Comp181 Spring 2002

Additional Context-Free Languages Exercises

1) Given the following languages, show that they are context-free by constructing context-free grammars that generate them:
a. $\left\{a b^{n} c d^{n} f\right\}$
b. $\left\{a^{n} b^{m} c^{p}: n \leq m+p\right\}$
c. $\left\{w^{*}{ }^{*} w^{R}: w \in\{a, b\}^{*}\right\}$
d. $\left\{\{a, b\}^{*}\right.$: the number of $a ’ s=$ the number of b 's $\}$
2) Given the following grammar:
```
\(\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c},(),,+, *, \mathrm{~S}, \mathrm{~T}\}\)
\(\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c},(),,+, *\}\)
R = \{
    \(S \rightarrow T+S \mid T\)
    \(\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~T} \mid\) (S)
    \(\mathrm{T} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{c}\)
\}
```

a. show a derivation for:
i. $a^{*}(b+c)$
ii. $a+\left(b^{*} c\right)$
iii. $((a+b) *(b+c))$
b. give a parse tree for each of the above
3) Given the following grammar:

```
V = { Sentence, Subject, Predicate, Noun, Verb, Object, SubordinateClause,
    Adjective, her, I, duck, saw}
\Sigma={ saw, duck, I, her }
R={
    Sentence }->\mathrm{ Subject Predicate
    Subject }->\mathrm{ Noun
    Predicate }->\mathrm{ Verb Object | Verb Object SubordinateClause
    Object }->\mathrm{ Adjective Noun | Noun
    SubordinateClause }->\mathrm{ Verb
    Adjective }->\mathrm{ her
    Noun }->\mathrm{ I, her, duck
    Verb }->\mathrm{ saw, duck
}
```

Show that the statement "I saw her duck" is ambiguous by constructing two nonequivalent parse trees.
4) Construct a PDA that recognizes the following grammars:
a. $\quad\left\{\{a, b\}^{*}\right.$: the number of $b ' s=$ the number of $\left.a ' s\right\}$
b. $\left\{\{a, b\}^{*}:\right.$ the number of $a ' s \neq$ the number of b 's $\}$
5) Give an intuitive description of the following grammars, and construct a PDA that recognizes it:
a.

$$
\begin{aligned}
& \mathrm{V}=\{\mathrm{S}, \mathrm{~A}, \mathrm{~B}, \mathrm{a}, \mathrm{~b}\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}\} \\
& \mathrm{R}=\{ \\
& \mathrm{S} \rightarrow \varepsilon \\
& \mathrm{~S} \rightarrow \mathrm{ASB} \\
& \mathrm{~A} \rightarrow \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{~b}
\end{aligned}
$$

b.

$$
\begin{aligned}
& \mathrm{V}=\{\mathrm{S}, \mathrm{~A}, \mathrm{~B}, \mathrm{a}, \mathrm{~b}\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}\} \\
& \mathrm{R}=\{ \\
& \mathrm{S} \rightarrow \varepsilon \\
& \mathrm{~S} \rightarrow \text { SASBS } \\
& \mathrm{S} \rightarrow \text { SBSAS } \\
& \mathrm{A} \rightarrow \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{~b}
\end{aligned}
$$

c.

$$
\begin{aligned}
& \mathrm{V}=\left\{\mathrm{S}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{a}, \mathrm{~b}\right\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}\} \\
& \mathrm{R}=\{ \\
& \mathrm{S} \rightarrow \varepsilon \\
& \mathrm{~S} \rightarrow \mathrm{~S}_{1} \\
& \mathrm{~S} \rightarrow \mathrm{~S}_{2} \\
& \mathrm{~S}_{1} \rightarrow \varepsilon \\
& \mathrm{~S}_{1} \rightarrow \mathrm{AS}_{1} \mathrm{~B} \\
& \mathrm{~S}_{2} \rightarrow \varepsilon \\
& \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{AS}_{2} \mathrm{BS}_{2} \\
& \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{BS}_{2} \mathrm{AS}_{2} \\
& \mathrm{~A} \rightarrow \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{~b}
\end{aligned}
$$

```
d.
    \(\mathrm{V}=\{\mathrm{S}, \mathrm{A}, \mathrm{a}, \mathrm{b}\}\)
    \(\Sigma=\{\mathrm{a}, \mathrm{b}\}\)
    R = \{
        \(S \rightarrow \varepsilon\)
        \(\mathrm{S} \rightarrow \mathrm{ASb}\)
        \(\mathrm{A} \rightarrow \mathrm{a} \mid \mathrm{aa}\)
\}
```

6) Use the pumping lemma for context free grammars to show that the following is not a context free grammar:

$$
\left\{\{a, b\}^{\mathrm{n}}\{\mathrm{c}, \mathrm{~d}\}^{\mathrm{n}}: \text { the number of } \mathrm{a} ’ \mathrm{~s}=\text { the number of } \mathrm{c} \text { 's }\right\}
$$

