
Chapter 1Selecting the medianDorit Dor � Uri Zwick �AbstractImproving a long standing result of Sch�onhage, Paterson andPippenger we show that the median of a set containing nelements can be found using at most 2:95n comparisons.1 IntroductionThe selection problem is de�ned as follows: given aset X containing n distinct elements drawn from atotally ordered domain, and given a number 1 � i � n,�nd the i-th order statistic of X, i.e., the element of Xlarger than exactly i�1 elements of X and smaller thanthe other n� i elements of X. The median of X is thedn=2e-th order statistic of X.The selection problem is one of the most fundamen-tal problems of computer science and it has been ex-tensively studied. Selection is used as a building blockin the solution of other fundamental problems such assorting and �nding convex hulls. It is somewhat surpris-ing therefore that only in the early 70's it was shown,by Blum, Floyd, Pratt, Rivest and Tarjan [BFP+73],that the selection problem can be solved in O(n) time.As
(n) time is clearly needed to solve the selectionproblem, the work of Blum et al. completely solves theproblem. Or does it?A very natural setting for the selection problem isthe comparison model. An algorithm in this model canaccess the input elements only by performing pairwisecomparisons between them. The algorithm is onlycharged for these comparisons. The comparison modelis one of the few models in which exact complexityresults may be obtained. What is then the exactcomparison complexity of �nding the median?The comparison complexity of many comparisonproblems is exactly known. It is clear, for example,that exactly n� 1 comparisons are needed, in the worstcase, to �nd the maximum or minimum of n elements.Exactly n + dlogne � 2 comparisons are needed to�nd the second largest (or second smallest) element(Schreier [Sch32], Kislitsyn [Kis64]). Exactly d3n=2e�2�Department of Computer Science, School of MathematicalSciences, Raymond and Beverly Sackler Faculty of Exact Sciences,Tel Aviv University, Tel Aviv 69978, ISRAEL. E-mail addressesfddorit,zwickg@math.tau.ac.il.

comparisons are needed to �nd both the maximum andthe minimum of n elements (Pohl [Poh72]). Exactly2n�1 comparisons are needed to merge two sorted listseach of length n (Stockmeyer and Yao [SY80]). Finally,n logn+O(n) comparisons are needed to sort n elements(e.g., Ford and Johnson [FJ59]).A relatively large gap, considering the fundamentalnature of the problem, still remains however betweenthe known lower and upper bounds on the exact com-plexity of �nding the median. After presenting a basicscheme by which an O(n) selection algorithm can beobtained, Blum et al. [BFP+73] try to optimize theiralgorithm and present a selection algorithm that per-forms at most 5:43n comparisons. They also obtainthe �rst non-trivial lower bound and show that 1:5ncomparisons are required, in the worst case, to �nd themedian. The result of Blum et al. is subsequently im-proved by Sch�onhage, Paterson and Pippenger [SPP76]who present a beautiful algorithm for the selection of themedian, or any other element, using at most 3n + o(n)comparisons. In this work we improve the long stand-ing result of Sch�onhage et al. and present a selectionalgorithm that uses at most 2:95n comparisons.Bent and John [BJ85] (see also John [Joh88]), im-proving previous results of Kirkpatrick [Kir81], Munroand Poblete [MP82] and Fussenegger and Gabow[FG78], obtained a (1 +H(�))�n� o(n) lower bound onthe number of comparisons needed to select the �n-thelement of a set of n elements, where H(�) = � log 1� +(1 � �) log 11�� is the binary entropy function (all log-arithms in this paper are taken to base 2). We haveshown recently [DZ95] (using somewhat di�erent meth-ods from the ones used here) that the �n-th element canbe selected using at most (1+� log 1�+O(� log log 1�))�ncomparisons. This for small values of � is almost opti-mal. The bound of Bent and John gives in particulara 2n� o(n) lower bound on the number of comparisonsneeded to �nd the median.Our work slightly narrows the gap between the bestknown lower and upper bounds on the comparison com-plexity of the median problem. Though our improve-ment is quite modest, many new ideas were required toobtain it. These new ideas shed some more light on theintricacy of the median �nding problem.1

2 Dor and ZwickAlgorithms for selecting the i-th element for smallvalues of i were obtained by Hadian and Sobel [HS69],Hya�l [Hya76], Yap [Yap76], Ramanan and Hya�l[RH84], Aigner [Aig82] and Eusterbrock [Eus93].All the results mentioned so far deal with thenumber of comparisons needed in the worst case. Floydand Rivest [FR75] showed that the i-th element canbe found using an expected number of n + i + o(n)comparisons. Cunto and Munro [CM89] had shown thatthe bound of Floyd and Rivest is tight.The central idea used by Sch�onhage et al. in their3n + o(n) median algorithm is the idea of factories.Sch�onhage et al. use factories for the mass productionof certain partial orders at a much reduced cost. Toobtain our results we extend the notion of factories.We introduce green factories and perform an amortizedanalysis of their production costs. We obtain improvedgreen factories using which we can improve the 3n+o(n)result of Sch�onhage, Paterson and Pippenger.The performance of a green factory is mainly char-acterized by two parameters A0 and A1 (the upper andlower element costs). Using a green factory with pa-rameters A0 and A1 we obtain an algorithm for theselection of the �n-th element using at most (A0� +A1(1��))�n+ o(n) comparisons. To select the median,we use a factory with A0; A1 � 2:95. Actually, there is atradeo� between the lower and upper costs of a factory.For every 0 < � � 1=2 we may choose a factory thatminimizes A0� + A1(1 � �). We can select the n=4-thelement, for example, using at most 2:69n comparisons,by using a factory with A0 � 4 and A1 � 2:25. In thispaper, we concentrate on factories for median selection.It is easy to verify that the algorithm described here, asthe median �nding algorithms of both Blum et al. andSch�onhage et al., can be implemented in linear time inthe RAM model.In the next section we describe in more detail theconcept of factory production and introduce our notionof green factories. We also state the properties ofthe improved factories that we obtain. In Section 3we explain the way in which green factories are usedto obtain e�cient selection algorithms. The selectionalgorithm we describe is a generalization of the medianalgorithm of Sch�onhage et al. [SPP76] and is similarto the selection algorithm we describe in [DZ95]. Inthe subsequent sections we try to demonstrate the mainideas used in the construction of our new green factories.Due to lack of space, many of the details are omitted.2 Factory productionDenote by Smk a partial order composed of a centreelement, m elements larger than the centre and kelements smaller than the centre (see Fig. 1). An Smk

