A *theorem* in a logic L is a statement that is provable in L. An example of such a statement is “There are infinitely many prime numbers.” Associated with a logic is a *theorem proving procedure* P_L that tries to find a proof of a statement X by generating all possible proofs of X. If X is provable, P_L will eventually find a proof, otherwise P_L will run forever. Thus P_L corresponds to a Turing machine that halts on statements X that are provable in L and runs forever on other statements.

Thus the set of theorems in a logic L is recursively enumerable.

A logic L is *sound* if all theorems of L are true. A logic is *effective* if the set of theorems is recursively enumerable. Let S_L be $\{i : \text{in } L \text{ one can prove that Turing machine } T_i \text{ does not halt on input } i \}$. If the logic L logic is effective then S_L is recursively enumerable. It is reasonable to assume that logics are effective, using P_L to partially decide the set of theorems.

Theorem. Suppose L is a logic that is sound and effective. Then there is a Turing machine T_j that does not halt on input j but this fact cannot be proven in L.

Proof. Let Δ be $\{i : T_i \text{ does not halt on input } i \}$. We know that Δ is not recursively enumerable. Because L is sound, $S_L \subseteq \Delta$. However, S_L is recursively enumerable. Because Δ is not r.e., $S_L \neq \Delta$. Because $S_L \subseteq \Delta$, there is a j such that $j \in \Delta$ but $j \notin S_L$. Thus there is a j such that T_j halts on input j but this fact cannot be proven in L.

This shows that no finite logic can fully capture the non-halting of Turing machines. Even more, an integer j as above can be constructed from L. Thus in any reasonable logic L there is a statement (call it X_L) that is true but not provable in L.

This can also be presented using the *encode* notation as follows:

A logic L is *sound* if all theorems of L are true. A logic is *effective* if the set of theorems is recursively enumerable. Let S_L be $\{\text{encode}(T) : \text{in } L \text{ one can prove that Turing machine } T \text{ does not halt on input } \text{encode}(T) \}$. If the logic L logic is effective then S_L is recursively enumerable. It is reasonable to assume that logics are effective, using P_L to partially decide the set of theorems.

Theorem. Suppose L is a logic that is sound and effective. Then there is a Turing machine T that does not halt on input $\text{encode}(T)$ but this fact
cannot be proven in L.

Proof. Let Δ be \{\textit{encode}(T) : T does not halt on input $\text{encode}(T)$\}. We know that Δ is not recursively enumerable. Because L is sound, $S_L \subseteq \Delta$. However, S_L is recursively enumerable. Because Δ is not r.e., $S_L \neq \Delta$. Because $S_L \subseteq \Delta$, there is a T such that $\text{encode}(T) \in \Delta$ but $\text{encode}(T) \not\in S_L$. Thus there is a T such that T halts on input $\text{encode}(T)$ but this fact cannot be proven in L.

This shows that no finite logic can fully capture the non-halting of Turing machines. Even more, a machine T as above can be constructed from L. Thus in any reasonable logic L there is a statement (call it X_L) that is true but not provable in L.

This leads to the Lucas paradox. Suppose H is “human logic.” Suppose someday we learn what H is. Then we can apply the above reasoning to construct X_H. We will then know that X_H is true but not provable in H. But since we did this, we know that X_H is true, so X_H is provable in H.

Possibilities:
1. H is unknowable by humans.
2. It is not possible to prove in H that X_H is true.
3. Humans can’t think straight. (H is not sound.)
4. Our minds can perform operations that are not realizable on Turing machines.