is not known in
advance. Which partial order S € 3,’; should be charged
for the cutting of these edges? The one being recycled or
the one being constructed? The answer is that the cost
should be split between these two. The optimal charging
scheme, in the case of Qk, turns out to be the following:
When an S € 3,’: is recycled, we make sure that at

most a fraction v as 0.638 of the recycled elements are
organized in quartets. If more elements are organized
in quartets then some of the quartets are cut and this
is charged to the partial order being recycled. If during
of the construction of a partial order S € S,f more
quartets have to be cut, the cost of these additional
cuts is charged to the partial order being constructed.
In some cases the factory Gj runs out of quartets. It
then takes pairs and turns them into quartets. No cost
is associated with this operation as no edges are cut.

The general approach taken by the factory Gr is
the following. If enough elements are supplied to the
factory then in at least one the two sub-factories, a large
enough hyperpair can be built. Additional relations
arriving at the factory are then either used for grafting
in the first sub-factory or used for the construction of a
large enough hyperpair also in the second sub-factory.
Whenever a large enough hyperpair is formed, a quartet
grafting process is applied on it, then a pair grafting
process is applied on it. Each one of the these grafting
processes has a collection of possible outcomes. In some
outcomes elements with low upper element cost but high
lower element cost are obtained. In other outcomes
elements with high upper element cost but low lower
element cost are obtained. Some of these outcomes can
be combined with some pruned elements into a tuple
with low enough upper and lower element costs. We
show that if there are no such outcomes (which can be
combined with pruned elements) we can always combine
outcomes from the two preceding cases so that tuples
with low enough upper and lower element costs are
obtained.

In general, the upper (or lower) element cost of
each case is the sum of the upper (or lower) costs of
the two grafting processes, the pruning cost, the cost
of cutting quartets into pairs (if necessary) and the
cost of the elimination itself. The elimination cost of
each element is always a single edge as the output of
the grafting precesses is always a partial order which
does not contain undirected cycles (undirected cycles, if
obtained, are broken).

The last remark regards our optimization scheme.
At a certain point in the algorithm, we decide upon
the optimal number of elements, from each category,
that are to be added to the output partial order. The
optimal number of elements from each category may
be non-integral. The sum of the optimal numbers, of
each category, is rounded to the nearest integer value
(which will be the actual number of elements, from
this category, in the output partial order). The factory
maintains a counter for each category and makes sure
that the number of grafted elements will not differ from
this counter by more than a constant value.

DOR AND ZWICK

6.2 Grafting pairs In this subsection we describe
our pair grafting process, which is considerably more
complicated than the pair grafting process used by
Schénhage et al. [SPP76]. Our process uses a mass
production scheme to construct a sequence of dominated
hyperpairs.

The process receives two parameters: a direction
bit d and the centre ¢ of the output partial order S.
These parameters are set by the factory when initiating
this process. The grafting recursively builds hyperpairs
which are dominated by the centre ¢ of the output
partial order. A dominated hyperpair P of direction d
and level ¢ is a hyperpair P = P, with centre ¢’ such
that each element of P, except for ¢, is known to be
larger (if d = 0) or smaller (if d = 1) than ¢. The
relation between ¢’ and ¢ is usually not determined.

The pair grafting process is composed of rounds.
The i-th round receives two dominated hyperpairs P?
and P? (with centres ¢; and ¢3, respectively) of level i
and attempts to construct a dominated hyperpair of
level ¢4+ 1. At first a hyperpair P = Pji+1 18 constructed
by comparing ¢; and c¢p. Assume, without loss of
generality, that ¢y is the centre of the new hyperpair P.
Then, compare ¢; with ¢. The two possible outcomes,
when d = 1, are:

(1) ¢1 < ¢ and P is a dominated hyperpair of level i+ 1.
(2) ¢1 > cand P isnot dominated by ¢ (as ¢z > ¢1 > ¢).

Let (1)" and (2)’ be the corresponding cases for d = 0,
e, c1 > cand ¢; < ¢, respectively. If (2) or (2) occur,
the process is stopped. For the purposes of Gy (and
also for those of Gj), we also stop the process when a
dominated hyperpair Pygg or P11 of level 3 is generated.

When ¢ = 0, the hyperpairs P! and P? are just
singletons ¢; and ¢s. The ‘centres’ ¢; and c¢» are
compared and a pair is obtained. The pair grafting
process receives its elements as pairs. It therefore starts
with the second comparison of the 0-th round.