mz }| {| {z }kFigure 1: The partial order Smk .is sometimes referred to as a spider . Sch�onhage etal. [SPP76] show that producing l disjoint copies ofSmk usually requires fewer comparisons than l times thenumber of comparisons required to produce a single Smk .The best way, prior to this work, of producing a singleSkk , for example, requires about 6k comparisons (�ndthe median of 2k+1 elements using the 3n+o(n) medianalgorithm). The cost per copy can be cut by almost ahalf if the Skk 's are mass produced using factories.A factory for a partial order P is a comparisonalgorithm with continual input and output streams.The input stream of a simple factory consists of singleelements. When enough elements are fed into thefactory, a new disjoint copy of P is produced. A factoryis characterized by the following quantities: the initialcost I, which is the number of comparisons needed toinitialize the factory; the unit cost U , which is thenumber of comparisons needed to generate each copyof P ; and �nally the production residue R, which is themaximal number of elements that can remain in thefactory when lack of inputs stops production. For everyl � 0, the cost of generating l disjoint copies of P isat most I + l �U . Sch�onhage et al. [SPP76] constructfactories with the following characteristics:Theorem 2.1. There is a factory Fk for Skk withinitial cost Ik, unit cost Uk and production residue Rksatisfying: Uk � 3:5k; Ik = O(k2); Rk = O(k2):The notation Uk � 3:5k here means that Uk =3:5k+ o(k). Sch�onhage et al. also show that if there ex-ist factories Fk, for Skk 's, satisfying Uk � Ak, for someA > 0, and Ik; Rk = O(k2), then the median of n ele-ments can be found using at most An + o(n) compar-isons. The above theorem immediately implies thereforethe existence of a 3:5n+ o(n) median algorithm.The way factories are used by selection algorithmsis described in the next section. For now we just men-tion that most Smk 's generated by a factory employedby a selection algorithm are eventually broken, with ei-ther their upper elements eliminated and their lowerelements returned to the factory or vice versa. Whileconstructing an Smk , a factory may have compared el-ements that turned out to be on the same side of thecentre. If such elements are ever returned to the factory,the known relations among them may save the factory

SELECTING THE MEDIAN 3some of the comparisons it has to perform. To capturethis, we extend the de�nition of factories and de�negreen factories (factories that support the recycling ofknown relations). This extension is implicit in the workof Sch�onhage et al. [SPP76]. Making this notion explicitsimpli�es the analysis of our factories. The 3n + o(n)median algorithm of Sch�onhage et al. is in fact obtainedby replacing the factory Fk of Theorem 2.1 by a simplegreen factory.A green factory for Smk 's is mainly characterized bythe following two quantities: the lower element cost u0and the upper element cost u1. Using these quantities,the amortized production costs of the factory can becalculated as follows: The amortized production cost ofan Smk whose upper m elements are eventually returned(together) to the factory is k �u0. The amortizedproduction cost of an Smk whose lower k elements areeventually returned (together) to the factory is m �u1.The amortized production cost of an Smk such that noneof its elements is returned to the factory is k�u0+m�u1.Note that in this accounting scheme we attribute all theproduction cost to elements that are not returned to thefactory. The initial cost I and the production residue Rof a green factory are de�ned as before. A somewhatdi�erent de�nition of green factories was given by usin [DZ95]. The new de�nition uses amortized costs perelement whereas our old de�nition used amortized costsper partial order. A green factory does not know inadvance whether the lower or upper part of a generatedSmk will be recycled. This is set by an adversary.Though not stated explicitly, the following result isimplicit in [SPP76].Theorem 2.2. There is a green factory Gk for Skkwith lower and upper element costs u0; u1 � 3, initialcost Ik = O(k2) and production residue Rk = O(k2).The notation u0; u1 � 3 here means that u0; u1 =3 + o(1) where the o(1) is with respect to k.We shall see in the next section that a greenfactory for Skk with lower and upper element costsu0 and u1 yields a (u0 + u1)=2 � n + o(1) medianalgorithm. To improve the algorithm of Sch�onhage etal. it is enough therefore to construct an Skk factorywith (u0 + u1)=2 < 3. Unfortunately, we are not ableto construct such a factory.However, we are able to reduce the upper and lowerelement costs if we allow variation among the partialorders generated by the factory. Let ~Skk = fSk00k0 : k �k0 � 2k ; k � k00 � 2kg. We construct improved greenfactories that generate partial orders that are membersof ~Skk . These factories can be easily incorporated intothe selection algorithm described in the next section.To obtain our 2:95n median algorithm we use green ~Skkfactories Gk with the following characteristics:

