1 Acceptance, Rejection, and I/0O for
Turing Machines
Definition 1.1 (Initial Configuration) If M = (K,X,d,s, H) is a Turing

machine and w € (X — {U,>})* then the initial configuration of M on input
w is (s, >Uw).

Definition 1.2 (4.2.1 modified, Acceptance, rejection, halting) Let M
= (K,%, 0,s,H) be a Turing machine such that H = {y,n}.

e Then any halting configuration whose state is y is called an accepting
configuration and a halting configuration whose state is n is called a
rejecting configuration.

o We say M accepts an input w € (X — {U,>})* if there is an accepting
configuration C' such that (s,t>Uw) ki, C and M rejects w if there is
a rejecting configuration C' such that (s,>Uw) 3, C.

e Also, M halts on input w € (X — {U,>})* if there is a halting config-
uration C' such that (s,>Lw) F3, C.

Note that it is also possible for the Turing machine to loop, that is, to
continue computing forever.
Let X9 C ¥ — {U,>} be an alphabet called the input alphabet of M.

Definition 1.3 (4.2.1, Decidability) A Turing machine M decides a lan-
guage L C 35 if for any w € X,

o if w e L then M accepts w and
o ifw ¢ L then M rejects w.

Note that M never loops for inputs in . Also, L is recursive (decidable) if
there is a Turing machine M such that M decides L.

For this definition, it is not necessary that we know which Turing machine
decides L. If there is one, then L is decidable, and similarly for semidecidable.

Definition 1.4 (4.2.4, Semidecidability)



e M semidecides (partially decides) L C 3§ if for any string w € 3§,
w € L if and only if M halts on input w.

e A language L is recursively enumerable (partially decidable, semide-
cidable) iff there is a Turing machine M that semidecides L.

Here is an equivalent definition of semidecides that may be more intuitive.

Definition 1.5 (Semidecidability, equivalent definition) Suppose Tur-
ing machine M has two halting states {y,n}. Then M semidecides L C ¥
if for any w € X,

o if w e L then M accepts w and
o if w & L then either M loops on input w or M rejects w.

It can be shown that this definition is equivalent to the preceding one.

e This definition allows for the Turing machine to halt on some inputs
that are not in L.

e This means that the language is partially decidable if when the answer
is “yes,” the machine always answers correctly.

e When the answer is “no,” the machine may sometimes answer “no”
and may sometimes fail to answer at all (by looping).

This definition makes it clear that any language that is decidable is also
partially decidable.

Interesting facts:

e If L is recursive then it is also recursively enumerable.

e If L is recursive then L (that is, 33§ — L) is also recursive.

e L isrecursive if and only if both L and L are recursively enumerable.

There are recursively enumerable languages that are not recursive.

There are recursively enumerable languages L such that L is not
recursively enumerable.




We have the following hierarchy:

FINITE ¢ REGULAR c CFL ¢ DECIDABLE C SEMIDECIDABLE

1.1 Problems and Languages

We need to relate languages to problems. A language L is a subset of X* for
some finite alphabet 3. A problem @) is something like, “Given an integer n,
is n prime?”

In general, a problem @ consists of a set S (like the integers) and a
property P of elements of that set (such as primality). Then one seeks a
method which, given any element x of S, such as an integer n, will decide if
the property P of x is true (is n prime). This method is then a solution to
Q.

A problem () can be expressed as a language L¢ in the following way.

e An alphabet ¥ is chosen, and elements of S are expressed as elements
of ¥* by some encoding function encode(x).

e Then the language L¢ corresponding to the problem (@ is

{encode(x) : © € S,z has property P}.

e So a solution to the problem ) is a method which, given an element
encode(x) of ¥*, can determine if encode(x) € L.

1.1.1 Examples

Let @@ be the problem, “Given nonnegative integer x, is x prime?” Let
¥ = {0, 1} and let encode(x) represent z in binary. Then L is {encode(z) :
x is prime} which is {10, 11,101,111, 1011, ...}.

Let @ be the problem, “Given nonnegative integer z, is z even?” Let
¥ = {0, 1} and let encode(x) represent z in binary. Then L, is {encode(z) :
x is even} which is {0, 10, 100, 110, 1000, . . .}.

Let @ be the problem, “Will UNC have a winning basketball season next
year?” Then S is just the set containing UNC, and P is the property of
having a winning season. Encode UNC as UNC' (a single symbol) so that
encode maps UNC onto UNC. Thus ¥ = {UNC?}. If UNC will have a
winning season then Loy = {UNC'} else Lo = {}.