The flow of the pair grafting process, for d = 1, is
shown in Fig. 4. The four possible outcomes of the pair
grafting process with d = 1 are denoted by UZ, U12,1a
UZ, and UJ. The four possible outcomes of this process
with d = 0, which we denote by Lg,L;l,Lg, and Lg,
are symmetric. It 1s therefore enough to consider the
upper and lower costs of UZ, U12,1a Ué, and UJ. Due to
lack of space, we omit the detailed cost analysis. The
costs incurred are summerized in Table 1. All these
costs exclude the elimination cost which i1s 1 for each
eliminated element.

6.3 Grafting quartets A Py, that contains the
four elements u, v, w, z, where u < v and u < w < z, is
grafted using the following simple algorithm:

SELECTING THE MEDIAN

level 3
level 2

Figure 4: Flow of pair grafting when d = 1.

Upper part eliminated | Lower part eliminated
Class Cost Number of Cost Number of
elements elements
Ug 0 2 1 0
2
Uz, 4 2 3 2
Uz 10 2 7 6
Uy 6 — 0 4 4

3.

Table 1: Costs of pair grafting

. Compare w and ¢.
. If w > ¢ then remove the edge (u,w) and return

the pair (u,v) to the input queue.
If w < ¢ then compare ¢ with each of v and z.

The five possible outcomes of this process are shown
in Fig. 5. Note that the fourth partial order obtained
(denoted by @;) Is a special case of the third partial
order obtained (denoted by @Q3). It is not necessary
therefore to consider the fourth outcome and we are
left with four cases that we denote by Q32 %’1,62:13

and QY.

The grafting process employed for Pig’s is

symmetric. The quartet grafting process continues until
three quartets from the same category are obtained.
Oncemore, due to lack of space, we omit the detailed
costs analysis. The costs, for v < 2/3, are summerized
in Table 2.

6.4 The factory algorithm As mentioned before,
the factory Gr is composed of two sub-factories. The
first uses the string W = 01(10)* while the second one
uses the string W = 10(01)*. We describe the operation
of the first sub-factory (whose inputs are Py, ’s, pairs and
singletons). The other sub-factory works in a symmetric
way. The operation of the first sub-factory is composed
of the following steps:

(1)

(2)

Generate a hyperpair P, where w = 01(10)* and
h = [log, n'/8], and let ¢ be its centre. The centre ¢
will be the centre of the generated partial order.

The following steps are applied until & elements
above ¢, or k elements below ¢, are placed in the

Figure 5: Possible outcomes of Py grafting.

Upper part eliminated | Lower part eliminated
Class Cost Number of | Cost Number of
elements elements
2 1 2 2 0
Q! 3 2 4 2
i 4—3v/4 1 3 3
9 4— v 0 2 4

(2a)

(3)

Table 2: Costs of Py grafting.

output partial order.

Apply the quartet grafting process until three tu-
ples from one of the categories Q, QY or Q2 are
available. Elements from category)5~ are imme-
diately placed in the output partial order and the
grafting continues.

If three tuples from @3 or from Qf are available,
apply the pair grafting process with d = 0, until
either L;l, LE, or LY is obtained. Elements found
in category L9 are immediately placed in the final
partial order.

If three tuples from Q2 are available, apply the pair
grafting process with d = 1 until either U12,1a U,
or UZ is obtained. Elements found in category UZ
are immediately placed in the final partial order.

The tuple obtained using the pair grafting, and r
elements from tuples obtained using quartet graft-
ing, are placed in the output partial order.
There are nine different cases here: {Q3,Q9} x
{Ly' L3, LS} U {Q3} x {UP,,U§,U2}. For each
one of these cases we choose an optimal value of 7.
Finally, prune elements from P, in order to achieve
an optimal size (this is required only if Q;l, UZ or
LY were encountered) and output this S € 3,’;

The sub-factory maintains three counters ¢3, ¢§ and ¢2
which are initially set to 0. Whenever a Q3,Q% or a Q32
is obtained, in step (2a), the corresponding counter is
incremented. When a certain part of a @3,Q% or a Q3
is ‘consumed’, in step (2d), the corresponding counter
is decremented by the appropriate, not necessarily in-
tegral, amount. The quartet grafting process activated
in step (2a) is carried out until one of these counters

10

reaches a value of at least 3.

For each Q;l obtained in step (2a), and each UZ or
LY obtained in steps (2b) and (2c), an appropriate num-
ber of elements is to be pruned in step (3). Two counters
po and p; maintain the number of elements that need
to be pruned below and above ¢, respectively. Before
outputting the partial order, |p; | elements above ¢ and
[po] elements below ¢ are pruned.