Eliminated Eliminated
Figure 2: The ordered list of ~Skk 's.Theorem 2.3. There is a green factory Gk for ~Skkwith u0; u1 � 2:942, Ik = O(k2), Rk = O(k2).The main ideas used to construct the factories Gkare described in Section 5.3 Selection algorithmsIn this section we describe our selection algorithm. Thisalgorithm uses an ~Skk factory. The complexity of the al-gorithm is completely determined by the characteristicsof the factory used. This algorithm is a generalizationof the median algorithm of Sch�onhage et al. and a vari-ation of the selection algorithm we describe in [DZ95].Theorem 3.1. Let 0 < � � 1=2. Let Fk be an~Skk factory with lower element cost u0 � A0, upperelement cost u1 � A1, initial cost Ik = O(k2) andproduction residue Rk = O(k2). Then, the �n-thsmallest element, among n elements, can be selectedusing at most (��A0 + (1� �)�A1)�n+o(n) comparisons.Proof. We refer to the �n-th smallest elementamong the n input elements as the percentile element.The algorithm uses the factory Fk where k = bn1=4c.The n input elements are fed into this factory, as sin-gletons, and the production of partial orders S 2 ~Skkcommences. The centres of the generated S's are in-serted, using binary insertion, into an ordered list L, asshown in Fig. 2. When the list L is long enough weeither know, as we shall soon show, that the centre ofthe upper (i.e., last) S in L and the elements above itare too large to be the percentile element, or that thecentre of the lower (i.e., �rst) S and the elements belowit are too small to be the percentile element. Elementstoo large or too small to be the percentile element areeliminated. The lower elements of the upper S, andthe upper elements of the lower S are returned to thefactory for recycling.Let t be the current length of the list L and let rbe the number of elements currently in the factory. Thenumber of elements that have not yet been eliminatedis therefore N = �(k) �t + r. Let i be the rank of thepercentile element among the non-eliminated elements.

4 Dor and ZwickInitially N = n and i = d�ne.The number of elements in the list known to besmaller or equal to the centre of the upper S of thelist is N0 = �(k) � t. The number of elements knownto be greater or equal to the centre of the lowest Sof the list is N1 = �(k)�t. Note that N0 + N1 =N + t� r as the centres of all the S's in the list satisfyboth these criteria, the r elements are currently in thefactory satisfy neither, and all the other non-eliminatedelements satisfy exactly one of these criteria.The algorithm consists of the following intercon-nected processes:(i) Whenever su�ciently many elements are suppliedto the factory Fk, a new partial order S 2 ~Skk isproduced and its centre is inserted into the list Lusing binary insertion.(ii) Whenever N0 > i, the centre of the upper partialorder S 2 ~Skk in the list and the elements aboveit are eliminated, as they are too big to be thepercentile element. The lower elements of S arerecycled.(iii) Whenever N1 > N � i+ 1, the centre of the lowestpartial order S 2 ~Skk in the list and the elementsbelow it are eliminated, as they are too small to bethe percentile element. The upper elements of Sare recycled. The value of i is updated accordingly,i.e., i is decremented by the number of elements inthe lower part of S (including the centre).If (ii) and (iii) are not applicable then N0 � i andN1 � N � i+1. Thus N + t� r = N0+N1 � N +1 andt � 1 � r. If (i) is not applicable then by the factoryde�nition we have r � Rk. When no one of (i),(ii) and(iii) can be applied we get that t�1 � r � Rk = O(k2).At this stage N = O(k3), which is O(n3=4), and the i-thelement among the surviving elements is found usingany linear selection algorithm.We now analyze the comparison complexity of thealgorithm. Whenever (ii) is performed, the upperpartial order S 2 ~Skk of the list is broken. Its centre andupper elements are eliminated and its lower elementsare returned to the factory. The amortized productioncost of the partial order S is at most A1 comparisonsper each element above the centre.Whenever (iii) is performed, the lowest partial orderS 2 ~Skk of the list is broken. Its centre and lowerelements are eliminated and its upper elements arereturned to the factory. The amortized production costof the partial order S is at most A0 comparisons pereach element below the centre.The algorithm can eliminate at most (1 � �)nelements larger than the percentile element and at most�n elements smaller than the percentile element. Thetotal production cost of all partial orders S 2 ~Skk that

are eventually broken is therefore at most (�A0 + (1 ��)A1)�n+o(n). At most O(k2) generated partial ordersS 2 ~Skk are not broken. Their total production costis O(k3). The initial production cost is O(k2). Thetotal number of comparisons performed by the factoryis therefore (�A0 + (1� �)A1)�n + o(n).Let t� be the �nal length of the list L (when noneof (i),(ii) and (iii) is applicable). The total number ofpartial orders generated by Fk is at most n=k + t�, asat least k elements are eliminated whenever a partialorder is removed from L. The total cost of the binaryinsertions into the list L is at most O((n=k+t�)�logn) =O((n=k + k2) logn) which is o(n). The total number ofcomparisons performed by the algorithm is therefore atmost (�A0 + (1� �)A1)�n+ o(n), as required. 2Using the factories of Theorem 2.3, we obtain ourmain result:Theorem 3.2. Any element, among n elements,can be selected using at most 2:942n+o(n) comparisons.4 Basic principles of factory designIn this section we give some of the basic principlesused to construct e�cient factories. The section isdivided into three subsections. In the �rst subsection weremind the reader what hyperpairs are and what theirpruning cost is. In the second subsection we describethe notion of grafting. In the third subsection we sketchthe construction of the Skk factories of Sch�onhage et al.[SPP76]. These factories are described as an examplefor a simple factory design.Before going into details, we describe a cleveraccounting principle introduced by Sch�onhage et al. tosimplify the complexity analysis. The information wecare to remember on the elements that pass through thefactory can always be described using a Hasse diagram.Each comparison made by the algorithm adds an edgeto the diagram and possibly deletes some edges. Atsome stages we may decide to `forget' the result of somecomparisons and the edges that correspond to them areremoved from the diagram. Sch�onhage et al. noticedthat instead of counting the number of comparisonsmade, we can count the number of edges cut! To thiswe should add the number of edges in the eliminatedparts of the partial orders as well as the edges thatremain in the factory when the production stops. Thesecond number, in our factories, is at most a constanttimes the production residue of the factory and it canbe attributed to the initial cost.4.1 Hyperpairs A factory usually starts the pro-duction of a partial order from ~Skk by producing a largepartial order, a hyperpair , that contains a partial orderfrom ~Skk .

