
COMP 455, Models of Languages and Computation, Spring 2011
An Incompleteness Theorem

NOT REQUIRED

A theorem in a logic L is a statement that is provable in L. An example of
such a statement is “There are infinitely many prime numbers.” Associated
with a logic is a theorem proving procedure PL that tries to find a proof of a
statement X by generating all possible proofs of X. If X is provable, PL will
eventually find a proof, otherwise PL will run forever. Thus PL corresponds
to a Turing machine that halts on statements X that are provable in L and
runs forever on other statements.

Thus the set of theorems in a logic L is recursively enumerable.
A logic L is sound if all theorems of L are true. A logic is effective if

the set of theorems is recursively enumerable. Let SL be {i : in L one can
prove that Turing mechine Ti does not halt on input i}. If the logic L logic is
effective then SL is recursively enumerable. It is reasonable to assume that
logics are effective, using PL to partially decide the set of theorems.

Theorem. Suppose L is a logic that is sound and effective. Then there
is a Turing machine Tj that does not halt on input j but this fact cannot be
proven in L.

Proof. Let ∆ be {i : Ti does not halt on input i}. We know that ∆ is
not recursively enumerable. Because L is sound, SL ⊆ ∆. However, SL is
recursively enumerable. Because ∆ is not r.e., SL 6= ∆. Because SL ⊆ ∆,
there is a j such that j ∈ ∆ but j 6∈ SL. Thus there is a j such that Tj halts
on input j but this fact cannot be proven in L.

This shows that no finite logic can fully capture the non-halting of Turing
machines. Even more, an integer j as above can be constructed from L. Thus
in any reasonable logic L there is a statement (call it XL) that is true but
not provable in L.

This can also be presented using the encode notation as follows:
A logic L is sound if all theorems of L are true. A logic is effective if the

set of theorems is recursively enumerable. Let SL be {encode(T ) : in L one
can prove that Turing mechine T does not halt on input encode(T )}. If the
logic L logic is effective then SL is recursively enumerable. It is reasonable
to assume that logics are effective, using PL to partially decide the set of
theorems.

Theorem. Suppose L is a logic that is sound and effective. Then there
is a Turing machine T that does not halt on input encode(T ) but this fact



cannot be proven in L.
Proof. Let ∆ be {encode(T ) : T does not halt on input encode(T )}. We

know that ∆ is not recursively enumerable. Because L is sound, SL ⊆ ∆.
However, SL is recursively enumerable. Because ∆ is not r.e., SL 6= ∆.
Because SL ⊆ ∆, there is a T such that encode(T ) ∈ ∆ but encode(T ) 6∈ SL.
Thus there is a T such that T halts on input encode(T ) but this fact cannot
be proven in L.

This shows that no finite logic can fully capture the non-halting of Turing
machines. Even more, a machine T as above can be constructed from L. Thus
in any reasonable logic L there is a statement (call it XL) that is true but
not provable in L.

This leads to the Lucas paradox. Suppose H is “human logic.” Suppose
someday we learn what H is. Then we can apply the above reasoning to
construct XH . We will then know that XH is true but not provable in H.
But since we did this, we know that XH is true, so XH is provable in H.
Possibilities:
1. H is unknowable by humans.
2. It is not possible to prove in H that XH is true.
3. Humans can’t think straight. (H is not sound.)
4. Our minds can perform operations that are not realizable on Turing
machines.


