COMP 455, Models of Languages and Computation, Spring 2011
An Incompleteness Theorem
NOT REQUIRED

A theorem in a logic L is a statement that is provable in L. An example of
such a statement is “There are infinitely many prime numbers.” Associated
with a logic is a theorem proving procedure Py, that tries to find a proof of a
statement X by generating all possible proofs of X. If X is provable, P will
eventually find a proof, otherwise P, will run forever. Thus P;, corresponds
to a Turing machine that halts on statements X that are provable in L and
runs forever on other statements.

Thus the set of theorems in a logic L is recursively enumerable.

A logic L is sound if all theorems of L are true. A logic is effective if
the set of theorems is recursively enumerable. Let Sp be {i : in L one can
prove that Turing mechine 7T; does not halt on input ¢}. If the logic L logic is
effective then S is recursively enumerable. It is reasonable to assume that
logics are effective, using Py, to partially decide the set of theorems.

Theorem. Suppose L is a logic that is sound and effective. Then there
is a Turing machine 7j that does not halt on input j but this fact cannot be
proven in L.

Proof. Let A be {i : T; does not halt on input i}. We know that A is
not recursively enumerable. Because L is sound, S;, € A. However, Sy, is
recursively enumerable. Because A is not r.e., S;, # A. Because Sp C A,
there is a j such that j € A but j ¢ Si. Thus there is a j such that 7; halts
on input j but this fact cannot be proven in L.

This shows that no finite logic can fully capture the non-halting of Turing
machines. Even more, an integer j as above can be constructed from L. Thus
in any reasonable logic L there is a statement (call it X ) that is true but
not provable in L.

This can also be presented using the encode notation as follows:

A logic L is sound if all theorems of L are true. A logic is effective if the
set of theorems is recursively enumerable. Let Sy, be {encode(T) : in L one
can prove that Turing mechine 7' does not halt on input encode(T)}. If the
logic L logic is effective then Sy is recursively enumerable. It is reasonable
to assume that logics are effective, using P; to partially decide the set of
theorems.

Theorem. Suppose L is a logic that is sound and effective. Then there
is a Turing machine 7" that does not halt on input encode(T') but this fact



cannot be proven in L.

Proof. Let A be {encode(T) : T does not halt on input encode(T")}. We
know that A is not recursively enumerable. Because L is sound, S; C A.
However, Sy is recursively enumerable. Because A is not r.e., Sp # A.
Because S; C A, there is a T such that encode(T') € A but encode(T) ¢ Sy.
Thus there is a T such that T" halts on input encode(T") but this fact cannot
be proven in L.

This shows that no finite logic can fully capture the non-halting of Turing
machines. Even more, a machine T as above can be constructed from L. Thus
in any reasonable logic L there is a statement (call it X ) that is true but
not provable in L.

This leads to the Lucas paradox. Suppose H is “human logic.” Suppose
someday we learn what H is. Then we can apply the above reasoning to
construct Xy. We will then know that Xy is true but not provable in H.
But since we did this, we know that Xy is true, so Xy is provable in H.
Possibilities:

1. H is unknowable by humans.

2. It is not possible to prove in H that X is true.

3. Humans can’t think straight. (H is not sound.)

4. Our minds can perform operations that are not realizable on Turing
machines.