SELECTING THE MEDIAN 5Figure 3: Some small Hr's (H2 = P01, H4 = P0110 andH6 = P011010).Definition 4.1. An hyperpair Pw, where w is a bi-nary string, is a �nite partial order with a distinguishedelement, the centre, de�ned recursively by (i) P� is asingle element (� here stands for the empty string). (ii)Pw1 is obtained from two disjoint Pw's by comparingtheir centres and taking the higher as the new centre.Pw0 is obtained in the same way but taking the lower ofthe two centres as the new centre.The Hasse diagrams of some small hyperpairs areshown in Fig. 3. Some basic properties of hyperpairsare given in the following Lemma.Lemma 4.1. Let c be the centre of a hyperpair Pw.Let wj be the pre�x of w of length j. Let h0 bethe number of 0's in w and h1 be the number of 1'sin w. Then: (i) The centre c together with the elementsgreater than it form a P0h0 with centre c. The elementsgreater than c form a disjoint set of hyperpairs P�, P0,... , P0h0�1 . The centre c together with the elementssmaller than it form a P1h1 with centre c. The elementssmaller than c form a disjoint set of hyperpairs P�, P1,... , P1h1�1 . (ii) The hyperpair Pw can be parsed intoits centre c and a disjoint set fPwj : 0 � j < jwjgof smaller hyperpairs. Moreover, the centre of Pwj isabove c if wj+1 ends with 0, and below c if wj+1 endswith 1.The Lemma can be easily proved by induction.Note, in particular, that if m < 2h0 and k < 2h1then Pw contains an Smk . No edges are cut during theconstruction of hyperpairs. But, before outputting anSmk contained in a hyperpair, all the edges connectingthe elements of this Smk with elements not contained inthis Smk have to be cut. This rather costly operation isreferred to as pruning.The downward pruning cost PR0(w) of a hyperpairPw with centre c is the number of edges that connectelements of Pw that are below the centre cwith the otherelements of Pw (excluding c). The upward pruning costPR1(w) of a hyperpair Pw is de�ned analogously.Usually, especially if a grafting process is applied,we do not want to prune all the elements above orbelow the centre c of a hyperpair Pw. It is thenmore convenient to consider the amortized per elementpruning costs. Let h0 and h1 be the number of 0's and

1's in w and let h = h0 + h1. We de�ne pr0(w) =PR0(w)=2h1 and pr1(w) = PR1(w)=2h0 to be the lowerelement pruning cost and the upper element pruningcost of w. It can be easily shown that the cost ofpruning k0 elements below c is at most k0 �pr0(w) + hand the cost of pruning k1 elements above c is at mostk1 � pr1(w) + h. The h terms are usually negligible.Note that h is the number of edges connected to thecentre c of Pw. When an edge connected to c is cut, ahyperpair Pw0 , where w0 is a pre�x of w, is obtained.This hyperpair can then be used in the construction ofthe next Pw. The following Lemma is easily proved.Lemma 4.2.(i) pr0(�) = 0 ; pr1(�) = 0(ii) pr0(0w) = pr0(w) + 1 ; pr0(1w) = 12 �pr0(w)(iii) pr1(0w) = 12 �pr1(w) ; pr1(1w) = pr1(w) + 1To produce partial orders from ~Skk for larger andlarger values of k, we have to construct larger and largerhyperpairs. When we design a family fFkg1k=1 of facto-ries, we usually choose an in�nite binary string W. Ineach member Fk of this family we construct a hyperpairwhose sequence is a long enough pre�x of W. Let wibe the �nite pre�x of W of length i. The lower andupper element pruning costs of an in�nite sequence Ware de�ned as the limits pr0(W) = limi!1 pr0(wi) andpr1(W) = limi!1 pr1(wi). These limits do exist for thechosen in�nite strings.Sch�onhage et al. base their factories on the in�nitestring W = 01(10)! for which, as can be easily veri�ed,pr0(W) = pr1(W) = 1:5. In our factories, we also needhyperpairs with cheaper lower element pruning cost and,alas, more expensive upper element pruning cost, orvice versa. The following Theorem presents a tradeo�between the upper and lower element pruning costs. Itsproof is omitted due to lack of space.Theorem 4.1. For any two numbers 1 � a; b � 2such that a + b = 3, there exists a binary sequenceW 2 f01; 10g! for which pr0(W) = a and pr1(W) = b.We are already in a position to describe a simplebut complete Skk factory. Select a string W. Constructa hyperpair Pw that contains the partial order Skk ,where w is a long enough pre�x ofW. Prune k elementsabove and k elements below the centre of this Pw. These2k+1 elements forma copy of Skk . By Lemma4.1(ii), theremaining elements of Pw form a disjoint collection ofpartial orders of the form Pwi , where wi is a pre�x of w.These partial orders are used to construct a new copyof Pw that will be used to construct the next Skk . Beforewe output an Skk , we cut the 2k edges it contains. Whensome part of an Skk generated by the factory is recycled,the elements returned to the factory (as singletons) areused again for the construction of hyperpairs. It is easyto check that the lower and upper element costs of this