3



1.1.2 Decidability of problems

e We say the problem () is decidable if the language L is decidable (by
a Turing machine). This depends on the encoding, but we assume a
reasonable encoding.

e We say the problem @) is partially decidable if the language L is par-
tially decidable. This also depends on the encoding

e Finite problems are always decidable, even if we don’t know the Turing
machine M that can decide them. So the problem ) of whether UNC
will have a winning basketball season next year is decidable, because
in either case there is a Turing machine that decides the language L.

e Likewise given any single mathematical conjecture A, the problem @
of whether A is provable, is decidable, even if we don’t know which
Turing machine decides L.

1.2 Computing Functions

Turing machines can also compute functions such as addition and substrac-
tion. The basic idea is that the Turing machine accepts as input, the input
to the function, and when it halts, leaves the value of the function on the
tape.

Definition 1.6 (Output of a Turing machine) Let M = (K,X,0,s,{h})
be a Turing machine. Let X9 C X — {U,>} be an alphabet, and let w € .
Suppose M halts on input w and (s,>Uw) F3, (h,>Uy) for some y € 3.
Then y is called the output of M on input w, denoted by M (w).

Note that M (w) is defined only if M halts on input w and on a config-
uration of the stated form. Thus M can be a partial function, seen in this
sense.

Definition 1.7 (Turing machine computes a function) Let f be any to-
tal function from 3§ to ¥j. We say that M computes f of for all w € Xf,
M(w) = f(w). Thus M halts on all such w and outputs f(w) given input w.

Definition 1.8 (Recursive function) A function f is called recursive (com-
putable) if there is a Turing machine M that computes f.

4



This definition only specifies functions from strings to strings. To get
functions on other objects, such as integers or sets, they have to be encoded
as strings.

Multiple inputs can be separated by some delimiter, such as a semicolon.
So, for example, a Turing machine to compute addition might have an input
of the form 101; 11 and output 1000. One can also represent graphs or arrays
or even Turing machines as strings, if necessary. We are free to use any
encoding, but the definitions will not be very meaninngful unless a reasonable
encoding is chosen.

When one represents integers as binary, and uses other reasonable en-
codings, then it turns out that all the usual functions, such as addition,
subtraction, multiplication, and so on are computable.

1.3 The Busy Beaver Function

There are several definitions of various versions of the Busy Beaver function,
a very fast growing uncomputable function. In fact, the Busy Beaver function
is not upper bounded by any computable function, and grows much faster
than any computable function. The text on page 253 defines it this way:

Definition 1.9 (Busy Beaver Function) The busy beaver function f :
N — N has the property that 5(n) is the largest number m such that there is
a Turing machine with alphabet {>>,, a,b} and with exactly n states which,
when started with the blank tape, eventually halts at configuration (h,>Lla™).

Other definitions do not require the one’s in the output to be consecutive,
but just count the total number of one’s written. Other definitions count
the total number of moves made, not the number of one’s written. Some
definitions allow a two-way infinite tape and allow Turing machines that can
both write on the tape and move left or right on the same move.

Rado’s ¥ function is defined with a two-way infinite tape and a machine
that can both write and move at the same time, and counts the number of
one’s on the tape when the machine halts. Also, the tape is assumed to have
two symbols, one of which is regarded as a blank and the other as a one.
Also, S(n) is the maximum number of steps used by such a machine that
eventually halts.

Known values:



n | 3(n) S(n)

010 0

111 1

214 6

316 21

4113 107

5| >4008 > 47,176,870
6 | > 1018267 > 1036534

e The problem with trying to compute this function is that there are
some very long running Turing machines that we cannot tell whether
they will ever halt.

e In fact, this will always be so, no matter how advanced our mathematics
becomes, because the Busy Beaver Function is uncomputable, meaning
that no Turing machine can compute it.

e Some machines that loop, do so in very clever ways that our mathe-
matics will never be able to understand. For example, there are some
long-running 5-state Turing machines for which people still don’t know
whether they will ever halt.

It’s a wonder that people were even able to compute how long some of the
long running machines ran, because they certainly couldn’t simulate them!

Some simulations of the Busy Beaver Machines are linked from the course
web page.

Why does this matter? One might think that it would be possible just to
run Turing machines for a small number of steps, and if they hadn’t halted
by then, they never would. The Busy Beaver function shows dramatically
why this approach does not work.

1.4 Importance of the Topic
Why discuss decidability and partial decidability at all?

e We can show that some problems are not decidable, and that some
functions are not computable, as you will see.

e This helps us, because if we know that a problem is not decidable, we
don’t have to waste time trying to find a way to decide it.

6



e Example: Ambiguity of context-free grammars is undecidable.

e Then we can look for special cases that can be solved, or possibly
approximate a solution by heuristics.

Even if a problem is not decidable, it may be partially decidable. Then we
can still get some useful information about it by a partial decision procedure.
An example where this is true is theorem proving in first-order and other
logics.

Some problems are known to be not even partially decidable. This is
helpful because it saves us the effort of trying to find a partial decision
procedure for them.

In this way we can concentrate our effort on what is achievable, and not
waste our time and effort on impossibilities.