We depict the flavour of the cost analysis by consid-
ering one of the worst cases of the factory. In the follow-
ing, we fix v ~ 0.637985 which is the optimal value. For
each UZ obtained in (2c), we prune r ~ 2.1382 elements
below ¢. The pruning of the r elements below ¢ cuts
pro(W)-r edges. This pruning generates however r new
elements in either singletons or pairs (because the prun-
ing process separates r singletons, or /2 pairs, from the
centre). These elements can be returned to the factory
as pairs and since r > 2, at least one pair is returned
to the factory for every pair that was utilized. Hence,
there is no need to break quartets into pairs.

Recycling the upper part cuts one edge for each pair
and recycling the lower part cuts (1/2 — v/4)r edges
(because of the recycling restrictions). Thus, the lower
cost is pro(W)-r + 1, obtaining r eliminated elements
and the upper cost is (pro(W) + 1/2 — v/4)r obtaining
one eliminated element. Recall also that the elimination
cost 1s a single edge per eliminated element. Hence, the
upper and lower element costs are:

(15+1/2—~/4)r 1.5r+1
2 o r

The cost analysis of all the other cases 1s omitted.

14 1+ ~ 2.96768 .

7 Concluding remarks

We have improved the results of Schonhage el al.
[SPP76] and Blum et al. [BFP*73] and obtained
a better algorithm for the selection of the median.
Although the improvement, is quite modest, many new
ideas were needed to obtain this improvement. The
new ideas introduced may lead to further improvements.
Our current constructions, however, are already quite
involved and a considerable effort was devoted to their
optimization. Obtaining further improvements is not
likely to be an easy task. Further narrowing the gap
between the known upper and lower bounds on the
number of comparisons needed to select the median
remains a challenging open problem.

References

[Aig82] M. Aigner. Selecting the top three elements. Dis-
crete Applied Mathematics, 4:247-267, 1982.

[BFP*73] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and
R.E. Tarjan. Time bounds for selection. Journal of
Computer and System Sciences, 7:448-461, 1973.

DOR AND ZWICK

[BJ85] S.W. Bent and J.W. John. Finding the median
requires 2n comparisons. In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing,
Providence, Rhode Island, pages 213-216, 1985.

[CM89] W. Cunto and J.I. Munro. Average case selection.
Journal of the ACM, 36(2):270-279, 1989.

[DZ95] D. Dor and U. Zwick. Finding percentile elements.
In Proceedings of the 3rd Israel Symposium on Theory
and Computing systems, 1995.

[FEus93] J. Eusterbrock. Errata to ”Selecting the top three
elements” by M. Aigner: A result of a computer-
assisted proof search. Discrete Applied Mathematics,
41:131-137, 1993.

[FG78] F. Fussenegger and H.N. Gabow. A counting ap-
proach to lower bounds for selection problems. Journal
of the ACM, 26(2):227-238, April 1978.

[FJ59] L.R. Ford and S.M. Johnson. A tournament prob-
lem. American Mathematical Monthly, 66:387-389,
1959.

[FR75] R.W. Floyd and R.L. Rivest. Expected time bounds
for selection. Communication of the ACM, 18:165-173,
1975.

[HS69] A. Hadian and M. Sobel. Selecting the ¢t-th largest
using binary errorless comparisons. Colloquia Mathe-
matica Societatis Janos Bolyai, 4:585-599, 1969.

[Hya76] L. Hyafil. Bounds for selection. SIAM Journal on
Computing, 5:109-114, 1976.

[Joh88] J.W. John. A new lower bound for the set-partition
problem. STAM Journal on Computing, 17(4):640-647,
August 1988.

[Kir81] D.G. Kirkpatrick. A unified lower bound for se-
lection and set partitioning problems. Journal of the
ACM, 28:150-165, 1981.

[Kis64] S.S. Kislitsyn. On the selection of the k-th element
of an ordered set by pairwise comparisons. Sibirsk.
Mat. Zh., 5:557-564, 1964.

[MP8&2] 1. Munro and P.V. Poblete.
determining the median. Technical Report Research
Report CS-82-21, University of Waterloo, 1982.

[Poh72] 1. Pohl. A sorting problem and its complexity.
Communzication of the ACM, 15:462-464, 1972.

[RH84] P.V. Ramanan and L. Hyafil. New algorithms for
selection. Journal of Algorithms, 5:557-578, 1984.

[Sch32] J. Schreier. On tournament elimination systems.
Mathesis Polska, 7:154-160, 1932. (in Polish).

[SPP76] A. Schonhage, M. Paterson, and N. Pippenger.
Finding the median. Journal of Computer and System
Sciences, 13:184-199, 1976.

[SY80] P. Stockmeyer and F.F. Yao. On the optimality of
linear merge. SIAM Journal on Computing, 9:85-90,
1980.

[Yap76] C.K. Yap. New upper bounds for selection. Com-
munication of the ACM, 19(9):501-508, September
1976.

A lower bound for