6 Dor and Zwicksimple factory are both u0; u1 � pr0(W) + pr1(W) + 2.For any W 2 f01; 10g! we get that the lower and upperelement costs are u0; u1 � 5.4.2 Grafting The costs of the simple factories de-scribed above can be signi�cantly improved using graft-ing. We can cheaply �nd elements that are smaller thanthe centre, or elements that are larger than the centre(but not both usually). The process of �nding such ele-ments is called grafting. Pruning is then used to obtainelements on the opposite side.We demonstrate this notion using a simple example,the grafting of singletons. Take an element x, not con-tained in the hyperpair, and compare it to the centre cof the hyperpair. Continue is this way, comparing newelements to the centre, until either k elements above thecentre, or k elements below the centre are found. Notethat no edges are cut in this process. All the graftedelements are put in the output partial order. The prun-ing process is then used to complete the partial orderinto an Skk . Adding this process to our simple factoryfor Skk , the upper and lower element costs are reducedto: u1; u0 � maxfpr0(W); pr1(W)g + 2 (note that nowwe have to prune elements from at most one side). Thusu0; u1 � 3:5 if we take W = 01(10)! or W = 10(01)!.This supplies a proof to Theorem 2.1. Note that atleast one side of each generated Skk is composed of sin-gletons, and if this side is recycled, no comparisons canbe reused.4.3 The factories of Sch�onhage, Paterson andPippenger We now sketch the operation of the greenfactories Gk obtained by Sch�onhage et al. [SPP76].These factories improve upon the simple factories de-scribed above by grafting and recycling pairs. Thefactory Gk starts by producing hyperpairs correspond-ing to pre�xes of the string W = 01(10)! (the stringW = 10(01)! could be used instead). Let wi be thepre�x of W of length i. For brevity we let Hi = Pwi.Some small Hi's were shown in Fig. 3. By Lemma 4.1,an H2r, where r = dlog(k + 1)e contains an Skk . Afterconstructing an H2r, the factory initiates the followingpair grafting process:Let x < y be a pair of elements and let p1 and p0be two counters initially set to zero. Let c denote thecentre of the hyperpair. If p0 > p1 compare y and c. Ify > c then compare also x and c. If y > x > c thenincrease p1 by one. On the other hand, if p0 � p1 thencompare x and c. If x < c then compare also y and c.Finally, if x < y < c then increase p0 by one.As in the simple factory described in the previoussubsection, the grafting continues until k elements arefound above or below the centre and then a pruning

process is used to complete the generation of an Skk .The elements above the centre of the generated Skkform a collection of disjoint P0i's and the elementsbelow the centre form a collection of disjoint P1i's.When the lower or upper part of an Skk is returned tothe factory, some of the existing relations among theelements returned are utilized. The amortized analysisof the green factory Gk encompasses a trade-o� betweenthe cost of generating an Skk and the utility obtainedfrom its lower or upper parts when these parts arerecycled. Although the Skk 's generated by the factoryof Sch�onhage et al. may contain P0i 's and P1i's, wherei > 1, their factory is only capable of utilizing pairwisedisjoint relations among the elements returned to it (asthe grafting process uses pairs). If a P0i or a P1i, withi > 1, is returned to the factory, it is immediately brokeninto 2i�1 P0's or P1's. Note that both P0 and P1 simplystand for a pair of elements. It can be checked, see[SPP76], that the upper and lower element costs of thisfactory are u1; u0 � 3. This is Sch�onhage et al.'s bestresult.5 Advanced principles of factory designIn this section, we outline the principles used to con-struct our improved factories that yield the 2:95n me-dian algorithm. The �rst of these principles was alreadymentioned.� Allowing variations in the produced partial orders.Our factories construct partial orders from ~Skk . Theexact proportion between the number of elementsbelow and above the centre of a generated partialorder is not �xed in advance.� Recycling larger relations.The factories of Sch�onhage et al. are only capableof recycling pairs (i.e., P0's and P1's). Our factoriesrecycle larger constructs such as quartets (P00'sand P11's), octets (P000's and P111's), 16-tuples(P0000's and P1111's) as well as pairs, singletonsand other structures which are not hyperpairs. Thenon-hyperpair constructs are obtained by the moresophisticated grafting processes used.� Constructing hyper-products.As mentioned, our factories may receive partialorders that could not be used for the construction ofhyperpairs. These partial orders are used insteadfor the construction of hyper-products. A hyper-product Pw � I, where I is some partial order witha distinguished element which is again called acentre, is a hyperpair Pw that each of its elementsis also the centre of a disjoint I. Hyperpairs are ofcourse special cases of hyper-products as Pw �P0 =P0w and Pw � P1 = P1w.

SELECTING THE MEDIAN 7� Grafting larger relations and mass-grafting.The factories of Sch�onhage et al. use a simplepair grafting process. We use more complicatedgrafting processes, even if only pairs are involved.For each input construct we have di�erent graftingprocesses. Some of our grafting processes use thetechnique of mass production.� Using sub-factories.The factories of Sch�onhage et al. generate onlya single family of hyperpairs (corresponding toW = 01(10)!). Our factories generate several typesof hyperpairs and hyper-products, as mentionedabove. The construction of each one of these hyper-products is carried out in a separate sub-productionunit that we refer to as a sub-factory. Di�erent sub-factories also di�er in the `raw-materials' that theycan process.� Using credits in the amortized complexity analysis.The last principle is an accounting principle. Thedi�erent constructs recycled by our factories areof di�erent `quality'. Some of them can be usedvery e�ciently for the construction of partial or-ders from ~Skk . Others are not so appropriate forthis process and using them as raw materials forthe construction of partial orders from ~Skk results ina much higher production cost. To equalize thesecosts, each construct used by our factories is as-signed a credit (or debit if negative).Unfortunately, we do not have enough space in thisextended abstract for a full description of our factories.In the next section, we describe a factory that can beused to obtain a 2:97n median algorithm. This is agreatly simpli�ed version of our best factory that yieldsthe 2:95n median algorithm.6 Factories for median selectionThe construction of the factory Gk satisfying the con-ditions of Theorem 2.3 is extremely involved. To keepthis section relatively short, we describe here a simpli-�ed version Ĝk of the factory Gk. This factory yieldsthe following result which is only slightly weaker thenTheorem 2.3:Theorem 6.1. There is a green factory Ĝk for ~Skkwith u0; u1 < 2:9677.As was the case with all the other factories weconsidered, the unit cost of this factory is O(1) and theinitial cost and production residues are O(k2).The main di�erences between Ĝk and Gk are thefollowing: Ĝk utilizes only singletons, pairs and quartetsfor grafting. Therefore, Ĝk does not use credits orunbalanced hyperpairs. Moreover, Ĝk is able to recycle

only a fraction of at most
 � 0:638 of the elements inquartets. If the proportion of elements in quartets inthe recycled side is larger than
, then some of thesequartets have to be broken into pairs.This section is divided into four subsections. Inthe �rst subsection we give a preliminary descriptionof the factory. In the second and the third subsectionswe describe the pairs and quartets grafting processes.Finally, in the last subsection we give a full descriptionof the factory.6.1 Preliminaries The factory Ĝk recycles, andtherefore receives as inputs, singletons, pairs (P0's andP1's) and quartets (P01's and P10's). Singletons areimmediately joined into pairs.The factory Ĝk employs four processes: hyperpairgeneration, pair grafting, quartet grafting, and pruning.The factory Ĝk employs two sub-factories that generatebalanced hyperpairs. The �rst constructs hyperpairsaccording to the sequence W = 01(10)!. The secondconstructs hyperpairs according to the sequence W =10(01)!. Input P01's are passed to the �rst sub-factory(as P01's can be used for the construction of hyperpairsthat correspond to W = 01(10)!) while input P10'sare passed to the second factory (as P10's can be usedfor the construction of hyperpairs that correspond toW = 10(01)!). Input pairs are spread between the twosub-factories according to demand.We use the accounting scheme described in Sec-tion 4 to simplify the complexity analysis. Hence, thecost of an operation is the number of edges it cuts.When no ambiguity occurs, we let the upper cost (lowercost) of an operation be the cost of the operation whenthe upper part (or lower part) of its result is eliminated.Note that upper and lower costs are calculated for wholestructures, whereas the upper and lower element costsare calculated per eliminated element.The factory Ĝk is not capable of recycling elementsin structures larger than quartets. Any P0i (or P1i),where i > 2, has to be cut therefore into a collection ofdisjoint P00's (P11's). The price of this operation is 1=4edge per element.The factory Ĝk requires some of the elements itreceives to be organized in pairs (to be used for pairgrafting). Therefore, some of the quartets that are tobe recycled may have to be cut. The exact proportionof quartets that would have to be cut is not known inadvance. Which partial order S 2 ~Skk should be chargedfor the cutting of these edges? The one being recycled orthe one being constructed? The answer is that the costshould be split between these two. The optimal chargingscheme, in the case of Ĝk, turns out to be the following:When an S 2 ~Skk is recycled, we make sure that at

8 Dor and Zwickmost a fraction
 � 0:638 of the recycled elements areorganized in quartets. If more elements are organizedin quartets then some of the quartets are cut and thisis charged to the partial order being recycled. If duringof the construction of a partial order S 2 ~Skk morequartets have to be cut, the cost of these additionalcuts is charged to the partial order being constructed.In some cases the factory Ĝk runs out of quartets. Itthen takes pairs and turns them into quartets. No costis associated with this operation as no edges are cut.The general approach taken by the factory Ĝk isthe following. If enough elements are supplied to thefactory then in at least one the two sub-factories, a largeenough hyperpair can be built. Additional relationsarriving at the factory are then either used for graftingin the �rst sub-factory or used for the construction of alarge enough hyperpair also in the second sub-factory.Whenever a large enough hyperpair is formed, a quartetgrafting process is applied on it, then a pair graftingprocess is applied on it. Each one of the these graftingprocesses has a collection of possible outcomes. In someoutcomes elements with low upper element cost but highlower element cost are obtained. In other outcomeselements with high upper element cost but low lowerelement cost are obtained. Some of these outcomes canbe combined with some pruned elements into a tuplewith low enough upper and lower element costs. Weshow that if there are no such outcomes (which can becombined with pruned elements) we can always combineoutcomes from the two preceding cases so that tupleswith low enough upper and lower element costs areobtained.In general, the upper (or lower) element cost ofeach case is the sum of the upper (or lower) costs ofthe two grafting processes, the pruning cost, the costof cutting quartets into pairs (if necessary) and thecost of the elimination itself. The elimination cost ofeach element is always a single edge as the output ofthe grafting precesses is always a partial order whichdoes not contain undirected cycles (undirected cycles, ifobtained, are broken).The last remark regards our optimization scheme.At a certain point in the algorithm, we decide uponthe optimal number of elements, from each category,that are to be added to the output partial order. Theoptimal number of elements from each category maybe non-integral. The sum of the optimal numbers, ofeach category, is rounded to the nearest integer value(which will be the actual number of elements, fromthis category, in the output partial order). The factorymaintains a counter for each category and makes surethat the number of grafted elements will not di�er fromthis counter by more than a constant value.

6.2 Grafting pairs In this subsection we describeour pair grafting process, which is considerably morecomplicated than the pair grafting process used bySch�onhage et al. [SPP76]. Our process uses a massproduction scheme to construct a sequence of dominatedhyperpairs.The process receives two parameters: a directionbit d and the centre c of the output partial order S.These parameters are set by the factory when initiatingthis process. The grafting recursively builds hyperpairswhich are dominated by the centre c of the outputpartial order. A dominated hyperpair P of direction dand level i is a hyperpair P = Pdi with centre c0 suchthat each element of P , except for c0, is known to belarger (if d = 0) or smaller (if d = 1) than c. Therelation between c0 and c is usually not determined.The pair grafting process is composed of rounds.The i-th round receives two dominated hyperpairs P 1and P 2 (with centres c1 and c2, respectively) of level iand attempts to construct a dominated hyperpair oflevel i+1. At �rst a hyperpair P = Pdi+1 is constructedby comparing c1 and c2. Assume, without loss ofgenerality, that c2 is the centre of the new hyperpair P .Then, compare c1 with c. The two possible outcomes,when d = 1, are:(1) c1 < c and P is a dominated hyperpair of level i+1.(2) c1 > c and P is not dominated by c (as c2 > c1 > c).Let (1)0 and (2)0 be the corresponding cases for d = 0,i.e., c1 > c and c1 < c, respectively. If (2) or (2)0 occur,the process is stopped. For the purposes of Ĝk (andalso for those of Gk), we also stop the process when adominated hyperpair P000 or P111 of level 3 is generated.When i = 0, the hyperpairs P 1 and P 2 are justsingletons c1 and c2. The `centres' c1 and c2 arecompared and a pair is obtained. The pair graftingprocess receives its elements as pairs. It therefore startswith the second comparison of the 0-th round.The
ow of the pair grafting process, for d = 1, isshown in Fig. 4. The four possible outcomes of the pairgrafting process with d = 1 are denoted by U20 , U21;1,U26 , and U04 . The four possible outcomes of this processwith d = 0, which we denote by L02,L1;12 ,L62, and L40,are symmetric. It is therefore enough to consider theupper and lower costs of U20 , U21;1, U26 , and U04 . Due tolack of space, we omit the detailed cost analysis. Thecosts incurred are summerized in Table 1. All thesecosts exclude the elimination cost which is 1 for eacheliminated element.6.3 Grafting quartets A P01 that contains thefour elements u; v; w; z, where u < v and u < w < z, isgrafted using the following simple algorithm:

SELECTING THE MEDIAN 9level 3 U04cc level 2c U20 cU21;1level 1c cU26Figure 4: Flow of pair grafting when d = 1.Upper part eliminated Lower part eliminatedClass Cost Number of Cost Number ofelements elementsU20 0 2 1 0U21;1 4 2 3 2U26 10 2 7 6U04 6�
 0 4 4Table 1: Costs of pair grafting1. Compare w and c.2. If w > c then remove the edge (u;w) and returnthe pair (u; v) to the input queue.3. If w < c then compare c with each of v and z.The �ve possible outcomes of this process are shownin Fig. 5. Note that the fourth partial order obtained(denoted by Q13) is a special case of the third partialorder obtained (denoted by Q13). It is not necessarytherefore to consider the fourth outcome and we areleft with four cases that we denote by Q20,Q1;12 ,Q13and Q04. The grafting process employed for P10's issymmetric. The quartet grafting process continues untilthree quartets from the same category are obtained.Oncemore, due to lack of space, we omit the detailedcosts analysis. The costs, for
 � 2=3, are summerizedin Table 2.6.4 The factory algorithm As mentioned before,the factory Ĝk is composed of two sub-factories. The�rst uses the string W = 01(10)! while the second oneuses the stringW = 10(01)!. We describe the operationof the �rst sub-factory (whose inputs are P01's, pairs andsingletons). The other sub-factory works in a symmetricway. The operation of the �rst sub-factory is composedof the following steps:(1) Generate a hyperpair Pw, where w = 01(10)h andh = dlog2 n1=8e, and let c be its centre. The centre cwill be the centre of the generated partial order.(2) The following steps are applied until k elementsabove c, or k elements below c, are placed in the

cwz Q20 v cQ13w uz uw vcz Q04cvuzwQ13cw vuz Q1;12Figure 5: Possible outcomes of P01 grafting.Upper part eliminated Lower part eliminatedClass Cost Number of Cost Number ofelements elementsQ20 1 2 2 0Q1;12 3 2 4 2Q13 4� 3
=4 1 3 3Q04 4�
 0 2 4Table 2: Costs of P01 grafting.output partial order.(2a) Apply the quartet grafting process until three tu-ples from one of the categories Q13, Q04 or Q20 areavailable. Elements from category Q1;12 are imme-diately placed in the output partial order and thegrafting continues.(2b) If three tuples from Q13 or from Q04 are available,apply the pair grafting process with d = 0, untileither L1;12 , L40, or L62 is obtained. Elements foundin category L02 are immediately placed in the �nalpartial order.(2c) If three tuples fromQ20 are available, apply the pairgrafting process with d = 1 until either U21;1, U04 ,or U26 is obtained. Elements found in category U20are immediately placed in the �nal partial order.(2d) The tuple obtained using the pair grafting, and relements from tuples obtained using quartet graft-ing, are placed in the output partial order.There are nine di�erent cases here: fQ13; Q04g �fL1;12 ; L40; L62g [fQ20g � fU21;1; U04 ; U26g: For eachone of these cases we choose an optimal value of r.(3) Finally, prune elements from Pw in order to achievean optimal size (this is required only if Q1;12 , U20 orL02 were encountered) and output this S 2 ~Skk .The sub-factory maintains three counters q13, q04 and q20which are initially set to 0. Whenever a Q13,Q04 or a Q20is obtained, in step (2a), the corresponding counter isincremented. When a certain part of a Q13,Q04 or a Q20is `consumed', in step (2d), the corresponding counteris decremented by the appropriate, not necessarily in-tegral, amount. The quartet grafting process activatedin step (2a) is carried out until one of these counters

10 Dor and Zwickreaches a value of at least 3.For each Q1;12 obtained in step (2a), and each U20 orL02 obtained in steps (2b) and (2c), an appropriate num-ber of elements is to be pruned in step (3). Two countersp0 and p1 maintain the number of elements that needto be pruned below and above c, respectively. Beforeoutputting the partial order, bp1c elements above c andbp0c elements below c are pruned.We depict the
avour of the cost analysis by consid-ering one of the worst cases of the factory. In the follow-ing, we �x
 ' 0:637985 which is the optimal value. Foreach U20 obtained in (2c), we prune r ' 2:1382 elementsbelow c. The pruning of the r elements below c cutspr0(W)�r edges. This pruning generates however r newelements in either singletons or pairs (because the prun-ing process separates r singletons, or r=2 pairs, from thecentre). These elements can be returned to the factoryas pairs and since r > 2, at least one pair is returnedto the factory for every pair that was utilized. Hence,there is no need to break quartets into pairs.Recycling the upper part cuts one edge for each pairand recycling the lower part cuts (1=2 �
=4)r edges(because of the recycling restrictions). Thus, the lowercost is pr0(W) �r + 1, obtaining r eliminated elementsand the upper cost is (pr0(W) + 1=2�
=4)r obtainingone eliminated element. Recall also that the eliminationcost is a single edge per eliminated element. Hence, theupper and lower element costs are:1 + (1:5 + 1=2�
=4)r2 = 1 + 1:5r+ 1r ' 2:96768 :The cost analysis of all the other cases is omitted.7 Concluding remarksWe have improved the results of Sch�onhage et al.[SPP76] and Blum et al. [BFP+73] and obtaineda better algorithm for the selection of the median.Although the improvement, is quite modest, many newideas were needed to obtain this improvement. Thenew ideas introduced may lead to further improvements.Our current constructions, however, are already quiteinvolved and a considerable e�ort was devoted to theiroptimization. Obtaining further improvements is notlikely to be an easy task. Further narrowing the gapbetween the known upper and lower bounds on thenumber of comparisons needed to select the medianremains a challenging open problem.References[Aig82] M. Aigner. Selecting the top three elements. Dis-crete Applied Mathematics, 4:247{267, 1982.[BFP+73] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, andR.E. Tarjan. Time bounds for selection. Journal ofComputer and System Sciences, 7:448{461, 1973.

[BJ85] S.W. Bent and J.W. John. Finding the medianrequires 2n comparisons. In Proceedings of the 17thAnnual ACM Symposium on Theory of Computing,Providence, Rhode Island, pages 213{216, 1985.[CM89] W. Cunto and J.I. Munro. Average case selection.Journal of the ACM, 36(2):270{279, 1989.[DZ95] D. Dor and U. Zwick. Finding percentile elements.In Proceedings of the 3rd Israel Symposium on Theoryand Computing systems, 1995.[Eus93] J. Eusterbrock. Errata to "Selecting the top threeelements" by M. Aigner: A result of a computer-assisted proof search. Discrete Applied Mathematics,41:131{137, 1993.[FG78] F. Fussenegger and H.N. Gabow. A counting ap-proach to lower bounds for selection problems. Journalof the ACM, 26(2):227{238, April 1978.[FJ59] L.R. Ford and S.M. Johnson. A tournament prob-lem. American Mathematical Monthly, 66:387{389,1959.[FR75] R.W. Floyd and R.L. Rivest. Expected time boundsfor selection. Communication of the ACM, 18:165{173,1975.[HS69] A. Hadian and M. Sobel. Selecting the t-th largestusing binary errorless comparisons. Colloquia Mathe-matica Societatis J�anos Bolyai, 4:585{599, 1969.[Hya76] L. Hya�l. Bounds for selection. SIAM Journal onComputing, 5:109{114, 1976.[Joh88] J.W. John. A new lower bound for the set-partitionproblem. SIAM Journal on Computing, 17(4):640{647,August 1988.[Kir81] D.G. Kirkpatrick. A uni�ed lower bound for se-lection and set partitioning problems. Journal of theACM, 28:150{165, 1981.[Kis64] S.S. Kislitsyn. On the selection of the k-th elementof an ordered set by pairwise comparisons. Sibirsk.Mat. Zh., 5:557{564, 1964.[MP82] I. Munro and P.V. Poblete. A lower bound fordetermining the median. Technical Report ResearchReport CS-82-21, University of Waterloo, 1982.[Poh72] I. Pohl. A sorting problem and its complexity.Communication of the ACM, 15:462{464, 1972.[RH84] P.V. Ramanan and L. Hya�l. New algorithms forselection. Journal of Algorithms, 5:557{578, 1984.[Sch32] J. Schreier. On tournament elimination systems.Mathesis Polska, 7:154{160, 1932. (in Polish).[SPP76] A. Sch�onhage, M. Paterson, and N. Pippenger.Finding the median. Journal of Computer and SystemSciences, 13:184{199, 1976.[SY80] P. Stockmeyer and F.F. Yao. On the optimality oflinear merge. SIAM Journal on Computing, 9:85{90,1980.[Yap76] C.K. Yap. New upper bounds for selection. Com-munication of the ACM, 19(9):501{508, September1976.

